system HF staff commited on
Commit
d09cfcc
·
0 Parent(s):

Update files from the datasets library (from 1.4.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.4.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - expert-generated
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - other-LDC-User-Agreement-for-Non-Members
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 1K<n<10K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - other
18
+ task_ids:
19
+ - other-other-automatic speech recognition
20
+ ---
21
+
22
+ # Dataset Card for timit_asr
23
+
24
+ ## Table of Contents
25
+ - [Dataset Description](#dataset-description)
26
+ - [Dataset Summary](#dataset-summary)
27
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
28
+ - [Languages](#languages)
29
+ - [Dataset Structure](#dataset-structure)
30
+ - [Data Instances](#data-instances)
31
+ - [Data Fields](#data-instances)
32
+ - [Data Splits](#data-instances)
33
+ - [Dataset Creation](#dataset-creation)
34
+ - [Curation Rationale](#curation-rationale)
35
+ - [Source Data](#source-data)
36
+ - [Annotations](#annotations)
37
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
38
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
39
+ - [Social Impact of Dataset](#social-impact-of-dataset)
40
+ - [Discussion of Biases](#discussion-of-biases)
41
+ - [Other Known Limitations](#other-known-limitations)
42
+ - [Additional Information](#additional-information)
43
+ - [Dataset Curators](#dataset-curators)
44
+ - [Licensing Information](#licensing-information)
45
+ - [Citation Information](#citation-information)
46
+ - [Contributions](#contributions)
47
+
48
+ ## Dataset Description
49
+
50
+ - **Homepage:** [TIMIT Acoustic-Phonetic Continuous Speech Corpus](https://catalog.ldc.upenn.edu/LDC93S1)
51
+ - **Repository:** [Needs More Information]
52
+ - **Paper:** [TIMIT: Dataset designed to provide speech data for acoustic-phonetic studies and for the development and evaluation of automatic speech recognition systems.](https://catalog.ldc.upenn.edu/LDC93S1)
53
+ - **Leaderboard:** [Paperswithcode Leaderboard](https://paperswithcode.com/sota/speech-recognition-on-timit)
54
+ - **Point of Contact:** [Needs More Information]
55
+
56
+ ### Dataset Summary
57
+
58
+ The TIMIT corpus of read speech is designed to provide speech data for acoustic-phonetic studies and for the development and evaluation of automatic speech recognition systems. TIMIT contains broadband recordings of 630 speakers of eight major dialects of American English, each reading ten phonetically rich sentences. The TIMIT corpus includes time-aligned orthographic, phonetic and word transcriptions as well as a 16-bit, 16kHz speech waveform file for each utterance. Corpus design was a joint effort among the Massachusetts Institute of Technology (MIT), SRI International (SRI) and Texas Instruments, Inc. (TI). The speech was recorded at TI, transcribed at MIT and verified and prepared for CD-ROM production by the National Institute of Standards and Technology (NIST).
59
+
60
+ ### Supported Tasks and Leaderboards
61
+
62
+ - `automatic-speech-recognition`, `speaker-identification`: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER). The task has an active leaderboard which can be found at https://paperswithcode.com/sota/speech-recognition-on-timit and ranks models based on their WER.
63
+
64
+ ### Languages
65
+
66
+ The audio is in English.
67
+ The TIMIT corpus transcriptions have been hand verified. Test and training subsets, balanced for phonetic and dialectal coverage, are specified. Tabular computer-searchable information is included as well as written documentation.
68
+
69
+ ## Dataset Structure
70
+
71
+ ### Data Instances
72
+
73
+ A typical data point comprises the path to the audio file, usually called `file` and its transcription, called `text`. Some additional information about the speaker and the passage which contains the transcription is provided.
74
+
75
+ ```
76
+ {
77
+ 'file': '/data/TRAIN/DR4/MMDM0/SI681.WAV',
78
+ 'text': 'Would such an act of refusal be useful?',
79
+ 'phonetic_detail': [{'start': '0', 'stop': '1960', 'utterance': 'h#'},
80
+ {'start': '1960', 'stop': '2466', 'utterance': 'w'},
81
+ {'start': '2466', 'stop': '3480', 'utterance': 'ix'},
82
+ {'start': '3480', 'stop': '4000', 'utterance': 'dcl'},
83
+ {'start': '4000', 'stop': '5960', 'utterance': 's'},
84
+ {'start': '5960', 'stop': '7480', 'utterance': 'ah'},
85
+ {'start': '7480', 'stop': '7880', 'utterance': 'tcl'},
86
+ {'start': '7880', 'stop': '9400', 'utterance': 'ch'},
87
+ {'start': '9400', 'stop': '9960', 'utterance': 'ix'},
88
+ {'start': '9960', 'stop': '10680', 'utterance': 'n'},
89
+ {'start': '10680', 'stop': '13480', 'utterance': 'ae'},
90
+ {'start': '13480', 'stop': '15680', 'utterance': 'kcl'},
91
+ {'start': '15680', 'stop': '15880', 'utterance': 't'},
92
+ {'start': '15880', 'stop': '16920', 'utterance': 'ix'},
93
+ {'start': '16920', 'stop': '18297', 'utterance': 'v'},
94
+ {'start': '18297', 'stop': '18882', 'utterance': 'r'},
95
+ {'start': '18882', 'stop': '19480', 'utterance': 'ix'},
96
+ {'start': '19480', 'stop': '21723', 'utterance': 'f'},
97
+ {'start': '21723', 'stop': '22516', 'utterance': 'y'},
98
+ {'start': '22516', 'stop': '24040', 'utterance': 'ux'},
99
+ {'start': '24040', 'stop': '25190', 'utterance': 'zh'},
100
+ {'start': '25190', 'stop': '27080', 'utterance': 'el'},
101
+ {'start': '27080', 'stop': '28160', 'utterance': 'bcl'},
102
+ {'start': '28160', 'stop': '28560', 'utterance': 'b'},
103
+ {'start': '28560', 'stop': '30120', 'utterance': 'iy'},
104
+ {'start': '30120', 'stop': '31832', 'utterance': 'y'},
105
+ {'start': '31832', 'stop': '33240', 'utterance': 'ux'},
106
+ {'start': '33240', 'stop': '34640', 'utterance': 's'},
107
+ {'start': '34640', 'stop': '35968', 'utterance': 'f'},
108
+ {'start': '35968', 'stop': '37720', 'utterance': 'el'},
109
+ {'start': '37720', 'stop': '39920', 'utterance': 'h#'}],
110
+ 'word_detail': [{'start': '1960', 'stop': '4000', 'utterance': 'would'},
111
+ {'start': '4000', 'stop': '9400', 'utterance': 'such'},
112
+ {'start': '9400', 'stop': '10680', 'utterance': 'an'},
113
+ {'start': '10680', 'stop': '15880', 'utterance': 'act'},
114
+ {'start': '15880', 'stop': '18297', 'utterance': 'of'},
115
+ {'start': '18297', 'stop': '27080', 'utterance': 'refusal'},
116
+ {'start': '27080', 'stop': '30120', 'utterance': 'be'},
117
+ {'start': '30120', 'stop': '37720', 'utterance': 'useful'}],
118
+
119
+ 'dialect_region': 'DR4',
120
+ 'sentence_type': 'SI',
121
+ 'speaker_id': 'MMDM0',
122
+ 'id': 'SI681'
123
+ }
124
+ ```
125
+
126
+
127
+ ### Data Fields
128
+
129
+ - file: A path to the downloaded audio file in .wav format.
130
+
131
+ - text: The transcription of the audio file.
132
+
133
+ - phonetic_detail: The phonemes that make up the sentence. The PHONCODE.DOC contains a table of all the phonemic and phonetic symbols used in TIMIT lexicon.
134
+
135
+ - word_detail: Word level split of the transcript.
136
+
137
+ - dialect_region: The dialect code of the recording.
138
+
139
+ - sentence_type: The type of the sentence - 'SA':'Dialect', 'SX':'Compact' or 'SI':'Diverse'.
140
+
141
+ - speaker_id: Unique id of the speaker. The same speaker id can be found for multiple data samples.
142
+
143
+ - id: Unique id of the data sample. Contains the <SENTENCE_TYPE><SENTENCE_NUMBER>.
144
+
145
+
146
+ ### Data Splits
147
+
148
+ The speech material has been subdivided into portions for training and
149
+ testing. The default train-test split will be made available on data download.
150
+
151
+ The test data alone has a core portion containing 24 speakers, 2 male and 1 female
152
+ from each dialect region. More information about the test set can
153
+ be found [here](https://catalog.ldc.upenn.edu/docs/LDC93S1/TESTSET.TXT)
154
+
155
+
156
+ ## Dataset Creation
157
+
158
+ ### Curation Rationale
159
+
160
+ [Needs More Information]
161
+
162
+ ### Source Data
163
+
164
+ #### Initial Data Collection and Normalization
165
+
166
+ [Needs More Information]
167
+
168
+ #### Who are the source language producers?
169
+
170
+ [Needs More Information]
171
+
172
+ ### Annotations
173
+
174
+ #### Annotation process
175
+
176
+ [Needs More Information]
177
+
178
+ #### Who are the annotators?
179
+
180
+ [Needs More Information]
181
+
182
+ ### Personal and Sensitive Information
183
+
184
+ [Needs More Information]
185
+
186
+ ## Considerations for Using the Data
187
+
188
+ ### Social Impact of Dataset
189
+
190
+ [More Information Needed]
191
+
192
+ ### Discussion of Biases
193
+
194
+ [More Information Needed]
195
+
196
+ ### Other Known Limitations
197
+
198
+ [Needs More Information]
199
+
200
+ ## Additional Information
201
+
202
+ ### Dataset Curators
203
+
204
+ The dataset was created by John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S. Pallett, Nancy L. Dahlgren, Victor Zue
205
+
206
+ ### Licensing Information
207
+
208
+ LDC User Agreement for Non-Members
209
+
210
+ ### Citation Information
211
+ ```
212
+ @inproceedings{
213
+ title={TIMIT Acoustic-Phonetic Continuous Speech Corpus},
214
+ author={Garofolo, John S., et al},
215
+ ldc_catalog_no={LDC93S1},
216
+ DOI={https://doi.org/10.35111/17gk-bn40},
217
+ journal={Linguistic Data Consortium, Philadelphia},
218
+ year={1983}
219
+ }
220
+ ```
221
+
222
+ ### Contributions
223
+ Thanks to [@vrindaprabhu](https://github.com/vrindaprabhu) for adding this dataset.
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"clean": {"description": "The TIMIT corpus of reading speech has been developed to provide speech data for acoustic-phonetic research studies\nand for the evaluation of automatic speech recognition systems.\n\nTIMIT contains high quality recordings of 630 individuals/speakers with 8 different American English dialects,\nwith each individual reading upto 10 phonetically rich sentences.\n\nMore info on TIMIT dataset can be understood from the \"README\" which can be found here:\nhttps://catalog.ldc.upenn.edu/docs/LDC93S1/readme.txt\n", "citation": "@inproceedings{\n title={TIMIT Acoustic-Phonetic Continuous Speech Corpus},\n author={Garofolo, John S., et al},\n ldc_catalog_no={LDC93S1},\n DOI={https://doi.org/10.35111/17gk-bn40},\n journal={Linguistic Data Consortium, Philadelphia},\n year={1983}\n}\n", "homepage": "https://catalog.ldc.upenn.edu/LDC93S1", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "phonetic_detail": {"feature": {"start": {"dtype": "int64", "id": null, "_type": "Value"}, "stop": {"dtype": "int64", "id": null, "_type": "Value"}, "utterance": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "word_detail": {"feature": {"start": {"dtype": "int64", "id": null, "_type": "Value"}, "stop": {"dtype": "int64", "id": null, "_type": "Value"}, "utterance": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "dialect_region": {"dtype": "string", "id": null, "_type": "Value"}, "sentence_type": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "file", "output": "text"}, "builder_name": "timit_asr", "config_name": "clean", "version": {"version_str": "2.0.1", "description": "", "major": 2, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 5220656, "num_examples": 4620, "dataset_name": "timit_asr"}, "test": {"name": "test", "num_bytes": 2380616, "num_examples": 1680, "dataset_name": "timit_asr"}}, "download_checksums": {"https://data.deepai.org/timit.zip": {"num_bytes": 869007403, "checksum": "b79af42068b53045510d86854e2239a13ff77c4bd27803b40c28dce4bb5aeb0d"}}, "download_size": 869007403, "post_processing_size": null, "dataset_size": 7601272, "size_in_bytes": 876608675}}
dummy/clean/2.0.1/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d415bf8a373d2b6304c0e866936e0e3df530fe6ee2b0308d5965dbf4f2b4fd7
3
+ size 292805
timit_asr.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """TIMIT automatic speech recognition dataset."""
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import os
22
+
23
+ import pandas as pd
24
+
25
+ import datasets
26
+
27
+
28
+ _CITATION = """\
29
+ @inproceedings{
30
+ title={TIMIT Acoustic-Phonetic Continuous Speech Corpus},
31
+ author={Garofolo, John S., et al},
32
+ ldc_catalog_no={LDC93S1},
33
+ DOI={https://doi.org/10.35111/17gk-bn40},
34
+ journal={Linguistic Data Consortium, Philadelphia},
35
+ year={1983}
36
+ }
37
+ """
38
+
39
+ _DESCRIPTION = """\
40
+ The TIMIT corpus of reading speech has been developed to provide speech data for acoustic-phonetic research studies
41
+ and for the evaluation of automatic speech recognition systems.
42
+
43
+ TIMIT contains high quality recordings of 630 individuals/speakers with 8 different American English dialects,
44
+ with each individual reading upto 10 phonetically rich sentences.
45
+
46
+ More info on TIMIT dataset can be understood from the "README" which can be found here:
47
+ https://catalog.ldc.upenn.edu/docs/LDC93S1/readme.txt
48
+ """
49
+
50
+ _URL = "https://data.deepai.org/timit.zip"
51
+ _HOMEPAGE = "https://catalog.ldc.upenn.edu/LDC93S1"
52
+
53
+
54
+ class TimitASRConfig(datasets.BuilderConfig):
55
+ """BuilderConfig for TimitASR."""
56
+
57
+ def __init__(self, **kwargs):
58
+ """
59
+ Args:
60
+ data_dir: `string`, the path to the folder containing the files in the
61
+ downloaded .tar
62
+ citation: `string`, citation for the data set
63
+ url: `string`, url for information about the data set
64
+ **kwargs: keyword arguments forwarded to super.
65
+ """
66
+ super(TimitASRConfig, self).__init__(version=datasets.Version("2.0.1", ""), **kwargs)
67
+
68
+
69
+ class TimitASR(datasets.GeneratorBasedBuilder):
70
+ """TimitASR dataset."""
71
+
72
+ BUILDER_CONFIGS = [TimitASRConfig(name="clean", description="'Clean' speech.")]
73
+
74
+ def _info(self):
75
+ return datasets.DatasetInfo(
76
+ description=_DESCRIPTION,
77
+ features=datasets.Features(
78
+ {
79
+ "file": datasets.Value("string"),
80
+ "text": datasets.Value("string"),
81
+ "phonetic_detail": datasets.Sequence(
82
+ {
83
+ "start": datasets.Value("int64"),
84
+ "stop": datasets.Value("int64"),
85
+ "utterance": datasets.Value("string"),
86
+ }
87
+ ),
88
+ "word_detail": datasets.Sequence(
89
+ {
90
+ "start": datasets.Value("int64"),
91
+ "stop": datasets.Value("int64"),
92
+ "utterance": datasets.Value("string"),
93
+ }
94
+ ),
95
+ "dialect_region": datasets.Value("string"),
96
+ "sentence_type": datasets.Value("string"),
97
+ "speaker_id": datasets.Value("string"),
98
+ "id": datasets.Value("string"),
99
+ }
100
+ ),
101
+ supervised_keys=("file", "text"),
102
+ homepage=_HOMEPAGE,
103
+ citation=_CITATION,
104
+ )
105
+
106
+ def _split_generators(self, dl_manager):
107
+ archive_path = dl_manager.download_and_extract(_URL)
108
+
109
+ train_csv_path = os.path.join(archive_path, "train_data.csv")
110
+ test_csv_path = os.path.join(archive_path, "test_data.csv")
111
+
112
+ return [
113
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_info_csv": train_csv_path}),
114
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"data_info_csv": test_csv_path}),
115
+ ]
116
+
117
+ def _generate_examples(self, data_info_csv):
118
+ """Generate examples from TIMIT archive_path based on the test/train csv information."""
119
+ # Extract the archive path
120
+ data_path = os.path.join(os.path.dirname(data_info_csv).strip(), "data")
121
+
122
+ # Read the data info to extract rows mentioning about non-converted audio only
123
+ data_info = pd.read_csv(data_info_csv, encoding="utf8")
124
+ # making sure that the columns having no information about the file paths are removed
125
+ data_info.dropna(subset=["path_from_data_dir"], inplace=True)
126
+
127
+ # filter out only the required information for data preparation
128
+ data_info = data_info.loc[(data_info["is_audio"]) & (~data_info["is_converted_audio"])]
129
+
130
+ # Iterating the contents of the data to extract the relevant information
131
+ for audio_idx in range(data_info.shape[0]):
132
+ audio_data = data_info.iloc[0]
133
+
134
+ # extract the path to audio
135
+ wav_path = os.path.join(data_path, *(audio_data["path_from_data_dir"].split("/")))
136
+
137
+ # extract transcript
138
+ with open(wav_path.replace(".WAV", ".TXT"), "r", encoding="utf-8") as op:
139
+ transcript = " ".join(op.readlines()[0].split()[2:]) # first two items are sample number
140
+
141
+ # extract phonemes
142
+ with open(wav_path.replace(".WAV", ".PHN"), "r", encoding="utf-8") as op:
143
+ phonemes = [
144
+ {
145
+ "start": i.split(" ")[0],
146
+ "stop": i.split(" ")[1],
147
+ "utterance": " ".join(i.split(" ")[2:]).strip(),
148
+ }
149
+ for i in op.readlines()
150
+ ]
151
+
152
+ # extract words
153
+ with open(wav_path.replace(".WAV", ".WRD"), "r", encoding="utf-8") as op:
154
+ words = [
155
+ {
156
+ "start": i.split(" ")[0],
157
+ "stop": i.split(" ")[1],
158
+ "utterance": " ".join(i.split(" ")[2:]).strip(),
159
+ }
160
+ for i in op.readlines()
161
+ ]
162
+
163
+ example = {
164
+ "file": wav_path,
165
+ "text": transcript,
166
+ "phonetic_detail": phonemes,
167
+ "word_detail": words,
168
+ "dialect_region": audio_data["dialect_region"],
169
+ "sentence_type": audio_data["filename"][0:2],
170
+ "speaker_id": audio_data["speaker_id"],
171
+ "id": audio_data["filename"].replace(".WAV", ""),
172
+ }
173
+
174
+ yield audio_idx, example