Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Swedish
Size:
100K - 1M
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
import csv | |
import os | |
import datasets | |
from datasets.tasks import TextClassification | |
_DOWNLOAD_URL = "https://raw.githubusercontent.com/timpal0l/swedish-sentiment/main/swedish_sentiment.zip" | |
_TRAIN_FILE = "train.csv" | |
_VAL_FILE = "dev.csv" | |
_TEST_FILE = "test.csv" | |
_CITATION = "" | |
_DESCRIPTION = "Swedish reviews scarped from various public available websites" | |
class SwedishReviews(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="plain_text", | |
version=datasets.Version("1.0.0", ""), | |
description="Plain text import of the Swedish Reviews dataset", | |
) | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{"text": datasets.Value("string"), "label": datasets.ClassLabel(names=["negative", "positive"])} | |
), | |
supervised_keys=None, | |
homepage="https://github.com/timpal0l/swedish-sentiment", | |
citation=_CITATION, | |
task_templates=[TextClassification(text_column="text", label_column="label")], | |
) | |
def _split_generators(self, dl_manager): | |
dl_dir = dl_manager.download_and_extract(_DOWNLOAD_URL) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": os.path.join(dl_dir, _TEST_FILE)}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": os.path.join(dl_dir, _VAL_FILE)}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": os.path.join(dl_dir, _TRAIN_FILE)}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
with open(filepath, encoding="utf-8") as f: | |
reader = csv.DictReader(f) | |
for idx, row in enumerate(reader): | |
yield idx, { | |
"text": row["text"], | |
"label": row["sentiment"], | |
} | |