feat
Browse files- VieGLUE.py +54 -1
- data/vsfc/dev.tar.gz +3 -0
- data/vsfc/test.tar.gz +3 -0
- data/vsfc/train.tar.gz +3 -0
- data/vsmec/test.tar.gz +3 -0
- data/vsmec/train.tar.gz +3 -0
- data/vsmec/valid.tar.gz +3 -0
VieGLUE.py
CHANGED
@@ -101,6 +101,12 @@ _DOWNLOAD_URL = {
|
|
101 |
"vnrte": {
|
102 |
"validation": [os.path.join("data", "vnrte", "validation.tar.gz")],
|
103 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
}
|
105 |
|
106 |
SUBSET_KWARGS = {
|
@@ -398,10 +404,57 @@ predictions for this dataset."""
|
|
398 |
"""
|
399 |
), # pylint: disable=line-too-long
|
400 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
401 |
}
|
402 |
|
403 |
|
404 |
-
_VERSION = datasets.Version("1.
|
405 |
|
406 |
|
407 |
class VieGLUEConfig(datasets.BuilderConfig):
|
|
|
101 |
"vnrte": {
|
102 |
"validation": [os.path.join("data", "vnrte", "validation.tar.gz")],
|
103 |
},
|
104 |
+
"vsfc": {},
|
105 |
+
"vsmec": {
|
106 |
+
"train": [os.path.join("data", "vsmec", "train.tar.gz")],
|
107 |
+
"test": [os.path.join("data", "vsmec", "test.tar.gz")],
|
108 |
+
"validation": [os.path.join("data", "vsmec", "valid.tar.gz")],
|
109 |
+
},
|
110 |
}
|
111 |
|
112 |
SUBSET_KWARGS = {
|
|
|
404 |
"""
|
405 |
), # pylint: disable=line-too-long
|
406 |
},
|
407 |
+
"vsfc": {
|
408 |
+
"name": "vsfc",
|
409 |
+
"text_features": ["sentence"],
|
410 |
+
"label_classes": ["negative", "neutral", "positive"],
|
411 |
+
"label_column": "label",
|
412 |
+
"citation": textwrap.dedent(
|
413 |
+
"""
|
414 |
+
@inproceedings{van2018uit,
|
415 |
+
title={UIT-VSFC: Vietnamese students’ feedback corpus for sentiment analysis},
|
416 |
+
author={Van Nguyen, Kiet and Nguyen, Vu Duc and Nguyen, Phu XV and Truong, Tham TH and Nguyen, Ngan Luu-Thuy},
|
417 |
+
booktitle={2018 10th international conference on knowledge and systems engineering (KSE)},
|
418 |
+
pages={19--24},
|
419 |
+
year={2018},
|
420 |
+
organization={IEEE}
|
421 |
+
}"""
|
422 |
+
),
|
423 |
+
"description": textwrap.dedent(
|
424 |
+
"""Vietnamese Students' Feedback Corpus (UIT-VSFC), a free and high-quality corpus for research on two different tasks: sentiment-based and topic-based classifications"""
|
425 |
+
),
|
426 |
+
},
|
427 |
+
"vsmec": {
|
428 |
+
"name": "vsmec",
|
429 |
+
"text_features": ["sentence", "raw_sentence", "emotion"],
|
430 |
+
"label_classes": [
|
431 |
+
"Anger",
|
432 |
+
"Disgust",
|
433 |
+
"Enjoyment",
|
434 |
+
"Fear",
|
435 |
+
"Other",
|
436 |
+
"Sadness",
|
437 |
+
"Surprise",
|
438 |
+
],
|
439 |
+
"label_column": "label",
|
440 |
+
"citation": textwrap.dedent(
|
441 |
+
"""@inproceedings{ho2020emotion,
|
442 |
+
title={Emotion recognition for vietnamese social media text},
|
443 |
+
author={Ho, Vong Anh and Nguyen, Duong Huynh-Cong and Nguyen, Danh Hoang and Pham, Linh Thi-Van and Nguyen, Duc-Vu and Nguyen, Kiet Van and Nguyen, Ngan Luu-Thuy},
|
444 |
+
booktitle={Computational Linguistics: 16th International Conference of the Pacific Association for Computational Linguistics, PACLING 2019, Hanoi, Vietnam, October 11--13, 2019, Revised Selected Papers 16},
|
445 |
+
pages={319--333},
|
446 |
+
year={2020},
|
447 |
+
organization={Springer}
|
448 |
+
}"""
|
449 |
+
),
|
450 |
+
"description": textwrap.dedent(
|
451 |
+
"""a standard Vietnamese Social Media Emotion Corpus (UIT-VSMEC) with exactly 6,927 emotion-annotated sentences, contributing to emotion recognition research in Vietnamese"""
|
452 |
+
),
|
453 |
+
},
|
454 |
}
|
455 |
|
456 |
|
457 |
+
_VERSION = datasets.Version("1.1.0", "")
|
458 |
|
459 |
|
460 |
class VieGLUEConfig(datasets.BuilderConfig):
|
data/vsfc/dev.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:413473fa617621cb4ce7132f0635a691baacf04af5abdddadc75d3c9821bb5cb
|
3 |
+
size 33746
|
data/vsfc/test.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f7e438335dba54b51f9cc07809d1b68bc95aa6e693b93837b551cf2bd3144b6
|
3 |
+
size 70279
|
data/vsfc/train.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be997def733dfa632a786a086fd8f555aa4bd75b0af2320836065609f5812d5a
|
3 |
+
size 250192
|
data/vsmec/test.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f55ab69337789c36c098f41aa545b9769e83573b6d069d09bbce4cc93366df0
|
3 |
+
size 27999
|
data/vsmec/train.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a333d31ef22cf8b05731a04def1fb75360d91507fc6f54df627f356eb12ec383
|
3 |
+
size 219677
|
data/vsmec/valid.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59a2c6911701d0350cc92d3a1ba0726758f11c8e961df211dc655d5ca7093ad9
|
3 |
+
size 28429
|