Datasets:
tner
/

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 2,974 Bytes
679f79d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
""" NER dataset compiled by T-NER library https://github.com/asahi417/tner/tree/master/tner """
import json
from itertools import chain
import datasets

logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """[Tweebank NER](https://arxiv.org/abs/2201.07281)"""
_NAME = "tweebank_ner"
_VERSION = "1.0.0"
_CITATION = """
@article{DBLP:journals/corr/abs-2201-07281,
  author    = {Hang Jiang and
               Yining Hua and
               Doug Beeferman and
               Deb Roy},
  title     = {Annotating the Tweebank Corpus on Named Entity Recognition and Building
               {NLP} Models for Social Media Analysis},
  journal   = {CoRR},
  volume    = {abs/2201.07281},
  year      = {2022},
  url       = {https://arxiv.org/abs/2201.07281},
  eprinttype = {arXiv},
  eprint    = {2201.07281},
  timestamp = {Fri, 21 Jan 2022 13:57:15 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2201-07281.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

_HOME_PAGE = "https://github.com/asahi417/tner"
_URL = f'https://huggingface.co/datasets/tner/{_NAME}/raw/main/dataset'
_URLS = {
    str(datasets.Split.TEST): [f'{_URL}/test.json'],
    str(datasets.Split.TRAIN): [f'{_URL}/train.json'],
    str(datasets.Split.VALIDATION): [f'{_URL}/valid.json'],
}


class TweebankNERConfig(datasets.BuilderConfig):
    """BuilderConfig"""

    def __init__(self, **kwargs):
        """BuilderConfig.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(TweebankNERConfig, self).__init__(**kwargs)


class TweebankNER(datasets.GeneratorBasedBuilder):
    """Dataset."""

    BUILDER_CONFIGS = [
        TweebankNERConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION),
    ]

    def _split_generators(self, dl_manager):
        downloaded_file = dl_manager.download_and_extract(_URLS)
        return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]})
                for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]

    def _generate_examples(self, filepaths):
        _key = 0
        for filepath in filepaths:
            logger.info(f"generating examples from = {filepath}")
            with open(filepath, encoding="utf-8") as f:
                _list = [i for i in f.read().split('\n') if len(i) > 0]
                for i in _list:
                    data = json.loads(i)
                    yield _key, data
                    _key += 1

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "tags": datasets.Sequence(datasets.Value("int32")),
                }
            ),
            supervised_keys=None,
            homepage=_HOME_PAGE,
            citation=_CITATION,
        )