Datasets:
tner
/

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
asahi417 commited on
Commit
c52c1a9
·
1 Parent(s): 679f79d
Files changed (2) hide show
  1. README.md +34 -37
  2. dataset/label.json +1 -0
README.md CHANGED
@@ -19,15 +19,15 @@ pretty_name: WNUT 2017
19
  ## Dataset Description
20
 
21
  - **Repository:** [T-NER](https://github.com/asahi417/tner)
22
- - **Paper:** [https://aclanthology.org/W17-4418/](https://aclanthology.org/W17-4418/)
23
- - **Dataset:** WNUT 2017
24
- - **Domain:** Twitter, Reddit, YouTube, and StackExchange
25
- - **Number of Entity:** 6
26
 
27
 
28
  ### Dataset Summary
29
- WNUT 2017 NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
30
- - Entity Types: `creative-work`, `corporation`, `group`, `location`, `person`, `product`
31
 
32
  ## Dataset Structure
33
 
@@ -36,8 +36,8 @@ An example of `train` looks as follows.
36
 
37
  ```
38
  {
39
- 'tokens': ['@paulwalk', 'It', "'s", 'the', 'view', 'from', 'where', 'I', "'m", 'living', 'for', 'two', 'weeks', '.', 'Empire', 'State', 'Building', '=', 'ESB', '.', 'Pretty', 'bad', 'storm', 'here', 'last', 'evening', '.'],
40
- 'tags': [12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 3, 9, 9, 12, 3, 12, 12, 12, 12, 12, 12, 12, 12]
41
  }
42
  ```
43
 
@@ -45,19 +45,15 @@ An example of `train` looks as follows.
45
  The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/wnut2017/raw/main/dataset/label.json).
46
  ```python
47
  {
48
- "B-corporation": 0,
49
- "B-creative-work": 1,
50
- "B-group": 2,
51
- "B-location": 3,
52
- "B-person": 4,
53
- "B-product": 5,
54
- "I-corporation": 6,
55
- "I-creative-work": 7,
56
- "I-group": 8,
57
- "I-location": 9,
58
- "I-person": 10,
59
- "I-product": 11,
60
- "O": 12
61
  }
62
  ```
63
 
@@ -65,25 +61,26 @@ The label2id dictionary can be found at [here](https://huggingface.co/datasets/t
65
 
66
  | name |train|validation|test|
67
  |---------|----:|---------:|---:|
68
- |wnut2017 | 2395| 1009|1287|
69
 
70
  ### Citation Information
71
 
72
  ```
73
- @inproceedings{derczynski-etal-2017-results,
74
- title = "Results of the {WNUT}2017 Shared Task on Novel and Emerging Entity Recognition",
75
- author = "Derczynski, Leon and
76
- Nichols, Eric and
77
- van Erp, Marieke and
78
- Limsopatham, Nut",
79
- booktitle = "Proceedings of the 3rd Workshop on Noisy User-generated Text",
80
- month = sep,
81
- year = "2017",
82
- address = "Copenhagen, Denmark",
83
- publisher = "Association for Computational Linguistics",
84
- url = "https://aclanthology.org/W17-4418",
85
- doi = "10.18653/v1/W17-4418",
86
- pages = "140--147",
87
- abstract = "This shared task focuses on identifying unusual, previously-unseen entities in the context of emerging discussions. Named entities form the basis of many modern approaches to other tasks (like event clustering and summarization), but recall on them is a real problem in noisy text - even among annotators. This drop tends to be due to novel entities and surface forms. Take for example the tweet {``}so.. kktny in 30 mins?!{''} {--} even human experts find the entity {`}kktny{'} hard to detect and resolve. The goal of this task is to provide a definition of emerging and of rare entities, and based on that, also datasets for detecting these entities. The task as described in this paper evaluated the ability of participating entries to detect and classify novel and emerging named entities in noisy text.",
 
88
  }
89
  ```
 
19
  ## Dataset Description
20
 
21
  - **Repository:** [T-NER](https://github.com/asahi417/tner)
22
+ - **Paper:** [https://arxiv.org/abs/2201.07281](https://arxiv.org/abs/2201.07281)
23
+ - **Dataset:** TweeBank NER
24
+ - **Domain:** Twitter
25
+ - **Number of Entity:** 4
26
 
27
 
28
  ### Dataset Summary
29
+ TweeBank NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
30
+ - Entity Types: `LOC`, `MISC`, `PER, `ORG`
31
 
32
  ## Dataset Structure
33
 
 
36
 
37
  ```
38
  {
39
+ 'tokens': ['RT', '@USER2362', ':', 'Farmall', 'Heart', 'Of', 'The', 'Holidays', 'Tabletop', 'Christmas', 'Tree', 'With', 'Lights', 'And', 'Motion', 'URL1087', '#Holiday', '#Gifts'],
40
+ 'tags': [8, 8, 8, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]
41
  }
42
  ```
43
 
 
45
  The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/wnut2017/raw/main/dataset/label.json).
46
  ```python
47
  {
48
+ "B-LOC": 0,
49
+ "B-MISC": 1,
50
+ "B-ORG": 2,
51
+ "B-PER": 3,
52
+ "I-LOC": 4,
53
+ "I-MISC": 5,
54
+ "I-ORG": 6,
55
+ "I-PER": 7,
56
+ "O": 8
 
 
 
 
57
  }
58
  ```
59
 
 
61
 
62
  | name |train|validation|test|
63
  |---------|----:|---------:|---:|
64
+ |tweebank_ner | 1639| 710 |1201|
65
 
66
  ### Citation Information
67
 
68
  ```
69
+ @article{DBLP:journals/corr/abs-2201-07281,
70
+ author = {Hang Jiang and
71
+ Yining Hua and
72
+ Doug Beeferman and
73
+ Deb Roy},
74
+ title = {Annotating the Tweebank Corpus on Named Entity Recognition and Building
75
+ {NLP} Models for Social Media Analysis},
76
+ journal = {CoRR},
77
+ volume = {abs/2201.07281},
78
+ year = {2022},
79
+ url = {https://arxiv.org/abs/2201.07281},
80
+ eprinttype = {arXiv},
81
+ eprint = {2201.07281},
82
+ timestamp = {Fri, 21 Jan 2022 13:57:15 +0100},
83
+ biburl = {https://dblp.org/rec/journals/corr/abs-2201-07281.bib},
84
+ bibsource = {dblp computer science bibliography, https://dblp.org}
85
  }
86
  ```
dataset/label.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"B-LOC": 0, "B-MISC": 1, "B-ORG": 2, "B-PER": 3, "I-LOC": 4, "I-MISC": 5, "I-ORG": 6, "I-PER": 7, "O": 8}