File size: 7,704 Bytes
1c691e8
 
 
 
 
581a521
1c691e8
581a521
1c691e8
 
 
 
 
 
 
 
4607e75
1c691e8
 
a620973
f0562e5
5854a09
 
 
 
 
 
 
 
 
 
 
bd6e6b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a0eec3
 
 
bd6e6b1
 
1c691e8
 
 
 
 
a620973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c691e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e60128
 
 
1c691e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a620973
1c691e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7104dd9
 
 
 
 
 
 
 
 
1c691e8
 
 
bd6e6b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|conll2003
task_categories:
- token-classification
task_ids:
- named-entity-recognition
paperswithcode_id: conll
pretty_name: CoNLL++
train-eval-index:
- config: conllpp
  task: token-classification
  task_id: entity_extraction
  splits:
    train_split: train
    eval_split: test
  col_mapping:
    tokens: tokens
    ner_tags: tags
  metrics:
  - type: seqeval
    name: seqeval
dataset_info:
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: pos_tags
    sequence:
      class_label:
        names:
          0: '"'
          1: ''''''
          2: '#'
          3: $
          4: (
          5: )
          6: ','
          7: .
          8: ':'
          9: '``'
          10: CC
          11: CD
          12: DT
          13: EX
          14: FW
          15: IN
          16: JJ
          17: JJR
          18: JJS
          19: LS
          20: MD
          21: NN
          22: NNP
          23: NNPS
          24: NNS
          25: NN|SYM
          26: PDT
          27: POS
          28: PRP
          29: PRP$
          30: RB
          31: RBR
          32: RBS
          33: RP
          34: SYM
          35: TO
          36: UH
          37: VB
          38: VBD
          39: VBG
          40: VBN
          41: VBP
          42: VBZ
          43: WDT
          44: WP
          45: WP$
          46: WRB
  - name: chunk_tags
    sequence:
      class_label:
        names:
          0: O
          1: B-ADJP
          2: I-ADJP
          3: B-ADVP
          4: I-ADVP
          5: B-CONJP
          6: I-CONJP
          7: B-INTJ
          8: I-INTJ
          9: B-LST
          10: I-LST
          11: B-NP
          12: I-NP
          13: B-PP
          14: I-PP
          15: B-PRT
          16: I-PRT
          17: B-SBAR
          18: I-SBAR
          19: B-UCP
          20: I-UCP
          21: B-VP
          22: I-VP
  - name: ner_tags
    sequence:
      class_label:
        names:
          0: O
          1: B-PER
          2: I-PER
          3: B-ORG
          4: I-ORG
          5: B-LOC
          6: I-LOC
          7: B-MISC
          8: I-MISC
  config_name: conllpp
  splits:
  - name: train
    num_bytes: 6931393
    num_examples: 14041
  - name: validation
    num_bytes: 1739247
    num_examples: 3250
  - name: test
    num_bytes: 1582078
    num_examples: 3453
  download_size: 4859600
  dataset_size: 10252718
---

# Dataset Card for "conllpp"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Github](https://github.com/ZihanWangKi/CrossWeigh)
- **Repository:** [Github](https://github.com/ZihanWangKi/CrossWeigh)
- **Paper:** [Aclweb](https://www.aclweb.org/anthology/D19-1519)
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

CoNLLpp is a corrected version of the CoNLL2003 NER dataset where labels of 5.38% of the sentences in the test set
have been manually corrected. The training set and development set from CoNLL2003 is included for completeness. One 
correction on the test set for example, is:

```
{
    "tokens": ["SOCCER", "-", "JAPAN", "GET", "LUCKY", "WIN", ",", "CHINA", "IN", "SURPRISE", "DEFEAT", "."],
    "original_ner_tags_in_conll2003": ["O", "O", "B-LOC", "O", "O", "O", "O", "B-PER", "O", "O", "O", "O"],
    "corrected_ner_tags_in_conllpp": ["O", "O", "B-LOC", "O", "O", "O", "O", "B-LOC", "O", "O", "O", "O"],
}
```

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

[More Information Needed]

## Dataset Structure

### Data Instances

#### conllpp

- **Size of downloaded dataset files:** 4.85 MB
- **Size of the generated dataset:** 10.26 MB
- **Total amount of disk used:** 15.11 MB

An example of 'train' looks as follows.
```
This example was too long and was cropped:

{
    "chunk_tags": [11, 12, 12, 21, 13, 11, 11, 21, 13, 11, 12, 13, 11, 21, 22, 11, 12, 17, 11, 21, 17, 11, 12, 12, 21, 22, 22, 13, 11, 0],
    "id": "0",
    "ner_tags": [0, 3, 4, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    "pos_tags": [12, 22, 22, 38, 15, 22, 28, 38, 15, 16, 21, 35, 24, 35, 37, 16, 21, 15, 24, 41, 15, 16, 21, 21, 20, 37, 40, 35, 21, 7],
    "tokens": ["The", "European", "Commission", "said", "on", "Thursday", "it", "disagreed", "with", "German", "advice", "to", "consumers", "to", "shun", "British", "lamb", "until", "scientists", "determine", "whether", "mad", "cow", "disease", "can", "be", "transmitted", "to", "sheep", "."]
}
```

### Data Fields

The data fields are the same among all splits.

#### conllpp
- `id`: a `string` feature.
- `tokens`: a `list` of `string` features.
- `pos_tags`: a `list` of classification labels, with possible values including `"` (0), `''` (1), `#` (2), `$` (3), `(` (4).
- `chunk_tags`: a `list` of classification labels, with possible values including `O` (0), `B-ADJP` (1), `I-ADJP` (2), `B-ADVP` (3), `I-ADVP` (4).
- `ner_tags`: a `list` of classification labels, with possible values including `O` (0), `B-PER` (1), `I-PER` (2), `B-ORG` (3), `I-ORG` (4).

### Data Splits

|  name   |train|validation|test|
|---------|----:|---------:|---:|
|conll2003|14041|      3250|3453|

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```
@inproceedings{wang2019crossweigh,
  title={CrossWeigh: Training Named Entity Tagger from Imperfect Annotations},
  author={Wang, Zihan and Shang, Jingbo and Liu, Liyuan and Lu, Lihao and Liu, Jiacheng and Han, Jiawei},
  booktitle={Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)},
  pages={5157--5166},
  year={2019}
}
```

### Contributions

Thanks to [@ZihanWangKi](https://github.com/ZihanWangKi) for adding this dataset.