Add simple README
Browse files
README.md
CHANGED
@@ -34,4 +34,107 @@ dataset_info:
|
|
34 |
---
|
35 |
# Dataset Card for "ner-orgs"
|
36 |
|
37 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
---
|
35 |
# Dataset Card for "ner-orgs"
|
36 |
|
37 |
+
This dataset is a concatenation of subsets of [Few-NERD](https://huggingface.co/datasets/DFKI-SLT/few-nerd), [CoNLL 2003](https://huggingface.co/datasets/conll2003) and [OntoNotes v5](https://huggingface.co/datasets/tner/ontonotes5), but only the "B-ORG" and "I-ORG" labels.
|
38 |
+
|
39 |
+
Exactly half of the samples per split contain organisations, while the other half do not contain any.
|
40 |
+
|
41 |
+
It was generated using the following script:
|
42 |
+
|
43 |
+
```py
|
44 |
+
import random
|
45 |
+
from datasets import load_dataset, concatenate_datasets, Features, Sequence, ClassLabel, Value, DatasetDict
|
46 |
+
|
47 |
+
|
48 |
+
FEATURES = Features(
|
49 |
+
{
|
50 |
+
"tokens": Sequence(feature=Value(dtype="string")),
|
51 |
+
"ner_tags": Sequence(feature=ClassLabel(names=["O", "B-ORG", "I-ORG"])),
|
52 |
+
}
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
def load_fewnerd():
|
57 |
+
def mapper(sample):
|
58 |
+
sample["ner_tags"] = [int(tag == 5) for tag in sample["ner_tags"]]
|
59 |
+
sample["ner_tags"] = [
|
60 |
+
2 if tag == 1 and idx > 0 and sample["ner_tags"][idx - 1] == 1 else tag
|
61 |
+
for idx, tag in enumerate(sample["ner_tags"])
|
62 |
+
]
|
63 |
+
return sample
|
64 |
+
|
65 |
+
dataset = load_dataset("DFKI-SLT/few-nerd", "supervised")
|
66 |
+
dataset = dataset.map(mapper, remove_columns=["id", "fine_ner_tags"])
|
67 |
+
dataset = dataset.cast(FEATURES)
|
68 |
+
return dataset
|
69 |
+
|
70 |
+
|
71 |
+
def load_conll():
|
72 |
+
label_mapping = {3: 1, 4: 2}
|
73 |
+
|
74 |
+
def mapper(sample):
|
75 |
+
sample["ner_tags"] = [label_mapping.get(tag, 0) for tag in sample["ner_tags"]]
|
76 |
+
return sample
|
77 |
+
|
78 |
+
dataset = load_dataset("conll2003")
|
79 |
+
dataset = dataset.map(mapper, remove_columns=["id", "pos_tags", "chunk_tags"])
|
80 |
+
dataset = dataset.cast(FEATURES)
|
81 |
+
return dataset
|
82 |
+
|
83 |
+
|
84 |
+
def load_ontonotes():
|
85 |
+
label_mapping = {11: 1, 12: 2}
|
86 |
+
|
87 |
+
def mapper(sample):
|
88 |
+
sample["ner_tags"] = [label_mapping.get(tag, 0) for tag in sample["ner_tags"]]
|
89 |
+
return sample
|
90 |
+
|
91 |
+
dataset = load_dataset("tner/ontonotes5")
|
92 |
+
dataset = dataset.rename_column("tags", "ner_tags")
|
93 |
+
dataset = dataset.map(mapper)
|
94 |
+
dataset = dataset.cast(FEATURES)
|
95 |
+
return dataset
|
96 |
+
|
97 |
+
|
98 |
+
def has_org(sample):
|
99 |
+
return bool(sum(sample["ner_tags"]))
|
100 |
+
|
101 |
+
|
102 |
+
def has_no_org(sample):
|
103 |
+
return not has_org(sample)
|
104 |
+
|
105 |
+
|
106 |
+
def preprocess_raw_dataset(raw_dataset):
|
107 |
+
# Set the number of sentences without an org equal to the number of sentences with an org
|
108 |
+
dataset_org = raw_dataset.filter(has_org)
|
109 |
+
dataset_no_org = raw_dataset.filter(has_no_org)
|
110 |
+
dataset_no_org = dataset_no_org.select(random.sample(range(len(dataset_no_org)), k=len(dataset_org)))
|
111 |
+
dataset = concatenate_datasets([dataset_org, dataset_no_org])
|
112 |
+
return dataset
|
113 |
+
|
114 |
+
|
115 |
+
def main() -> None:
|
116 |
+
fewnerd_dataset = load_fewnerd()
|
117 |
+
conll_dataset = load_conll()
|
118 |
+
ontonotes_dataset = load_ontonotes()
|
119 |
+
|
120 |
+
raw_train_dataset = concatenate_datasets([fewnerd_dataset["train"], conll_dataset["train"], ontonotes_dataset["train"]])
|
121 |
+
raw_eval_dataset = concatenate_datasets([fewnerd_dataset["validation"], conll_dataset["validation"], ontonotes_dataset["validation"]])
|
122 |
+
raw_test_dataset = concatenate_datasets([fewnerd_dataset["test"], conll_dataset["test"], ontonotes_dataset["test"]])
|
123 |
+
|
124 |
+
train_dataset = preprocess_raw_dataset(raw_train_dataset)
|
125 |
+
eval_dataset = preprocess_raw_dataset(raw_eval_dataset)
|
126 |
+
test_dataset = preprocess_raw_dataset(raw_test_dataset)
|
127 |
+
|
128 |
+
dataset_dict = DatasetDict(
|
129 |
+
{
|
130 |
+
"train": train_dataset,
|
131 |
+
"validation": eval_dataset,
|
132 |
+
"test": test_dataset,
|
133 |
+
}
|
134 |
+
)
|
135 |
+
dataset_dict.push_to_hub("ner-orgs", private=True)
|
136 |
+
|
137 |
+
|
138 |
+
if __name__ == "__main__":
|
139 |
+
main()
|
140 |
+
```
|