GaoangLau commited on
Commit
1364c09
·
1 Parent(s): 33e4ac6

fix: remove raw data

Browse files
stsbenchmark/LICENSE.txt DELETED
@@ -1,136 +0,0 @@
1
-
2
- Notes on datasets and licenses
3
- ------------------------------
4
-
5
- If using this data in your research please cite the following paper
6
- and the url of the STS website: http://ixa2.si.ehu.eus/stswiki:
7
-
8
- Eneko Agirre, Daniel Cer, Mona Diab, Iñigo Lopez-Gazpio, Lucia
9
- Specia. Semeval-2017 Task 1: Semantic Textual Similarity
10
- Multilingual and Crosslingual Focused Evaluation. Proceedings of
11
- SemEval 2017.
12
-
13
- The scores are released under a "Commons Attribution - Share Alike 4.0
14
- International License" http://creativecommons.org/licenses/by-sa/4.0/
15
-
16
- The text of each dataset has a license of its own, as follows:
17
-
18
- - MSR-Paraphrase, Microsoft Research Paraphrase Corpus. In order to use
19
- MSRpar, researchers need to agree with the license terms from
20
- Microsoft Research:
21
- http://research.microsoft.com/en-us/downloads/607d14d9-20cd-47e3-85bc-a2f65cd28042/
22
-
23
- - headlines: Mined from several news sources by European Media Monitor
24
- (Best et al. 2005). using the RSS feed. European Media Monitor (EMM)
25
- Real Time News Clusters are the top news stories for the last 4
26
- hours, updated every ten minutes. The article clustering is fully
27
- automatic. The selection and placement of stories are determined
28
- automatically by a computer program. This site is a joint project of
29
- DG-JRC and DG-COMM. The information on this site is subject to a
30
- disclaimer (see
31
- http://europa.eu/geninfo/legal_notices_en.htm). Please acknowledge
32
- EMM when (re)using this material.
33
- http://emm.newsbrief.eu/rss?type=rtn&language=en&duplicates=false
34
-
35
- - deft-news: A subset of news article data in the DEFT
36
- project.
37
-
38
- - MSR-Video, Microsoft Research Video Description Corpus. In order to
39
- use MSRvideo, researchers need to agree with the license terms from
40
- Microsoft Research:
41
- http://research.microsoft.com/en-us/downloads/38cf15fd-b8df-477e-a4e4-a4680caa75af/
42
-
43
- - image: The Image Descriptions data set is a subset of
44
- the PASCAL VOC-2008 data set (Rashtchian et al., 2010) . PASCAL
45
- VOC-2008 data set consists of 1,000 images and has been used by a
46
- number of image description systems. The image captions of the data
47
- set are released under a CreativeCommons Attribution-ShareAlike
48
- license, the descriptions itself are free.
49
-
50
- - track5.en-en: This text is a subset of the Stanford Natural
51
- Language Inference (SNLI) corpus, by The Stanford NLP Group is
52
- licensed under a Creative Commons Attribution-ShareAlike 4.0
53
- International License. Based on a work at
54
- http://shannon.cs.illinois.edu/DenotationGraph/.
55
- https://creativecommons.org/licenses/by-sa/4.0/
56
-
57
- - answers-answers: user content from stack-exchange. Check the license
58
- below in ======ANSWERS-ANSWERS======
59
-
60
- - answers-forums: user content from stack-exchange. Check the license
61
- below in ======ANSWERS-FORUMS======
62
-
63
-
64
-
65
- ======ANSWER-ANSWER======
66
-
67
- Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
68
- http://creativecommons.org/licenses/by-sa/3.0/
69
-
70
- Attribution Requirements:
71
-
72
- "* Visually display or otherwise indicate the source of the content
73
- as coming from the Stack Exchange Network. This requirement is
74
- satisfied with a discreet text blurb, or some other unobtrusive but
75
- clear visual indication.
76
-
77
- * Ensure that any Internet use of the content includes a hyperlink
78
- directly to the original question on the source site on the Network
79
- (e.g., http://stackoverflow.com/questions/12345)
80
-
81
- * Visually display or otherwise clearly indicate the author names for
82
- every question and answer used
83
-
84
- * Ensure that any Internet use of the content includes a hyperlink for
85
- each author name directly back to his or her user profile page on the
86
- source site on the Network (e.g.,
87
- http://stackoverflow.com/users/12345/username), directly to the Stack
88
- Exchange domain, in standard HTML (i.e. not through a Tinyurl or other
89
- such indirect hyperlink, form of obfuscation or redirection), without
90
- any “nofollow” command or any other such means of avoiding detection by
91
- search engines, and visible even with JavaScript disabled."
92
-
93
- (https://archive.org/details/stackexchange)
94
-
95
-
96
-
97
- ======ANSWERS-FORUMS======
98
-
99
-
100
- Stack Exchange Inc. generously made the data used to construct the STS 2015 answer-answer statement pairs available under a Creative Commons Attribution-ShareAlike (cc-by-sa) 3.0 license.
101
-
102
- The license is reproduced below from: https://archive.org/details/stackexchange
103
-
104
- The STS.input.answers-forums.txt file should be redistributed with this LICENSE text and the accompanying files in LICENSE.answers-forums.zip. The tsv files in the zip file contain the additional information that's needed to comply with the license.
105
-
106
- --
107
-
108
- All user content contributed to the Stack Exchange network is cc-by-sa 3.0 licensed, intended to be shared and remixed. We even provide all our data as a convenient data dump.
109
-
110
- http://creativecommons.org/licenses/by-sa/3.0/
111
-
112
- But our cc-by-sa 3.0 licensing, while intentionally permissive, does *require attribution*:
113
-
114
- "Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work)."
115
-
116
- Specifically the attribution requirements are as follows:
117
-
118
- 1. Visually display or otherwise indicate the source of the content as coming from the Stack Exchange Network. This requirement is satisfied with a discreet text blurb, or some other unobtrusive but clear visual indication.
119
-
120
- 2. Ensure that any Internet use of the content includes a hyperlink directly to the original question on the source site on the Network (e.g., http://stackoverflow.com/questions/12345)
121
-
122
- 3. Visually display or otherwise clearly indicate the author names for every question and answer so used.
123
-
124
- 4. Ensure that any Internet use of the content includes a hyperlink for each author name directly back to his or her user profile page on the source site on the Network (e.g., http://stackoverflow.com/users/12345/username), directly to the Stack Exchange domain, in standard HTML (i.e. not through a Tinyurl or other such indirect hyperlink, form of obfuscation or redirection), without any “nofollow” command or any other such means of avoiding detection by search engines, and visible even with JavaScript disabled.
125
-
126
- Our goal is to maintain the spirit of fair attribution. That means attribution to the website, and more importantly, to the individuals who so generously contributed their time to create that content in the first place!
127
-
128
- For more information, see the Stack Exchange Terms of Service: http://stackexchange.com/legal/terms-of-service
129
-
130
-
131
-
132
-
133
-
134
-
135
-
136
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stsbenchmark/correlation.pl DELETED
@@ -1,119 +0,0 @@
1
- #!/usr/bin/perl
2
-
3
-
4
- =head1 $0
5
-
6
- =head1 SYNOPSIS
7
-
8
- correlation.pl gs system
9
-
10
- Outputs the Pearson correlation.
11
-
12
- Example:
13
-
14
- $ ./correlation.pl gs sys
15
-
16
- Author: Eneko Agirre, Aitor Gonzalez-Agirre
17
-
18
- Dec. 31, 2012
19
-
20
- =cut
21
-
22
- use Getopt::Long qw(:config auto_help);
23
- use Pod::Usage;
24
- use warnings;
25
- use strict;
26
- use Math::Complex;
27
-
28
- pod2usage if $#ARGV != 1 ;
29
-
30
- if (-e $ARGV[1]) {
31
- my $continue = 0;
32
- my %filtered;
33
- my $do = 0;
34
- my %a ;
35
- my %b ;
36
- my %c ;
37
-
38
- open(I,$ARGV[0]) or die $! ;
39
- my $filter = 0;
40
- my $i = 0;
41
- while (<I>) {
42
- chomp ;
43
- next if /^\#/ ;
44
- if ($_ eq "") {
45
- $filter++;
46
- $filtered{$filter} = 1;
47
- }
48
- else {
49
- my @fields = (split(/\t/,$_)) ;
50
- my $score = $fields[4] ;
51
- warn "wrong range of score in gold standard: $score\n" if ($score > 5) or ($score < 0) ;
52
- $a{$i++} = $score ;
53
- $filter++;
54
- }
55
- }
56
- close(I) ;
57
-
58
- my $j = 0 ;
59
-
60
- open(I,$ARGV[1]) or die $! ;
61
- my $line = 1;
62
- while (<I>) {
63
- if(!defined($filtered{$line})) {
64
- chomp ;
65
- next if /^\#/ ;
66
- my @fields = (split(/\s+/,$_)) ;
67
- my ($score) = @fields ;
68
- $b{$j} = $score ;
69
- $c{$j} = 100;
70
- $continue = 1;
71
- $j++;
72
- }
73
- $line++;
74
- }
75
- close(I) ;
76
-
77
- if ($continue == 1) {
78
- my $sumw=0;
79
-
80
- my $sumwy=0;
81
- for(my $y = 0; $y < $i; $y++) {
82
- $sumwy = $sumwy + (100 * $a{$y});
83
- $sumw = $sumw + 100;
84
- }
85
- my $meanyw = $sumwy/$sumw;
86
-
87
- my $sumwx=0;
88
- for(my $x = 0; $x < $i; $x++) {
89
- $sumwx = $sumwx + ($c{$x} * $b{$x});
90
- }
91
- my $meanxw = $sumwx/$sumw;
92
-
93
- my $sumwxy = 0;
94
- for(my $x = 0; $x < $i; $x++) {
95
- $sumwxy = $sumwxy + $c{$x}*($b{$x} - $meanxw)*($a{$x} - $meanyw);
96
- }
97
- my $covxyw = $sumwxy/$sumw;
98
-
99
- my $sumwxx = 0;
100
- for(my $x = 0; $x < $i; $x++) {
101
- $sumwxx = $sumwxx + $c{$x}*($b{$x} - $meanxw)*($b{$x} - $meanxw);
102
- }
103
- my $covxxw = $sumwxx/$sumw;
104
-
105
- my $sumwyy = 0;
106
- for(my $x = 0; $x < $i; $x++) {
107
- $sumwyy = $sumwyy + $c{$x}*($a{$x} - $meanyw)*($a{$x} - $meanyw);
108
- }
109
- my $covyyw = $sumwyy/$sumw;
110
-
111
- my $corrxyw = $covxyw/sqrt($covxxw*$covyyw);
112
-
113
- printf "Pearson: %.5f\n", $corrxyw ;
114
- }
115
- }
116
- else{
117
- printf "Pearson: nan\n";
118
- exit(1);
119
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stsbenchmark/readme.txt DELETED
@@ -1,174 +0,0 @@
1
-
2
- STS Benchmark: Main English dataset
3
-
4
- Semantic Textual Similarity 2012-2017 Dataset
5
-
6
- http://ixa2.si.ehu.eus/stswiki
7
-
8
-
9
- STS Benchmark comprises a selection of the English datasets used in
10
- the STS tasks organized by us in the context of SemEval between 2012
11
- and 2017.
12
-
13
- In order to provide a standard benchmark to compare among systems, we
14
- organized it into train, development and test. The development part
15
- can be used to develop and tune hyperparameters of the systems, and
16
- the test part should be only used once for the final system.
17
-
18
- The benchmark comprises 8628 sentence pairs. This is the breakdown
19
- according to genres and train-dev-test splits:
20
-
21
- train dev test total
22
- -----------------------------
23
- news 3299 500 500 4299
24
- caption 2000 625 525 3250
25
- forum 450 375 254 1079
26
- -----------------------------
27
- total 5749 1500 1379 8628
28
-
29
- For reference, this is the breakdown according to the original names
30
- and task years of the datasets:
31
-
32
- genre file years train dev test
33
- ------------------------------------------------
34
- news MSRpar 2012 1000 250 250
35
- news headlines 2013-16 1999 250 250
36
- news deft-news 2014 300 0 0
37
- captions MSRvid 2012 1000 250 250
38
- captions images 2014-15 1000 250 250
39
- captions track5.en-en 2017 0 125 125
40
- forum deft-forum 2014 450 0 0
41
- forum answers-forums 2015 0 375 0
42
- forum answer-answer 2016 0 0 254
43
-
44
- In addition to the standard benchmark, we also include other datasets
45
- (see readme.txt in "companion" directory).
46
-
47
-
48
- Introduction
49
- ------------
50
-
51
- Given two sentences of text, s1 and s2, the systems need to compute
52
- how similar s1 and s2 are, returning a similarity score between 0 and
53
- 5. The dataset comprises naturally occurring pairs of sentences drawn
54
- from several domains and genres, annotated by crowdsourcing. See
55
- papers by Agirre et al. (2012; 2013; 2014; 2015; 2016; 2017).
56
-
57
- Format
58
- ------
59
-
60
- Each file is encoded in utf-8 (a superset of ASCII), and has the
61
- following tab separated fields:
62
-
63
- genre filename year score sentence1 sentence2
64
-
65
- optionally there might be some license-related fields after sentence2.
66
-
67
- NOTE: Given that some sentence pairs have been reused here and
68
- elsewhere, systems should NOT use the following datasets to develop or
69
- train their systems (see below for more details on datasets):
70
-
71
- - Any of the datasets in Semeval STS competitions, including Semeval
72
- 2014 task 1 (also known as SICK).
73
- - The test part of MSR-Paraphrase (development and train are fine).
74
- - The text of the videos in MSR-Video.
75
-
76
-
77
- Evaluation script
78
- -----------------
79
-
80
- The official evaluation is the Pearson correlation coefficient. Given
81
- an output file comprising the system scores (one per line) in a file
82
- called sys.txt, you can use the evaluation script as follows:
83
-
84
- $ perl correlation.pl sts-dev.txt sys.txt
85
-
86
-
87
- Other
88
- -----
89
-
90
- Please check http://ixa2.si.ehu.eus/stswiki
91
-
92
- We recommend that interested researchers join the (low traffic)
93
- mailing list:
94
-
95
- http://groups.google.com/group/STS-semeval
96
-
97
- Notse on datasets and licenses
98
- ------------------------------
99
-
100
- If using this data in your research please cite (Agirre et al. 2017)
101
- and the STS website: http://ixa2.si.ehu.eus/stswiki.
102
-
103
- Please see LICENSE.txt
104
-
105
-
106
- Organizers of tasks by year
107
- ---------------------------
108
-
109
- 2012 Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre
110
-
111
- 2013 Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre,
112
- WeiWei Guo
113
-
114
- 2014 Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab,
115
- Aitor Gonzalez-Agirre, Weiwei Guo, Rada Mihalcea, German Rigau,
116
- Janyce Wiebe
117
-
118
- 2015 Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab,
119
- Aitor Gonzalez-Agirre, Weiwei Guo, Inigo Lopez-Gazpio, Montse
120
- Maritxalar, Rada Mihalcea, German Rigau, Larraitz Uria, Janyce
121
- Wiebe
122
-
123
- 2016 Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab, Aitor
124
- Gonzalez-Agirre, Rada Mihalcea, German Rigau, Janyce
125
- Wiebe
126
-
127
- 2017 Eneko Agirre, Daniel Cer, Mona Diab, Iñigo Lopez-Gazpio, Lucia
128
- Specia
129
-
130
-
131
- References
132
- ----------
133
-
134
- Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre. Task 6: A
135
- Pilot on Semantic Textual Similarity. Procceedings of Semeval 2012
136
-
137
- Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, WeiWei
138
- Guo. *SEM 2013 shared task: Semantic Textual
139
- Similarity. Procceedings of *SEM 2013
140
-
141
- Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab,
142
- Aitor Gonzalez-Agirre, Weiwei Guo, Rada Mihalcea, German Rigau,
143
- Janyce Wiebe. Task 10: Multilingual Semantic Textual
144
- Similarity. Proceedings of SemEval 2014.
145
-
146
- Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab,
147
- Aitor Gonzalez-Agirre, Weiwei Guo, Inigo Lopez-Gazpio, Montse
148
- Maritxalar, Rada Mihalcea, German Rigau, Larraitz Uria, Janyce
149
- Wiebe. Task 2: Semantic Textual Similarity, English, Spanish and
150
- Pilot on Interpretability. Proceedings of SemEval 2015.
151
-
152
- Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab, Aitor
153
- Gonzalez-Agirre, Rada Mihalcea, German Rigau, Janyce
154
- Wiebe. Semeval-2016 Task 1: Semantic Textual Similarity,
155
- Monolingual and Cross-Lingual Evaluation. Proceedings of SemEval
156
- 2016.
157
-
158
- Eneko Agirre, Daniel Cer, Mona Diab, Iñigo Lopez-Gazpio, Lucia
159
- Specia. Semeval-2017 Task 1: Semantic Textual Similarity
160
- Multilingual and Crosslingual Focused Evaluation. Proceedings of
161
- SemEval 2017.
162
-
163
- Clive Best, Erik van der Goot, Ken Blackler, Tefilo Garcia, and David
164
- Horby. 2005. Europe media monitor - system description. In EUR
165
- Report 22173-En, Ispra, Italy.
166
-
167
- Cyrus Rashtchian, Peter Young, Micah Hodosh, and Julia Hockenmaier.
168
- Collecting Image Annotations Using Amazon's Mechanical Turk. In
169
- Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and
170
- Language Data with Amazon's Mechanical Turk.
171
-
172
-
173
-
174
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stsbenchmark/sts-dev.csv DELETED
The diff for this file is too large to render. See raw diff
 
stsbenchmark/sts-test.csv DELETED
The diff for this file is too large to render. See raw diff
 
stsbenchmark/sts-train.csv DELETED
The diff for this file is too large to render. See raw diff