|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""E2E Dataset: New Challenges For End-to-End Generation""" |
|
|
|
import csv |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{dusek.etal2020:csl, |
|
title = {Evaluating the {{State}}-of-the-{{Art}} of {{End}}-to-{{End Natural Language Generation}}: {{The E2E NLG Challenge}}}, |
|
author = {Du{\v{s}}ek, Ond\v{r}ej and Novikova, Jekaterina and Rieser, Verena}, |
|
year = {2020}, |
|
month = jan, |
|
volume = {59}, |
|
pages = {123--156}, |
|
doi = {10.1016/j.csl.2019.06.009}, |
|
archivePrefix = {arXiv}, |
|
eprint = {1901.11528}, |
|
eprinttype = {arxiv}, |
|
journal = {Computer Speech & Language} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The E2E dataset is used for training end-to-end, data-driven natural language generation systems in the restaurant domain, which is ten times bigger than existing, frequently used datasets in this area. |
|
The E2E dataset poses new challenges: |
|
(1) its human reference texts show more lexical richness and syntactic variation, including discourse phenomena; |
|
(2) generating from this set requires content selection. As such, learning from this dataset promises more natural, varied and less template-like system utterances. |
|
|
|
E2E is released in the following paper where you can find more details and baseline results: |
|
https://arxiv.org/abs/1706.09254 |
|
""" |
|
|
|
_URL = "https://raw.githubusercontent.com/tuetschek/e2e-dataset/master/" |
|
_TRAINING_FILE = "trainset.csv" |
|
_DEV_FILE = "devset.csv" |
|
_TEST_FILE = "testset_w_refs.csv" |
|
|
|
_URLS = { |
|
"train": f"{_URL}{_TRAINING_FILE}", |
|
"dev": f"{_URL}{_DEV_FILE}", |
|
"test": f"{_URL}{_TEST_FILE}", |
|
} |
|
|
|
|
|
class E2eNLG(datasets.GeneratorBasedBuilder): |
|
"""E2E dataset.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"meaning_representation": datasets.Value("string"), |
|
"human_reference": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="http://www.macs.hw.ac.uk/InteractionLab/E2E/#data", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
downloaded_files = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, encoding="utf-8") as f: |
|
reader = csv.DictReader(f) |
|
for example_idx, example in enumerate(reader): |
|
yield example_idx, { |
|
"meaning_representation": example["mr"], |
|
"human_reference": example["ref"], |
|
} |
|
|