Datasets:
Tasks:
Time Series Forecasting
Sub-tasks:
univariate-time-series-forecasting
Size:
1K<n<10K
License:
{"uci": {"description": "This new dataset contains hourly kW electricity consumption time series of 370 Portuguese clients from 2011 to 2014.\n", "citation": "@inproceedings{10.1145/3209978.3210006,\n author = {Lai, Guokun and Chang, Wei-Cheng and Yang, Yiming and Liu, Hanxiao},\n title = {Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks},\n year = {2018},\n isbn = {9781450356572},\n publisher = {Association for Computing Machinery},\n address = {New York, NY, USA},\n url = {https://doi.org/10.1145/3209978.3210006},\n doi = {10.1145/3209978.3210006},\n booktitle = {The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval},\n pages = {95--104},\n numpages = {10},\n location = {Ann Arbor, MI, USA},\n series = {SIGIR '18}\n}\n", "homepage": "https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014", "license": "", "features": {"start": {"dtype": "timestamp[s]", "id": null, "_type": "Value"}, "target": {"feature": {"dtype": "float32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "feat_static_cat": {"feature": {"dtype": "uint64", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "item_id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "electricty_load_diagram", "config_name": "uci", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 42968147, "num_examples": 370, "dataset_name": "electricty_load_diagram"}, "test": {"name": "test", "num_bytes": 302059069, "num_examples": 2590, "dataset_name": "electricty_load_diagram"}, "validation": {"name": "validation", "num_bytes": 43004777, "num_examples": 370, "dataset_name": "electricty_load_diagram"}}, "download_checksums": {"https://archive.ics.uci.edu/ml/machine-learning-databases/00321/LD2011_2014.txt.zip": {"num_bytes": 261335609, "checksum": "f6c4d0e0df12ecdb9ea008dd6eef3518adb52c559d04a9bac2e1b81dcfc8d4e1"}}, "download_size": 261335609, "post_processing_size": null, "dataset_size": 388031993, "size_in_bytes": 649367602}, "lstnet": {"description": "This new dataset contains hourly kW electricity consumption time series of 370 Portuguese clients from 2011 to 2014.\n", "citation": "@inproceedings{10.1145/3209978.3210006,\n author = {Lai, Guokun and Chang, Wei-Cheng and Yang, Yiming and Liu, Hanxiao},\n title = {Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks},\n year = {2018},\n isbn = {9781450356572},\n publisher = {Association for Computing Machinery},\n address = {New York, NY, USA},\n url = {https://doi.org/10.1145/3209978.3210006},\n doi = {10.1145/3209978.3210006},\n booktitle = {The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval},\n pages = {95--104},\n numpages = {10},\n location = {Ann Arbor, MI, USA},\n series = {SIGIR '18}\n}\n", "homepage": "https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014", "license": "", "features": {"start": {"dtype": "timestamp[s]", "id": null, "_type": "Value"}, "target": {"feature": {"dtype": "float32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "feat_static_cat": {"feature": {"dtype": "uint64", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "item_id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "electricty_load_diagram", "config_name": "lstnet", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 20843200, "num_examples": 320, "dataset_name": "electricty_load_diagram"}, "test": {"name": "test", "num_bytes": 195401080, "num_examples": 2240, "dataset_name": "electricty_load_diagram"}, "validation": {"name": "validation", "num_bytes": 27787720, "num_examples": 320, "dataset_name": "electricty_load_diagram"}}, "download_checksums": {"https://archive.ics.uci.edu/ml/machine-learning-databases/00321/LD2011_2014.txt.zip": {"num_bytes": 261335609, "checksum": "f6c4d0e0df12ecdb9ea008dd6eef3518adb52c559d04a9bac2e1b81dcfc8d4e1"}}, "download_size": 261335609, "post_processing_size": null, "dataset_size": 244032000, "size_in_bytes": 505367609}} |