File size: 4,212 Bytes
d53eaf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed80800
d53eaf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed80800
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
languages:
- en
licenses:
- gpl-3-0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
---

# Dataset Card for [Dataset Name]

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-instances)
  - [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage: [Home](https://github.com/sharmaroshan/Twitter-Sentiment-Analysis)
- **Repository:[Repo](https://github.com/sharmaroshan/Twitter-Sentiment-Analysis/blob/master/train_tweet.csv)
- **Paper:
- **Leaderboard:**
- **Point of Contact:[Darshan Gandhi](darshangandhi1151@gmail.com)

### Dataset Summary

The objective of this task is to detect hate speech in tweets. For the sake of simplicity, we say a tweet contains hate speech if it has a racist or sexist sentiment associated with it. So, the task is to classify racist or sexist tweets from other tweets.

Formally, given a training sample of tweets and labels, where label ‘1’ denotes the tweet is racist/sexist and label ‘0’ denotes the tweet is not racist/sexist, your objective is to predict the labels on the given test dataset.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages
The tweets are primarily in English Language

## Dataset Structure

### Data Instances

The dataset contains a label denoting is the tweet a hate speech or not

```
{'label': 0,  # not a hate speech
 'tweet': ' @user when a father is dysfunctional and is so selfish he drags his kids into his dysfunction.   #run'}
```


### Data Fields

* label : 1 - it is a hate specch, 0 - not a hate speech 
* tweet: content of the tweet as a string

### Data Splits
 
The data contains training data with :31962 entries

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

Crowdsourced from tweets of users 

#### Who are the source language producers?

Cwodsourced from twitter

### Annotations

#### Annotation process

The data has been precprocessed and a model has been trained to assign the relevant label to the tweet 

#### Who are the annotators?

The data has been provided by Roshan Sharma 

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

With the help of this dataset, one can understand more about the human sentiments and also analye the situations when a particular person intends to make use of   hatred/racist comments 

### Discussion of Biases

The data could be cleaned up further for additional purposes such as applying a better feature extraction techniques


[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

Roshan Sharma 

### Licensing Information

[Information](https://github.com/sharmaroshan/Twitter-Sentiment-Analysis/blob/master/LICENSE)

### Citation Information

[Citation](https://github.com/sharmaroshan/Twitter-Sentiment-Analysis/blob/master/CONTRIBUTING.md)

### Contributions

Thanks to [@darshan-gandhi](https://github.com/darshan-gandhi) for adding this dataset.