init
Browse files- data/tweet_nerd_new/validation.jsonl +2 -2
- experiments/main.sh +1 -1
- process/tweet_nerd.py +3 -3
- statistics.py +1 -1
- tweet_temporal_shift.py +1 -1
data/tweet_nerd_new/validation.jsonl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:291ea200cebc1446707138bbc7ebf2257589a8af99cb3b07ac5cde1032d6ef8d
|
3 |
+
size 1425119
|
experiments/main.sh
CHANGED
@@ -7,7 +7,7 @@ MODEL="cardiffnlp/twitter-roberta-base-2022-154m"
|
|
7 |
|
8 |
# topic, ner [hawk]
|
9 |
MODEL="vinai/bertweet-base"
|
10 |
-
# topic [hawk], ner
|
11 |
MODEL="jhu-clsp/bernice"
|
12 |
|
13 |
|
|
|
7 |
|
8 |
# topic, ner [hawk]
|
9 |
MODEL="vinai/bertweet-base"
|
10 |
+
# topic [hawk], ner
|
11 |
MODEL="jhu-clsp/bernice"
|
12 |
|
13 |
|
process/tweet_nerd.py
CHANGED
@@ -23,13 +23,13 @@ while True:
|
|
23 |
if dist_date[:n].sum() > total_n/2:
|
24 |
break
|
25 |
split_date = dist_date.index[n]
|
26 |
-
|
27 |
|
28 |
train = df[df["date_dt"] <= split_date]
|
29 |
test = df[df["date_dt"] > split_date]
|
30 |
print(train.date_dt.min(), train.date_dt.max())
|
31 |
print(test.date_dt.min(), test.date_dt.max())
|
32 |
-
|
33 |
train.pop("date_dt")
|
34 |
test.pop("date_dt")
|
35 |
train = list(train.T.to_dict().values())
|
@@ -62,7 +62,7 @@ with open("data/tweet_nerd_new/test_4.jsonl", "w") as f:
|
|
62 |
with open("data/tweet_nerd_new/train.jsonl", "w") as f:
|
63 |
f.write("\n".join([json.dumps(i) for i in train]))
|
64 |
with open("data/tweet_nerd_new/validation.jsonl", "w") as f:
|
65 |
-
f.write("\n".join([json.dumps(i) for i in
|
66 |
|
67 |
|
68 |
def sampler(dataset_test, r_seed):
|
|
|
23 |
if dist_date[:n].sum() > total_n/2:
|
24 |
break
|
25 |
split_date = dist_date.index[n]
|
26 |
+
print(split_date)
|
27 |
|
28 |
train = df[df["date_dt"] <= split_date]
|
29 |
test = df[df["date_dt"] > split_date]
|
30 |
print(train.date_dt.min(), train.date_dt.max())
|
31 |
print(test.date_dt.min(), test.date_dt.max())
|
32 |
+
|
33 |
train.pop("date_dt")
|
34 |
test.pop("date_dt")
|
35 |
train = list(train.T.to_dict().values())
|
|
|
62 |
with open("data/tweet_nerd_new/train.jsonl", "w") as f:
|
63 |
f.write("\n".join([json.dumps(i) for i in train]))
|
64 |
with open("data/tweet_nerd_new/validation.jsonl", "w") as f:
|
65 |
+
f.write("\n".join([json.dumps(i) for i in valid]))
|
66 |
|
67 |
|
68 |
def sampler(dataset_test, r_seed):
|
statistics.py
CHANGED
@@ -22,7 +22,7 @@ for i in ["nerd_temporal", "ner_temporal", "topic_temporal"]:
|
|
22 |
"size": len(dataset),
|
23 |
"size (token length < 128)": len(token_length_in),
|
24 |
"mean_token_length": sum(token_length)/len(token_length),
|
25 |
-
"date": f'{str(date[0]).split("
|
26 |
})
|
27 |
break
|
28 |
df = pd.DataFrame(stats)
|
|
|
22 |
"size": len(dataset),
|
23 |
"size (token length < 128)": len(token_length_in),
|
24 |
"mean_token_length": sum(token_length)/len(token_length),
|
25 |
+
"date": f'{str(date[0]).split("T")[0]} / {str(date[-1]).split("T")[0]}',
|
26 |
})
|
27 |
break
|
28 |
df = pd.DataFrame(stats)
|
tweet_temporal_shift.py
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
import json
|
3 |
import datasets
|
4 |
|
5 |
-
_VERSION = "1.0.
|
6 |
_TWEET_TEMPORAL_DESCRIPTION = """"""
|
7 |
_TWEET_TEMPORAL_CITATION = """"""
|
8 |
_TWEET_TOPIC_DESCRIPTION = """
|
|
|
2 |
import json
|
3 |
import datasets
|
4 |
|
5 |
+
_VERSION = "1.0.3"
|
6 |
_TWEET_TEMPORAL_DESCRIPTION = """"""
|
7 |
_TWEET_TEMPORAL_CITATION = """"""
|
8 |
_TWEET_TOPIC_DESCRIPTION = """
|