init
Browse files- experiments/huggingface_ops.py +1 -1
- experiments/main.sh +2 -2
- process/tweet_hate_balance.py +2 -0
experiments/huggingface_ops.py
CHANGED
@@ -3,7 +3,7 @@ from pprint import pprint
|
|
3 |
|
4 |
api = HfApi()
|
5 |
models = api.list_models(filter=ModelFilter(author='tweettemposhift'))
|
6 |
-
models_filtered = [i.modelId for i in models if '
|
7 |
pprint(sorted(models_filtered))
|
8 |
for i in models_filtered:
|
9 |
api.delete_repo(i, repo_type="model")
|
|
|
3 |
|
4 |
api = HfApi()
|
5 |
models = api.list_models(filter=ModelFilter(author='tweettemposhift'))
|
6 |
+
models_filtered = [i.modelId for i in models if 'hate_balance' in i.modelId]
|
7 |
pprint(sorted(models_filtered))
|
8 |
for i in models_filtered:
|
9 |
api.delete_repo(i, repo_type="model")
|
experiments/main.sh
CHANGED
@@ -5,12 +5,12 @@ MODEL="jhu-clsp/bernice"
|
|
5 |
MODEL="cardiffnlp/twitter-roberta-base-2019-90m"
|
6 |
MODEL="cardiffnlp/twitter-roberta-base-dec2020"
|
7 |
MODEL="cardiffnlp/twitter-roberta-base-2021-124m"
|
|
|
|
|
8 |
MODEL="roberta-large"
|
9 |
MODEL="vinai/bertweet-large"
|
10 |
MODEL="cardiffnlp/twitter-roberta-large-2022-154m"
|
11 |
|
12 |
-
# todo
|
13 |
-
MODEL="cardiffnlp/twitter-roberta-base-2022-154m"
|
14 |
|
15 |
# EMOJI
|
16 |
python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_temporal"
|
|
|
5 |
MODEL="cardiffnlp/twitter-roberta-base-2019-90m"
|
6 |
MODEL="cardiffnlp/twitter-roberta-base-dec2020"
|
7 |
MODEL="cardiffnlp/twitter-roberta-base-2021-124m"
|
8 |
+
MODEL="cardiffnlp/twitter-roberta-base-2022-154m"
|
9 |
+
|
10 |
MODEL="roberta-large"
|
11 |
MODEL="vinai/bertweet-large"
|
12 |
MODEL="cardiffnlp/twitter-roberta-large-2022-154m"
|
13 |
|
|
|
|
|
14 |
|
15 |
# EMOJI
|
16 |
python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_temporal"
|
process/tweet_hate_balance.py
CHANGED
@@ -38,6 +38,8 @@ def sampler(chunk_index, r_seed):
|
|
38 |
df_train_tmp_n = df_train_negative.sample(label_train_dist[0] - label_train_tmp_dist[0], random_state=r_seed)
|
39 |
df_train_tmp = pd.concat([df_train_tmp, df_train_tmp_p, df_train_tmp_n])
|
40 |
assert dict(zip(*np.unique(df_train_tmp["gold_label_binary"], return_counts=True))) == label_train_dist
|
|
|
|
|
41 |
|
42 |
label_val_tmp_dist = dict(zip(*np.unique(df_val_tmp["gold_label_binary"], return_counts=True)))
|
43 |
assert label_val_tmp_dist[0] < label_val_dist[0] and label_val_tmp_dist[1] < label_val_dist[1]
|
|
|
38 |
df_train_tmp_n = df_train_negative.sample(label_train_dist[0] - label_train_tmp_dist[0], random_state=r_seed)
|
39 |
df_train_tmp = pd.concat([df_train_tmp, df_train_tmp_p, df_train_tmp_n])
|
40 |
assert dict(zip(*np.unique(df_train_tmp["gold_label_binary"], return_counts=True))) == label_train_dist
|
41 |
+
print(dict(zip(*np.unique(df_train_tmp["gold_label_binary"], return_counts=True))))
|
42 |
+
print(label_train_dist)
|
43 |
|
44 |
label_val_tmp_dist = dict(zip(*np.unique(df_val_tmp["gold_label_binary"], return_counts=True)))
|
45 |
assert label_val_tmp_dist[0] < label_val_dist[0] and label_val_tmp_dist[1] < label_val_dist[1]
|