asahi417 commited on
Commit
8fa6dba
·
1 Parent(s): cd4d367
experiments/huggingface_ops.py CHANGED
@@ -3,7 +3,7 @@ from pprint import pprint
3
 
4
  api = HfApi()
5
  models = api.list_models(filter=ModelFilter(author='tweettemposhift'))
6
- models_filtered = [i.modelId for i in models if 'emoji-' in i.modelId]
7
  pprint(sorted(models_filtered))
8
  for i in models_filtered:
9
  api.delete_repo(i, repo_type="model")
 
3
 
4
  api = HfApi()
5
  models = api.list_models(filter=ModelFilter(author='tweettemposhift'))
6
+ models_filtered = [i.modelId for i in models if 'hate_balance' in i.modelId]
7
  pprint(sorted(models_filtered))
8
  for i in models_filtered:
9
  api.delete_repo(i, repo_type="model")
experiments/main.sh CHANGED
@@ -5,12 +5,12 @@ MODEL="jhu-clsp/bernice"
5
  MODEL="cardiffnlp/twitter-roberta-base-2019-90m"
6
  MODEL="cardiffnlp/twitter-roberta-base-dec2020"
7
  MODEL="cardiffnlp/twitter-roberta-base-2021-124m"
 
 
8
  MODEL="roberta-large"
9
  MODEL="vinai/bertweet-large"
10
  MODEL="cardiffnlp/twitter-roberta-large-2022-154m"
11
 
12
- # todo
13
- MODEL="cardiffnlp/twitter-roberta-base-2022-154m"
14
 
15
  # EMOJI
16
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_temporal"
 
5
  MODEL="cardiffnlp/twitter-roberta-base-2019-90m"
6
  MODEL="cardiffnlp/twitter-roberta-base-dec2020"
7
  MODEL="cardiffnlp/twitter-roberta-base-2021-124m"
8
+ MODEL="cardiffnlp/twitter-roberta-base-2022-154m"
9
+
10
  MODEL="roberta-large"
11
  MODEL="vinai/bertweet-large"
12
  MODEL="cardiffnlp/twitter-roberta-large-2022-154m"
13
 
 
 
14
 
15
  # EMOJI
16
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_temporal"
process/tweet_hate_balance.py CHANGED
@@ -38,6 +38,8 @@ def sampler(chunk_index, r_seed):
38
  df_train_tmp_n = df_train_negative.sample(label_train_dist[0] - label_train_tmp_dist[0], random_state=r_seed)
39
  df_train_tmp = pd.concat([df_train_tmp, df_train_tmp_p, df_train_tmp_n])
40
  assert dict(zip(*np.unique(df_train_tmp["gold_label_binary"], return_counts=True))) == label_train_dist
 
 
41
 
42
  label_val_tmp_dist = dict(zip(*np.unique(df_val_tmp["gold_label_binary"], return_counts=True)))
43
  assert label_val_tmp_dist[0] < label_val_dist[0] and label_val_tmp_dist[1] < label_val_dist[1]
 
38
  df_train_tmp_n = df_train_negative.sample(label_train_dist[0] - label_train_tmp_dist[0], random_state=r_seed)
39
  df_train_tmp = pd.concat([df_train_tmp, df_train_tmp_p, df_train_tmp_n])
40
  assert dict(zip(*np.unique(df_train_tmp["gold_label_binary"], return_counts=True))) == label_train_dist
41
+ print(dict(zip(*np.unique(df_train_tmp["gold_label_binary"], return_counts=True))))
42
+ print(label_train_dist)
43
 
44
  label_val_tmp_dist = dict(zip(*np.unique(df_val_tmp["gold_label_binary"], return_counts=True)))
45
  assert label_val_tmp_dist[0] < label_val_dist[0] and label_val_tmp_dist[1] < label_val_dist[1]