licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 8267 | # t.jl
# Various forms of t-tests
#
# Copyright (C) 2012 Simon Kornblith
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
export OneSampleTTest, TwoSampleTTest, EqualVarianceTTest,
UnequalVarianceTTest
abstract type TTest <: HypothesisTest end
abstract type TwoSampleTTest <: TTest end
StatsAPI.pvalue(x::TTest; tail=:both) = pvalue(TDist(x.df), x.t; tail=tail)
default_tail(test::TTest) = :both
# confidence interval by inversion
function StatsAPI.confint(x::TTest; level::Float64=0.95, tail=:both)
check_level(level)
if tail == :left
(-Inf, confint(x, level=1-(1-level)*2)[2])
elseif tail == :right
(confint(x, level=1-(1-level)*2)[1], Inf)
elseif tail == :both
q = quantile(TDist(x.df), 1-(1-level)/2)
(x.xbar-q*x.stderr, x.xbar+q*x.stderr)
else
throw(ArgumentError("tail=$(tail) is invalid"))
end
end
## ONE SAMPLE T-TEST
struct OneSampleTTest <: TTest
n::Int # number of observations
xbar::Real # estimated mean
df::Int # degrees of freedom
stderr::Real # empirical standard error
t::Real # t-statistic
μ0::Real # mean under h_0
end
testname(::OneSampleTTest) = "One sample t-test"
population_param_of_interest(x::OneSampleTTest) = ("Mean", x.μ0, x.xbar) # parameter of interest: name, value under h0, point estimate
function show_params(io::IO, x::OneSampleTTest, ident="")
println(io, ident, "number of observations: $(x.n)")
println(io, ident, "t-statistic: $(x.t)")
println(io, ident, "degrees of freedom: $(x.df)")
println(io, ident, "empirical standard error: $(x.stderr)")
end
"""
OneSampleTTest(xbar::Real, stddev::Real, n::Int, μ0::Real = 0)
Perform a one sample t-test of the null hypothesis that `n` values with mean `xbar` and
sample standard deviation `stddev` come from a distribution with mean `μ0` against the
alternative hypothesis that the distribution does not have mean `μ0`.
Implements: [`pvalue`](@ref), [`confint`](@ref)
"""
function OneSampleTTest(xbar::Real, stddev::Real, n::Int, μ0::Real=0)
stderr = stddev/sqrt(n)
t = (xbar-μ0)/stderr
df = n-1
OneSampleTTest(n, xbar, df, stderr, t, μ0)
end
"""
OneSampleTTest(v::AbstractVector{T<:Real}, μ0::Real = 0)
Perform a one sample t-test of the null hypothesis that the data in vector `v` comes from
a distribution with mean `μ0` against the alternative hypothesis that the distribution
does not have mean `μ0`.
Implements: [`pvalue`](@ref), [`confint`](@ref)
"""
OneSampleTTest(v::AbstractVector{T}, μ0::Real=0) where {T<:Real} = OneSampleTTest(mean(v), std(v), length(v), μ0)
"""
OneSampleTTest(x::AbstractVector{T<:Real}, y::AbstractVector{T<:Real}, μ0::Real = 0)
Perform a paired sample t-test of the null hypothesis that the differences between pairs of
values in vectors `x` and `y` come from a distribution with mean `μ0` against the
alternative hypothesis that the distribution does not have mean `μ0`.
Implements: [`pvalue`](@ref), [`confint`](@ref)
!!! note
This test is also known as a t-test for paired or dependent samples, see
[paired difference test](https://en.wikipedia.org/wiki/Paired_difference_test) on Wikipedia.
"""
function OneSampleTTest(x::AbstractVector{T}, y::AbstractVector{S}, μ0::Real=0) where {T<:Real, S<:Real}
check_same_length(x, y)
OneSampleTTest(x - y, μ0)
end
## TWO SAMPLE T-TEST (EQUAL VARIANCE)
struct EqualVarianceTTest <: TwoSampleTTest
n_x::Int # number of observations
n_y::Int # number of observations
xbar::Real # estimated mean difference
df::Int # degrees of freedom
stderr::Real # empirical standard error
t::Real # t-statistic
μ0::Real # mean difference under h_0
end
function show_params(io::IO, x::TwoSampleTTest, ident="")
println(io, ident, "number of observations: [$(x.n_x),$(x.n_y)]")
println(io, ident, "t-statistic: $(x.t)")
println(io, ident, "degrees of freedom: $(x.df)")
println(io, ident, "empirical standard error: $(x.stderr)")
end
testname(::EqualVarianceTTest) = "Two sample t-test (equal variance)"
population_param_of_interest(x::TwoSampleTTest) = ("Mean difference", x.μ0, x.xbar) # parameter of interest: name, value under h0, point estimate
"""
EqualVarianceTTest(nx::Int, ny::Int, mx::Real, my::Real, vx::Real, vy::Real, μ0::Real=0)
Perform a two-sample t-test of the null hypothesis that samples `x` and `y` described by the number
of elements `nx` and `ny`, the mean `mx` and `my`, and variance `vx` and `vy` come from distributions
with equals means and variances. The alternative hypothesis is that the distributions have different
means but equal variances.
Implements: [`pvalue`](@ref), [`confint`](@ref)
"""
function EqualVarianceTTest(nx::Int, ny::Int, mx::Real, my::Real, vx::Real, vy::Real, μ0::Real=0)
xbar = mx - my
stddev = sqrt(((nx - 1) * vx + (ny - 1) * vy) / (nx + ny - 2))
stderr = stddev * sqrt(1/nx + 1/ny)
t = (xbar - μ0) / stderr
df = nx + ny - 2
EqualVarianceTTest(nx, ny, xbar, df, stderr, t, μ0)
end
"""
EqualVarianceTTest(x::AbstractVector{T<:Real}, y::AbstractVector{T<:Real})
Perform a two-sample t-test of the null hypothesis that `x` and `y` come from distributions
with equal means and variances against the alternative hypothesis that the distributions
have different means but equal variances.
Implements: [`pvalue`](@ref), [`confint`](@ref)
"""
function EqualVarianceTTest(x::AbstractVector{T}, y::AbstractVector{S}, μ0::Real=0) where {T<:Real,S<:Real}
nx, ny = length(x), length(y)
mx, my = mean(x), mean(y)
vx, vy = var(x), var(y)
EqualVarianceTTest(nx, ny, mx, my, vx, vy, μ0)
end
## TWO SAMPLE T-TEST (UNEQUAL VARIANCE)
struct UnequalVarianceTTest <: TwoSampleTTest
n_x::Int # number of observations
n_y::Int # number of observations
xbar::Real # estimated mean
df::Real # degrees of freedom
stderr::Real # empirical standard error
t::Real # t-statistic
μ0::Real # mean under h_0
end
testname(::UnequalVarianceTTest) = "Two sample t-test (unequal variance)"
"""
UnequalVarianceTTest(x::AbstractVector{T<:Real}, y::AbstractVector{T<:Real})
Perform an unequal variance two-sample t-test of the null hypothesis that `x` and `y` come
from distributions with equal means against the alternative hypothesis that the
distributions have different means.
This test is sometimes known as Welch's t-test. It differs from the equal variance t-test in
that it computes the number of degrees of freedom of the test using the Welch-Satterthwaite
equation:
```math
ν_{χ'} ≈ \\frac{\\left(\\sum_{i=1}^n k_i s_i^2\\right)^2}{\\sum_{i=1}^n
\\frac{(k_i s_i^2)^2}{ν_i}}
```
Implements: [`pvalue`](@ref), [`confint`](@ref)
"""
function UnequalVarianceTTest(x::AbstractVector{T}, y::AbstractVector{S}, μ0::Real=0) where {T<:Real,S<:Real}
nx, ny = length(x), length(y)
xbar = mean(x)-mean(y)
varx, vary = var(x), var(y)
stderr = sqrt(varx/nx + vary/ny)
t = (xbar-μ0)/stderr
df = (varx / nx + vary / ny)^2 / ((varx / nx)^2 / (nx - 1) + (vary / ny)^2 / (ny - 1))
UnequalVarianceTTest(nx, ny, xbar, df, stderr, t, μ0)
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 8141 | # Tests for Equality of Variances
export OneWayANOVATest, LeveneTest, BrownForsytheTest, FlignerKilleenTest
struct VarianceEqualityTest{TD <: ContinuousUnivariateDistribution} <: HypothesisTest
Nᵢ::Vector{Int}
SStᵢ::Vector{Float64}
SSeᵢ::Vector{Float64}
DFt::Int
DFe::Int
# test name, parameter of interest, test statistic name
description::Tuple{String, String, String}
end
population_param_of_interest(t::VarianceEqualityTest) =
(t.description[2], "all equal", NaN)
testname(t::VarianceEqualityTest) = t.description[1]
teststatisticname(t::VarianceEqualityTest{TD}) where {TD <: ContinuousDistribution} =
length(t.description[3]) != 0 ? t.description[3] : (TD <: FDist ? "F" : "χ²")
StatsAPI.nobs(t::VarianceEqualityTest) = t.Nᵢ
StatsAPI.dof(t::VarianceEqualityTest{Chisq}) = t.DFt
StatsAPI.dof(t::VarianceEqualityTest{FDist}) = (t.DFt, t.DFe)
teststatistic(t::VarianceEqualityTest{FDist}) = (t.DFe/t.DFt)*sum(t.SStᵢ)/sum(t.SSeᵢ)
function teststatistic(t::VarianceEqualityTest{Chisq})
y = sum(t.SStᵢ)/sum(t.SSeᵢ)
y*(t.DFe+t.DFt)/(1 + y) # sum(t.SStᵢ)/t.s²
end
StatsAPI.pvalue(t::VarianceEqualityTest{TD}; tail=:right) where {TD <: ContinuousDistribution} =
pvalue(TD(dof(t)...), teststatistic(t), tail=tail)
function show_params(io::IO, t::VarianceEqualityTest{TD},
indent="") where {TD <: ContinuousDistribution}
println(io, indent, "number of observations: ", nobs(t))
println(io, indent, rpad("$(teststatisticname(t)) statistic:", 24), teststatistic(t))
println(io, indent, "degrees of freedom: ", dof(t))
end
function Base.show(io::IOContext, t::VarianceEqualityTest)
if !get(io, :table, false) # No table
show(io.io, t)
else
println(io, testname(t))
println(io, repeat("-", 55))
SSt = sum(t.SStᵢ)
SSe = sum(t.SSeᵢ)
MSt = SSt/t.DFt
MSe = SSe/t.DFe
println(io, "Source SS DF MS F P-value")
println(io, repeat("-", 55))
@printf(io, "Treatments %8.3f %4d %8.3f %8.3f %7.5f\n",
SSt, t.DFt, MSt, MSt/MSe, pvalue(t))
@printf(io, "Error %8.3f %4d %8.3f\n", SSe, t.DFe, MSe)
println(io, repeat("-", 55))
@printf(io, "Total %8.3f %4d\n", SSt+SSe, t.DFt+t.DFe)
end
end
function anova(scores::AbstractVector{<:Real}...)
Nᵢ = [length(g) for g in scores]
Z̄ᵢ = mean.(scores)
Z̄ = mean(Z̄ᵢ)
SStᵢ = Nᵢ .* (Z̄ᵢ .- Z̄).^2
SSeᵢ = sum.( (z .- z̄).^2 for (z, z̄) in zip(scores, Z̄ᵢ) )
(Nᵢ, SStᵢ, SSeᵢ)
end
"""
OneWayANOVATest(groups::AbstractVector{<:Real}...)
Perform one-way analysis of variance test of the hypothesis that that the `groups`
means are equal.
The one-way analysis of variance (one-way ANOVA) is a technique that can be used
to compare means of two or more samples. The ANOVA tests the null hypothesis, which states
that samples in all groups are drawn from populations with the same mean values.
To do this, two estimates are made of the population variance.
The ANOVA produces an F-statistic, the ratio of the variance calculated among
the means to the variance within the samples.
Implements: [`pvalue`](@ref)
# External links
* [One-way analysis of variance on Wikipedia
](https://en.wikipedia.org/wiki/One-way_analysis_of_variance)
"""
function OneWayANOVATest(groups::AbstractVector{<:Real}...)
Nᵢ, SStᵢ, SSeᵢ = anova(groups...)
k = length(Nᵢ)
VarianceEqualityTest{FDist}(Nᵢ, SStᵢ, SSeᵢ, k-1, sum(Nᵢ)-k,
("One-way analysis of variance (ANOVA) test","Means","F"))
end
"""
LeveneTest(groups::AbstractVector{<:Real}...; scorediff=abs, statistic=mean)
Perform Levene's test of the hypothesis that that the `groups` variances are equal.
By default the mean `statistic` is used for centering in each of the `groups`, but
other statistics are accepted: median or truncated mean, see [`BrownForsytheTest`](@ref).
By default the absolute value of the score difference, `scorediff`, is used, but
other functions are accepted: x² or √|x|.
The test statistic, ``W``, is equivalent to the ``F`` statistic, and is defined as follows:
```math
W = \\frac{(N-k)}{(k-1)} \\cdot \\frac{\\sum_{i=1}^k N_i (Z_{i\\cdot}-Z_{\\cdot\\cdot})^2}
{\\sum_{i=1}^k \\sum_{j=1}^{N_i} (Z_{ij}-Z_{i\\cdot})^2},
```
where
* ``k`` is the number of different groups to which the sampled cases belong,
* ``N_i`` is the number of cases in the ``i``th group,
* ``N`` is the total number of cases in all groups,
* ``Y_{ij}`` is the value of the measured variable for the ``j``th case from the ``i``th group,
* ``Z_{ij} = |Y_{ij} - \\bar{Y}_{i\\cdot}|``, ``\\bar{Y}_{i\\cdot}`` is a mean of the ``i``th group,
* ``Z_{i\\cdot} = \\frac{1}{N_i} \\sum_{j=1}^{N_i} Z_{ij}`` is the mean of the ``Z_{ij}`` for group ``i``,
* ``Z_{\\cdot\\cdot} = \\frac{1}{N} \\sum_{i=1}^k \\sum_{j=1}^{N_i} Z_{ij}`` is the mean of all ``Z_{ij}``.
The test statistic ``W`` is approximately ``F``-distributed with ``k-1`` and ``N-k`` degrees of freedom.
Implements: [`pvalue`](@ref)
# References
* Levene, Howard, "Robust tests for equality of variances".
In Ingram Olkin; Harold Hotelling; et al. (eds.).
Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling.
Stanford University Press. pp. 278–292, 1960
# External links
* [Levene's test on Wikipedia
](https://en.wikipedia.org/wiki/Levene%27s_test)
"""
function LeveneTest(groups::AbstractVector{<:Real}...; scorediff=abs, statistic=mean)
# calculate scores
Zᵢⱼ = [scorediff.(g .- statistic(g)) for g in groups]
# anova
Nᵢ, SStᵢ, SSeᵢ = anova(Zᵢⱼ...)
k = length(Nᵢ)
VarianceEqualityTest{FDist}(Nᵢ, SStᵢ, SSeᵢ, k-1, sum(Nᵢ)-k,
("Levene's test","Variances","W"))
end
"""
BrownForsytheTest(groups::AbstractVector{<:Real}...)
The Brown–Forsythe test is a statistical test for the equality of `groups` variances.
The Brown–Forsythe test is a modification of the Levene's test with the median instead
of the mean statistic for computing the spread within each group.
Implements: [`pvalue`](@ref)
# References
* Brown, Morton B.; Forsythe, Alan B., "Robust tests for the equality of variances".
Journal of the American Statistical Association. 69: 364–367, 1974
doi:[10.1080/01621459.1974.10482955](https://doi.org/10.1080%2F01621459.1974.10482955).
# External links
* [Brown–Forsythe test on Wikipedia
](https://en.wikipedia.org/wiki/Brown%E2%80%93Forsythe_test)
"""
BrownForsytheTest(groups::AbstractVector{<:Real}...) = LeveneTest(groups...; statistic=median)
"""
FlignerKilleenTest(groups::AbstractVector{<:Real}...)
Perform Fligner-Killeen median test of the null hypothesis that the `groups`
have equal variances, a test for homogeneity of variances.
This test is most robust against departures from normality, see references.
It is a ``k``-sample simple linear rank method that uses the ranks of the absolute values
of the centered samples and weights
```math
a_{N,i} = \\Phi^{-1}(1/2 + (i/2(N+1)))
```
The version implemented here uses median centering in each of the samples.
Implements: [`pvalue`](@ref)
# References
* Conover, W. J., Johnson, M. E., Johnson, M. M., A comparative study of tests
for homogeneity of variances, with applications to the outer continental shelf bidding data.
Technometrics, 23, 351–361, 1980
# External links
* [Fligner-Killeen test on Statistical Analysis Handbook
](https://www.statsref.com/HTML/index.html?fligner-killeen_test.html)
"""
function FlignerKilleenTest(groups::AbstractVector{<:Real}...)
# calculate scores
Zᵢⱼ = [abs.(g .- median(g)) for g in groups]
# rank scores
(ranks, tieadj) = tiedrank_adj(vcat(Zᵢⱼ...))
qᵢⱼ = quantile.(Normal(),0.5 .+ ranks./2(length(ranks)+1))
Nᵢ = pushfirst!(cumsum([length(g) for g in groups]),0)
Qᵢⱼ = [qᵢⱼ[(Nᵢ[i]+1):(Nᵢ[i+1])] for i in 1:length(Nᵢ)-1]
# anova
Nᵢ, SStᵢ, SSeᵢ = anova(Qᵢⱼ...)
k = length(Nᵢ)
t3 = VarianceEqualityTest{Chisq}(Nᵢ, SStᵢ, SSeᵢ, k-1, sum(Nᵢ)-k,
("Fligner-Killeen test","Variances","FK"))
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 1926 | export WaldWolfowitzTest
struct WaldWolfowitzTest{T <: Real} <: HypothesisTest
nabove::Int # Number of points above median (or of value a)
nbelow::Int # Number of points below median (or of value b)
nruns::Int # Number of runs
μ::T # Expected mean
σ::T # Expected variance
z::T # test z-statistic from Normal distribution
end
testname(::WaldWolfowitzTest) = "Wald-Wolfowitz Test"
population_param_of_interest(x::WaldWolfowitzTest) = ("Number of runs", x.μ, x.nruns) # parameter of interest: name, value under h0, point estimate
default_tail(::WaldWolfowitzTest) = :both
StatsAPI.pvalue(test::WaldWolfowitzTest; tail=:both) = pvalue(Normal(0.0, 1.0), test.z; tail=tail)
function show_params(io::IO, x::WaldWolfowitzTest, ident="")
println(io, ident, "number of runs: $(x.nruns)")
println(io, ident, "z-statistic: $(x.z)")
end
"""
WaldWolfowitzTest(x::AbstractVector{Bool})
WaldWolfowitzTest(x::AbstractVector{<:Real})
Perform the Wald-Wolfowitz (or Runs) test of the null hypothesis that the given data is random, or independently sampled.
The data can come as many-valued or two-valued (Boolean). If many-valued, the sample is transformed by labelling each
element as above or below the median.
Implements: [`pvalue`](@ref)
"""
function WaldWolfowitzTest(x::AbstractVector{Bool})
n = length(x)
nabove = sum(x)
nbelow = n - nabove
# Get the expected value and standard deviation
μ = 1 + 2 * nabove * (nbelow / n)
σ = sqrt((μ - 1) * (μ - 2) / (n - 1))
# Get the number of runs
nruns = 1
for k in 1:(n - 1)
@inbounds if x[k] != x[k + 1]
nruns += 1
end
end
# calculate simple z-statistic
z = (nruns - μ) / σ
WaldWolfowitzTest(nabove, nbelow, nruns, μ, σ, z)
end
WaldWolfowitzTest(x::AbstractVector{<:Real}) = WaldWolfowitzTest(x .>= median(x))
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 5178 | # white.jl
# White and Breusch-Pagan tests for heteroskedasticity
#
# Copyright (C) 2020 Paul Söderlind
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
export WhiteTest, BreuschPaganTest
struct WhiteTest <: HypothesisTest
dof::Int #degrees of freedom in test
lm::Float64 #Lagrange Multiplier test statistic, distributed as Chisq(dof)
type::Symbol
end
"""
WhiteTest(X, e; type = :White)
Compute White's (or Breusch-Pagan's) test for heteroskedasticity.
`X` is a matrix of regressors and `e` is the vector of residuals from the original model.
The keyword argument `type` is either `:linear` for the Breusch-Pagan/Koenker test,
`:linear_and_squares` for White's test with linear and squared terms only (no cross-products), or
`:White` (the default) for the full White's test (linear, squared and cross-product terms).
`X` should include a constant and at least one more regressor, with observations in rows and
regressors in columns. In some applications, `X` is a subset of the regressors in
the original model, or just the fitted values. This saves degrees of freedom and may
give a more powerful test. The `lm` (Lagrange multiplier) test statistic is T*R2
where R2 is from the regression of `e^2` on the terms mentioned above.
Under the null hypothesis it is distributed as `Chisq(dof)` where `dof` is the number
of independent terms (not counting the constant), so the null is rejected when the
test statistic is large enough.
Implements: [`pvalue`](@ref)
# References
* H. White, (1980): A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity, Econometrica, 48, 817-838.
* T.S. Breusch & A.R. Pagan (1979), A simple test for heteroscedasticity and random coefficient variation, Econometrica, 47, 1287-1294
* R. Koenker (1981), A note on studentizing a test for heteroscedasticity, Journal of Econometrics, 17, 107-112
# External links
* [White's test on Wikipedia](https://en.wikipedia.org/wiki/White_test)
"""
function WhiteTest(X::AbstractMatrix{<:Real}, e::AbstractVector{<:Real}; type = :White)
(n,K) = (size(X,1),size(X,2)) #nobs,nvars
n == length(e) || throw(DimensionMismatch("inputs must have the same length"))
K >= 2 || throw(ArgumentError("X must have >= 2 columns"))
intercept_col = false
for i = 1:K
col = view(X,:,i)
intercept_col = first(col) != 0 && all(==(first(col)), col)
intercept_col && break
end
intercept_col || throw(ArgumentError("one of the colums of X must be a non-zero constant"))
if type == :linear #Breush-Pagan/Koenker
z = X
elseif type == :linear_and_squares #White with linear and squares
z = [X X.^2]
else #White with linear, squares and cross-products
z = fill(NaN,n,round(Int,K*(K+1)/2))
vv = 1
@views for i = 1:K, j = i:K
z[:,vv] .= X[:,i] .* X[:,j] #eg. x1*x1, x1*x2, x2*x2
vv += 1
end
end
dof = rank(z) - 1 #number of independent regressors in z
e2 = e.^2
b = z\e2
res = e2 - z*b
R2 = 1 - var(res)/var(e2)
lm = n*R2
return WhiteTest(dof, lm, type)
end
"""
BreuschPaganTest(X, e)
Compute Breusch-Pagan's test for heteroskedasticity.
`X` is a matrix of regressors from the original model and `e` the vector of residuals.
This is equivalent to `WhiteTest(X, e, type = :linear)`.
See [`WhiteTest`](@ref) for further details.
"""
BreuschPaganTest(X, e) = WhiteTest(X, e, type = :linear)
testname(t::WhiteTest) = "White's (or Breusch-Pagan's) test for heteroskedasticity"
population_param_of_interest(t::WhiteTest) = ("T*R2", 0, t.lm)
default_tail(test::WhiteTest) = :right
function show_params(io::IO, t::WhiteTest, ident = "")
println(io, ident, "T*R^2 statistic: ", t.lm)
println(io, ident, "degrees of freedom: ", t.dof)
println(io, ident, "type: ", t.type)
end
StatsAPI.dof(t::WhiteTest) = t.dof
StatsAPI.pvalue(t::WhiteTest) = pvalue(Chisq(t.dof), t.lm, tail=:right)
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 10783 | # Wilcoxon.jl
# Wilcoxon signed rank tests
#
# Copyright (C) 2012 Simon Kornblith
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
export SignedRankTest, ExactSignedRankTest, ApproximateSignedRankTest
## COMMON SIGNED RANK
# Automatic exact/normal selection
"""
SignedRankTest(x::AbstractVector{<:Real})
SignedRankTest(x::AbstractVector{<:Real}, y::AbstractVector{<:Real})
Perform a Wilcoxon signed rank test of the null hypothesis that the distribution of `x`
(or the difference `x - y` if `y` is provided) has zero median against the alternative
hypothesis that the median is non-zero.
When there are no tied ranks and ≤50 samples, or tied ranks and ≤15 samples,
`SignedRankTest` performs an exact signed rank test. In all other cases,
`SignedRankTest` performs an approximate signed rank test. Behavior may be further
controlled by using [`ExactSignedRankTest`](@ref) or [`ApproximateSignedRankTest`](@ref)
directly.
Implements: [`pvalue`](@ref), [`confint`](@ref)
"""
function SignedRankTest(x::AbstractVector{T}) where T<:Real
(W, ranks, signs, tie_adjustment, n, median) = signedrankstats(x)
n_nonzero = length(ranks)
if n_nonzero <= 15 || (n_nonzero <= 50 && tie_adjustment == 0)
ExactSignedRankTest(x, W, ranks, signs, tie_adjustment, n, median)
else
ApproximateSignedRankTest(x, W, ranks, signs, tie_adjustment, n, median)
end
end
SignedRankTest(x::AbstractVector{T}, y::AbstractVector{S}) where {T<:Real,S<:Real} = SignedRankTest(x - y)
# Get W and absolute ranks for signed rank test
function signedrankstats(x::AbstractVector{S}) where S<:Real
nonzero_x = x[x .!= 0]
(ranks, tieadj) = tiedrank_adj(abs.(nonzero_x))
W = 0.0
for i = 1:length(nonzero_x)
if nonzero_x[i] > 0
W += ranks[i]
end
end
(W, ranks, nonzero_x .> 0, tieadj, length(x), median(x))
end
## EXACT WILCOXON SIGNED RANK TEST
struct ExactSignedRankTest{T<:Real} <: HypothesisTest
vals::Vector{T} # original values
W::Float64 # test statistic: Wilcoxon rank-sum statistic
ranks::Vector{Float64} # ranks without ties (zero values)
signs::BitArray{1} # signs of input of ranks
tie_adjustment::Float64 # adjustment for ties
n::Int # number of observations
median::Float64 # sample median
end
"""
ExactSignedRankTest(x::AbstractVector{<:Real}[, y::AbstractVector{<:Real}])
Perform a Wilcoxon exact signed rank U test of the null hypothesis that the distribution of
`x` (or the difference `x - y` if `y` is provided) has zero median against the alternative
hypothesis that the median is non-zero.
When there are no tied ranks, the exact p-value is computed using the `psignrank` function
from the `Rmath` package. In the presence of tied ranks, a p-value is computed by exhaustive
enumeration of permutations, which can be very slow for even moderately sized data sets.
Implements: [`pvalue`](@ref), [`confint`](@ref)
"""
ExactSignedRankTest(x::AbstractVector{T}) where {T<:Real} =
ExactSignedRankTest(x, signedrankstats(x)...)
ExactSignedRankTest(x::AbstractVector{S}, y::AbstractVector{T}) where {S<:Real,T<:Real} =
ExactSignedRankTest(x - y)
testname(::ExactSignedRankTest) = "Exact Wilcoxon signed rank test"
population_param_of_interest(x::ExactSignedRankTest) = ("Location parameter (pseudomedian)", 0, x.median) # parameter of interest: name, value under h0, point estimate
default_tail(test::ExactSignedRankTest) = :both
function show_params(io::IO, x::ExactSignedRankTest, ident)
println(io, ident, "number of observations: ", x.n)
println(io, ident, "Wilcoxon rank-sum statistic: ", x.W)
print(io, ident, "rank sums: ")
show(io, [sum(x.ranks[x.signs]), sum(x.ranks[map(!, x.signs)])])
println(io)
println(io, ident, "adjustment for ties: ", x.tie_adjustment)
end
# Enumerate all possible Wilcoxon rank-sum results for a given vector, determining left-
# and right-tailed p values
function signedrankenumerate(x::ExactSignedRankTest)
le = 0
gr = 0
n = length(x.ranks)
tot = 2^n
for i = 0:tot-1
# Interpret bits of i as signs to generate wp for all possible sign combinations
Wp = 0
b = i
j = 1
while b != 0
Wp += (b & 1)*x.ranks[j]
j += 1
b >>= 1
end
le += Wp <= x.W
gr += Wp >= x.W
end
(le/tot, gr/tot)
end
function StatsAPI.pvalue(x::ExactSignedRankTest; tail=:both)
check_tail(tail)
n = length(x.ranks)
if n == 0
1.0
elseif x.tie_adjustment == 0
# Compute exact p-value using method from Rmath, which is fast but cannot account for ties
if tail == :both
if x.W <= n * (n + 1)/4
2 * psignrank(x.W, n, true)
else
2 * psignrank(x.W - 1, n, false)
end
elseif tail == :left
psignrank(x.W, n, true)
else
psignrank(x.W - 1, n, false)
end
else
# Compute exact p-value by enumerating all possible ranks in the tied data
if tail == :both
min(1, 2 * minimum(signedrankenumerate(x)))
elseif tail == :left
first(signedrankenumerate(x))
else
last(signedrankenumerate(x))
end
end
end
StatsAPI.confint(x::ExactSignedRankTest; level::Real=0.95, tail=:both) = calculate_ci(x.vals, level, tail=tail)
## APPROXIMATE SIGNED RANK TEST
struct ApproximateSignedRankTest{T<:Real} <: HypothesisTest
vals::Vector{T} # original values
W::Float64 # test statistic: Wilcoxon rank-sum statistic
ranks::Vector{Float64} # ranks without ties (zero values)
signs::BitArray{1} # signs of input of ranks
tie_adjustment::Float64 # adjustment for ties
n::Int # number of observations
median::Float64 # sample median
mu::Float64 # normal approximation: mean
sigma::Float64 # normal approximation: std
end
"""
ApproximateSignedRankTest(x::AbstractVector{<:Real}[, y::AbstractVector{<:Real}])
Perform a Wilcoxon approximate signed rank U test of the null hypothesis that the
distribution of `x` (or the difference `x - y` if `y` is provided) has zero median against
the alternative hypothesis that the median is non-zero.
The p-value is computed using a normal approximation to the distribution of the signed rank
statistic:
```math
\\begin{align*}
μ & = \\frac{n(n + 1)}{4}\\\\
σ & = \\frac{n(n + 1)(2 * n + 1)}{24} - \\frac{a}{48}\\\\
a & = \\sum_{t \\in \\mathcal{T}} t^3 - t
\\end{align*}
```
where ``\\mathcal{T}`` is the set of the counts of tied values at each tied position.
Implements: [`pvalue`](@ref), [`confint`](@ref)
"""
function ApproximateSignedRankTest(x::Vector, W::Float64, ranks::Vector{T}, signs::BitArray{1}, tie_adjustment::Float64, n::Int, median::Float64) where T<:Real
nz = length(ranks) # num non-zeros
mu = W - nz * (nz + 1)/4
std = sqrt(nz * (nz + 1) * (2 * nz + 1) / 24 - tie_adjustment / 48)
ApproximateSignedRankTest(x, W, ranks, signs, tie_adjustment, n, median, mu, std)
end
ApproximateSignedRankTest(x::AbstractVector{T}) where {T<:Real} =
ApproximateSignedRankTest(x, signedrankstats(x)...)
ApproximateSignedRankTest(x::AbstractVector{S}, y::AbstractVector{T}) where {S<:Real,T<:Real} =
ApproximateSignedRankTest(x - y)
testname(::ApproximateSignedRankTest) = "Approximate Wilcoxon signed rank test"
population_param_of_interest(x::ApproximateSignedRankTest) = ("Location parameter (pseudomedian)", 0, x.median) # parameter of interest: name, value under h0, point estimate
default_tail(test::ApproximateSignedRankTest) = :both
function show_params(io::IO, x::ApproximateSignedRankTest, ident)
println(io, ident, "number of observations: ", x.n)
println(io, ident, "Wilcoxon rank-sum statistic: ", x.W)
print(io, ident, "rank sums: ")
show(io, [sum(x.ranks[x.signs]), sum(x.ranks[map(!, x.signs)])])
println(io)
println(io, ident, "adjustment for ties: ", x.tie_adjustment)
println(io, ident, "normal approximation (μ, σ): ", (x.mu, x.sigma))
end
function StatsAPI.pvalue(x::ApproximateSignedRankTest; tail=:both)
check_tail(tail)
if x.mu == x.sigma == 0
1.0
elseif tail == :both
2 * ccdf(Normal(), abs(x.mu - 0.5 * sign(x.mu))/x.sigma)
elseif tail == :left
cdf(Normal(), (x.mu + 0.5)/x.sigma)
else # tail == :right
ccdf(Normal(), (x.mu - 0.5)/x.sigma)
end
end
StatsAPI.confint(x::ApproximateSignedRankTest; level::Real=0.95, tail=:both) = calculate_ci(x.vals, level, tail=tail)
# implementation method inspired by these notes: http://www.stat.umn.edu/geyer/old03/5102/notes/rank.pdf
function calculate_ci(x::AbstractVector, level::Real=0.95; tail=:both)
check_level(level)
check_tail(tail)
if tail == :both
c = level
else
c = 1 - 2 * (1-level)
end
n = length(x)
m = div(n * (n + 1), 2)
k_range = 1:div(m, 2)
l = [1 - 2 * psignrank(i, n, true) for i in k_range]
k = argmin(abs.(l .- c))
vals = Float64[]
enumerated = enumerate(x)
for (outer_index, outer_value) in enumerated
for (inner_index, inner_value) in enumerated
if outer_index > inner_index
continue
end
push!(vals, (inner_value + outer_value) / 2)
end
end
sort!(vals)
left = vals[k + 1]
right = vals[m - k]
if tail == :both
return (left, right)
elseif tail == :left
return (left, Inf)
else # tail == :right
return (-Inf, right)
end
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 6731 | # z.jl
# Various forms of z-tests
#
# Copyright (C) 2016 John Myles White
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
export OneSampleZTest, TwoSampleZTest, EqualVarianceZTest,
UnequalVarianceZTest
abstract type ZTest <: HypothesisTest end
abstract type TwoSampleZTest <: ZTest end
StatsAPI.pvalue(x::ZTest; tail=:both) = pvalue(Normal(0.0, 1.0), x.z; tail=tail)
default_tail(test::ZTest) = :both
# confidence interval by inversion
function StatsAPI.confint(x::ZTest; level::Float64=0.95, tail=:both)
check_level(level)
if tail == :left
(-Inf, confint(x, level=1-(1-level)*2)[2])
elseif tail == :right
(confint(x, level=1-(1-level)*2)[1], Inf)
elseif tail == :both
q = cquantile(Normal(0.0, 1.0), (1-level)/2)
(x.xbar-q*x.stderr, x.xbar+q*x.stderr)
else
throw(ArgumentError("tail=$(tail) is invalid"))
end
end
## ONE SAMPLE Z-TEST
struct OneSampleZTest <: ZTest
n::Int # number of observations
xbar::Real # estimated mean
stderr::Real # population standard error
z::Real # z-statistic
μ0::Real # mean under h_0
end
testname(::OneSampleZTest) = "One sample z-test"
population_param_of_interest(x::OneSampleZTest) = ("Mean", x.μ0, x.xbar) # parameter of interest: name, value under h0, point estimate
function show_params(io::IO, x::OneSampleZTest, ident="")
println(io, ident, "number of observations: $(x.n)")
println(io, ident, "z-statistic: $(x.z)")
println(io, ident, "population standard error: $(x.stderr)")
end
"""
OneSampleZTest(xbar::Real, stddev::Real, n::Int, μ0::Real = 0)
Perform a one sample z-test of the null hypothesis that `n` values with mean `xbar` and
population standard deviation `stddev` come from a distribution with mean `μ0` against the
alternative hypothesis that the distribution does not have mean `μ0`.
Implements: [`pvalue`](@ref), [`confint`](@ref)
"""
function OneSampleZTest(xbar::Real, stddev::Real, n::Int, μ0::Real=0)
stderr = stddev/sqrt(n)
z = (xbar-μ0)/stderr
OneSampleZTest(n, xbar, stderr, z, μ0)
end
"""
OneSampleZTest(v::AbstractVector{T<:Real}, μ0::Real = 0)
Perform a one sample z-test of the null hypothesis that the data in vector `v` comes from
a distribution with mean `μ0` against the alternative hypothesis that the distribution
does not have mean `μ0`.
Implements: [`pvalue`](@ref), [`confint`](@ref)
"""
OneSampleZTest(v::AbstractVector{T}, μ0::Real=0) where {T<:Real} = OneSampleZTest(mean(v), std(v), length(v), μ0)
"""
OneSampleZTest(x::AbstractVector{T<:Real}, y::AbstractVector{T<:Real}, μ0::Real = 0)
Perform a paired sample z-test of the null hypothesis that the differences between pairs of
values in vectors `x` and `y` come from a distribution with mean `μ0` against the
alternative hypothesis that the distribution does not have mean `μ0`.
Implements: [`pvalue`](@ref), [`confint`](@ref)
"""
function OneSampleZTest(x::AbstractVector{T}, y::AbstractVector{S}, μ0::Real=0) where {T<:Real, S<:Real}
check_same_length(x, y)
OneSampleZTest(x - y, μ0)
end
## TWO SAMPLE Z-TEST (EQUAL VARIANCE)
struct EqualVarianceZTest <: TwoSampleZTest
n_x::Int # number of observations
n_y::Int # number of observations
xbar::Real # estimated mean difference
stderr::Real # population standard error
z::Real # z-statistic
μ0::Real # mean difference under h_0
end
function show_params(io::IO, x::TwoSampleZTest, ident="")
println(io, ident, "number of observations: [$(x.n_x),$(x.n_y)]")
println(io, ident, "z-statistic: $(x.z)")
println(io, ident, "population standard error: $(x.stderr)")
end
testname(::EqualVarianceZTest) = "Two sample z-test (equal variance)"
population_param_of_interest(x::TwoSampleZTest) = ("Mean difference", x.μ0, x.xbar) # parameter of interest: name, value under h0, point estimate
"""
EqualVarianceZTest(x::AbstractVector{T<:Real}, y::AbstractVector{T<:Real})
Perform a two-sample z-test of the null hypothesis that `x` and `y` come from distributions
with equal means and variances against the alternative hypothesis that the distributions
have different means but equal variances.
Implements: [`pvalue`](@ref), [`confint`](@ref)
"""
function EqualVarianceZTest(x::AbstractVector{T}, y::AbstractVector{S}, μ0::Real=0) where {T<:Real,S<:Real}
nx, ny = length(x), length(y)
xbar = mean(x) - mean(y)
stddev = sqrt(((nx - 1) * var(x) + (ny - 1) * var(y)) / (nx + ny - 2))
stderr = stddev * sqrt(1/nx + 1/ny)
z = (xbar - μ0) / stderr
EqualVarianceZTest(nx, ny, xbar, stderr, z, μ0)
end
## TWO SAMPLE Z-TEST (UNEQUAL VARIANCE)
struct UnequalVarianceZTest <: TwoSampleZTest
n_x::Int # number of observations
n_y::Int # number of observations
xbar::Real # estimated mean
stderr::Real # empirical standard error
z::Real # z-statistic
μ0::Real # mean under h_0
end
testname(::UnequalVarianceZTest) = "Two sample z-test (unequal variance)"
"""
UnequalVarianceZTest(x::AbstractVector{T<:Real}, y::AbstractVector{T<:Real})
Perform an unequal variance two-sample z-test of the null hypothesis that `x` and `y` come
from distributions with equal means against the alternative hypothesis that the
distributions have different means.
Implements: [`pvalue`](@ref), [`confint`](@ref)
"""
function UnequalVarianceZTest(x::AbstractVector{T}, y::AbstractVector{S}, μ0::Real=0) where {T<:Real,S<:Real}
nx, ny = length(x), length(y)
xbar = mean(x)-mean(y)
varx, vary = var(x), var(y)
stderr = sqrt(varx/nx + vary/ny)
z = (xbar-μ0)/stderr
UnequalVarianceZTest(nx, ny, xbar, stderr, z, μ0)
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 2945 | using HypothesisTests, Distributions, Test, Random
using HypothesisTests: default_tail
using StableRNGs
@testset "Anderson-Darling" begin
@testset "One sample test" begin
n = 1000
rng = StableRNG(1984948)
d = Normal(1000, 100)
x = rand(rng, d, n)
t = OneSampleADTest(x, d)
@test t.A² ≈ 1.2960 atol=0.1^4
@test pvalue(t) ≈ 0.2336 atol=0.1^4
@test default_tail(t) == :right
d = DoubleExponential()
x = rand(rng, d, n)
t = OneSampleADTest(x, Normal(mean(d), std(d)))
@test t.A² ≈ 11.0704 atol=0.1^4
@test pvalue(t) ≈ 0.0 atol=0.1^4
t = OneSampleADTest(x, d)
@test t.A² ≈ 0.8968 atol=0.1^4
@test pvalue(t) ≈ 0.4162 atol=0.1^4
d = Cauchy()
x = rand(rng, Cauchy(), n)
t = OneSampleADTest(x, Normal())
@test pvalue(t) ≈ 0.0 atol=0.1^4
t = OneSampleADTest(x, d)
@test pvalue(t) ≈ 0.9640 atol=0.1^4
d = LogNormal()
x = rand(rng, d, n)
t = OneSampleADTest(x, Normal(mean(d), std(d)))
@test pvalue(t) ≈ 0.0 atol=0.1^4
t = OneSampleADTest(x, d)
@test pvalue(t) ≈ 0.9123 atol=0.1^4
d = Uniform(-pi, 2pi)
x = rand(rng, d, n)
t = OneSampleADTest(x, d)
@test pvalue(t) ≈ 0.2337 atol=0.1^4
x = rand(rng, Uniform(0, 1.8), n)
t = OneSampleADTest(x, Uniform())
@test pvalue(t) ≈ 0.0 atol=0.1^4
x = rand(rng, Exponential(), n)
t = OneSampleADTest(x, Exponential())
@test pvalue(t) ≈ 0.8579 atol=0.1^4
end
@testset "k-sample test" begin
samples = Any[
[38.7, 41.5, 43.8, 44.5, 45.5, 46.0, 47.7, 58.0],
[39.2, 39.3, 39.7, 41.4, 41.8, 42.9, 43.3, 45.8],
[34.0, 35.0, 39.0, 40.0, 43.0, 43.0, 44.0, 45.0],
[34.0, 34.8, 34.8, 35.4, 37.2, 37.8, 41.2, 42.8]
]
t = KSampleADTest(samples...)
@test t.A²k ≈ 8.3926 atol=0.1^4
@test t.σ ≈ 1.2038 atol=0.1^4
@test pvalue(t) ≈ 0.0022 atol=0.1^4
@test default_tail(t) == :right
ts = KSampleADTest(samples..., nsim = 20000);
@test pvalue(ts) ≈ 0.00155 atol=0.1^3
t = KSampleADTest(samples..., modified = false)
@test t.A²k ≈ 8.3559 atol=0.1^4
@test t.σ ≈ 1.2038 atol=0.1^4
@test pvalue(t) ≈ 0.0023 atol=0.1^4
ts = KSampleADTest(samples..., modified = false, nsim = 20000);
@test pvalue(ts) ≈ 0.00150 atol=0.1^3
end
@testset "more tests" begin
rng = StableRNG(31412455)
samples = Any[rand(rng, Normal(), 50), rand(rng, Normal(0.5), 30)]
t = KSampleADTest(samples...)
@test pvalue(t) < 0.05
samples = Any[rand(rng, Normal(), 50), rand(rng, Normal(), 30), rand(rng, Normal(), 20)]
t = KSampleADTest(samples...)
@test pvalue(t) > 0.05
@test pvalue(OneSampleADTest(vcat(rand(rng, Normal(),500), rand(rng, Beta(2,2),500)), Beta(2,2))) ≈ 0.0 atol=0.1^4
n = 1000
x = rand(rng, Exponential(), n)
@test pvalue(KSampleADTest(rand(rng, 1000), randn(rng, 1000))) ≈ 0.0 atol=eps()
@test pvalue(KSampleADTest(x,x,x,x,x,x)) ≈ 1.0
end
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 7562 | using HypothesisTests, LinearAlgebra, Test
@testset "Augmented Dickey-Fuller" begin
sim_data_h0 = [
0.3823959677906078, -0.2152385089376233, -0.22568375357499895, -1.064710607963763,
-0.7535992694654291, 1.5414885543718815, -0.7255977944286491, -0.19563221826190302,
0.23578930816100901, 0.8194975957297876, 1.7827692007679783, 2.2415601558216953,
1.719223398400187, 2.1276192367249394, 2.077168006791274, 1.3835143629873885,
-0.39031889042066714, -0.26955292548322785, -1.0271859632037557, -2.7569421445944418,
-1.9609935225898258, -1.2909315413337634, -0.7400791638330025, -0.8034537562625632,
0.5334890259883591, 0.46034039265061977, -0.28512392399013586, -1.5051790525247886,
-1.558356390052481, -1.7234927478553148, -3.838862996282626, -3.9056309827892153,
-2.6831691343211537, -2.1154736745827103, -1.351974746259323, -0.973375866405973,
-1.61897292304257, -2.2836191674336015, -4.086645491644496, -5.37569309549424,
-5.710963175012358, -5.6404955736512, -5.298701806271377, -3.563536140216995,
-2.263620175906803, -2.057256094504186, -3.0661160500417894, -3.9161717203571875,
-2.786762284472861, -4.135295740964688, -2.8950048405356283, -2.9506519337429524,
-2.1912617197974926, -2.221528606444255, -2.5826112742003486, -4.589914476732911,
-5.158773604079549, -6.308401128476547, -4.427778953845362, -5.898403495232742,
-6.433614465398474, -7.397158425223975, -8.78226649289989, -8.64796625533862,
-9.26408292134744, -10.984072277667181, -10.66330299767977, -12.11067589556128,
-12.602947083630847, -13.016034467614029, -12.014105955158076, -10.839424629182965,
-12.166394974245012, -13.759609842289079, -14.198319818047874, -12.972522320050007,
-11.483432041980393, -9.32399885487954, -10.233477872917042, -9.085657572304541,
-9.590729768826915, -9.857796804045044, -8.358714410114315, -7.561410249938924,
-7.733050693246021, -8.202130303176117, -7.984506281967517, -7.625359874365167,
-7.30533515865711, -7.046118830601424, -6.586422845559796, -6.376436485517654,
-4.8532610943403895, -3.5934664907281935, -3.758749591842454, -3.602555096954818,
-4.416870391331517, -6.126738597336108, -4.626800721222075, -4.755716359752092,
-5.205900331311935
]
@testset "No deterministic term" begin
t = ADFTest(sim_data_h0, :none, 0)
@test t.n == 100
@test t.deterministic == :none
@test t.lag == 0
@test t.stat ≈ -0.6050597112208628
@test t.coef ≈ -0.009972855420884913
@test t.cv ≈ [ -2.5882321870404863, -1.9439589708250309, -1.614431731329 ]
@test pvalue(t) ≈ 0.4525095990064268
show(IOBuffer(), t)
end
@testset "Constant term" begin
t = ADFTest(sim_data_h0, :constant, 4)
@test t.n == 96
@test t.deterministic == :constant
@test t.lag == 4
@test t.stat ≈ -1.3432252172180439
@test t.coef ≈ -0.034891024784937275
@test t.cv ≈ [ -3.49681816639021, -2.8906107514600103, -2.5822770483285953 ]
@test pvalue(t) ≈ 0.6091721848538273
show(IOBuffer(), t)
end
@testset "Linear trend term" begin
t = ADFTest(sim_data_h0, :trend, 1)
@test t.n == 99
@test t.deterministic == :trend
@test t.lag == 1
@test t.stat ≈ -1.643937136091079
@test t.coef ≈ -0.06200340824254233
@test t.cv ≈ [ -4.051321648595895, -3.4548891419983088, -3.1530564880069027 ]
@test pvalue(t) ≈ 0.7747580288456625
show(IOBuffer(), t)
end
@testset "Quadratic trend term" begin
t = ADFTest(sim_data_h0, :squared_trend, 10)
@test t.n == 90
@test t.deterministic == :squared_trend
@test t.lag == 10
@test t.stat ≈ -2.0185041960365777
@test t.coef ≈ -0.11370011315231617
@test t.cv ≈ [ -4.489700198611862, -3.8922014722784897, -3.5900742238045 ]
@test pvalue(t) ≈ 0.8095687207005545
show(IOBuffer(), t)
end
sim_data_h1 = [
0.3823959677906078, -0.4064364928329272, -0.21366349105383925, -0.9458585999156837,
-0.161817961459508, 2.2141788431075566, -1.1599969272467523, -0.05003288745663004,
0.406405082694597, 0.7869108289160771, 1.3567270194962293, 1.1371544648018315,
0.04624047497940731, 0.4315160758144559, 0.16530680797356267, -0.6110002398171043,
-2.079333373316608, -0.9189007217208647, -1.21708339858096, -2.338297880681166,
-0.3732003183359671, 0.48346182208807886, 0.7925832885448003, 0.33291705184283954,
1.503401308172342, 0.6785520207484317, -0.4061883062665398, -1.4231492816679225,
-0.7647519783616538, -0.5475123469836606, -2.3891264219191415, -1.2613311974661598,
0.5917962497349819, 0.8635935846059344, 1.1952957206263544, 0.9762467401665272,
-0.15747368655333344, -0.7433830876676981, -2.174717868044743, -2.376406537872116,
-1.5234733484541754, -0.6912690728659298, -0.003840769053141846, 1.7332452815278112,
2.1665386050740976, 1.2896333839396656, -0.3640432635677706, -1.032077302099283,
0.6133707848346852, -1.0418480640744843, 0.7193668683918175, 0.3040363409885845,
0.911408384439752, 0.4254373055731135, -0.1483640149695369, -2.081485210017331,
-1.6096017323553033, -1.9544283905746491, 0.9034079793438605, -1.0189205517154498,
-1.0446712460234568, -1.4858795828372295, -2.1280478590945284, -0.9297236919859942,
-1.0809785120018163, -2.26047861232065, -0.8094700261729145, -1.8521079109679686,
-1.4183251435535507, -1.1222499557599581, 0.4408035345759739, 1.395083093263098,
-0.6294287984304979, -1.907929267259316, -1.3926746093884548, 0.5294601933036396,
1.7538203747214345, 3.0363433744615707, 0.6086926691932826, 1.4521666352091431,
0.22101112108219845, -0.15656147467703047, 1.4208016565922137, 1.5077049884714973,
0.5822120509286517, -0.1779735844657705, 0.12863722897571492, 0.42346502209020714,
0.5317572267531613, 0.5250949414322668, 0.7222434557577614, 0.5711080879210234,
1.8087294351377763, 2.1641593211810846, 0.9167965594762817, 0.6145927746257767,
-0.5070189070638104, -1.9633776595364965, 0.5182490463457843, 0.13020888464287564,
-0.3850795292384054
]
@testset "No deterministic term" begin
t = ADFTest(sim_data_h1, :none, 2)
@test t.n == 98
@test t.deterministic == :none
@test t.lag == 2
@test t.stat ≈ -4.856134193950414
@test t.coef ≈ -0.5258695197499671
@test t.cv ≈ [ -2.5882321870404863, -1.9439589708250309, -1.614431731329 ]
@test pvalue(t) ≈ 2.011399607967822e-6
show(IOBuffer(), t)
end
@testset "Constant term" begin
t = ADFTest(sim_data_h1, :constant, 0)
@test t.n == 100
@test t.deterministic == :constant
@test t.lag == 0
@test t.stat ≈ -5.371126891727986
@test t.coef ≈ -0.45433645147215723
@test t.cv ≈ [ -3.49681816639021, -2.8906107514600103, -2.5822770483285953 ]
@test pvalue(t) ≈ 3.8937264616617045e-6
show(IOBuffer(), t)
end
@testset "Linear trend term" begin
t = ADFTest(sim_data_h1, :trend, 7)
@test t.n == 93
@test t.deterministic == :trend
@test t.lag == 7
@test t.stat ≈ -2.636305455046
@test t.coef ≈ -0.4407260538688699
@test t.cv ≈ [ -4.051321648595895, -3.4548891419983088, -3.1530564880069027 ]
@test pvalue(t) ≈ 0.2634673926249714
show(IOBuffer(), t)
end
@testset "Quadratic trend term" begin
t = ADFTest(sim_data_h1, :squared_trend, 4)
@test t.n == 96
@test t.deterministic == :squared_trend
@test t.lag == 4
@test t.stat ≈ -4.300112549464304
@test t.coef ≈ -0.6759438045021552
@test t.cv ≈ [ -4.489700198611862, -3.8922014722784897, -3.5900742238045 ]
@test pvalue(t) ≈ 0.012662962461719612
show(IOBuffer(), t)
end
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 612 | using HypothesisTests
using Test
using DelimitedFiles
@testset "Bartlett's test" begin
# Columns are type, length, left, right, bottom, top, diag
swiss = readdlm(joinpath(@__DIR__, "data", "swiss3.txt"))
genuine = convert(Matrix{Float64}, swiss[view(swiss, :, 1) .== "real", 2:end])
counterfeit = convert(Matrix{Float64}, swiss[view(swiss, :, 1) .== "fake", 2:end])
b = BartlettTest(genuine, counterfeit)
@test nobs(b) == (100, 100)
@test dof(b) == 21
@test pvalue(b) ≈ 0.0 atol=1e-10
@test b.L′ ≈ 121.8991235 atol=1e-6
@test occursin("reject h_0", sprint(show, b))
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 6979 | using HypothesisTests, Test
using HypothesisTests: default_tail
@testset "Binomial" begin
t = BinomialTest(26, 78)
@test pvalue(t) ≈ 0.004334880883507431
@test pvalue(t, tail=:left) ≈ 0.002167440441753716
@test pvalue(t, tail=:right) ≈ 0.9989844298129187
@test default_tail(t) == :both
@test_ci_approx confint(t) (0.23058523962930383, 0.4491666887959782)
@test_ci_approx confint(t, tail=:left) (0.0, 0.4313047758370174)
@test_ci_approx confint(t, tail=:right) (0.2451709633730693, 1.0)
@test_ci_approx confint(t, method=:wald) (0.22871819521037956, 0.43794847145628707)
@test_ci_approx confint(t, tail=:left, method=:wald) (0.0, 0.42112912485444692)
@test_ci_approx confint(t, tail=:right, method=:wald) (0.24553754181221971, 1.0)
@test_ci_approx confint(t, method=:waldcc) (0.22230793880012298, 0.4443587278665436)
@test_ci_approx confint(t, tail=:left, method=:waldcc) (0.0, 0.42753938126470326)
@test_ci_approx confint(t, tail=:right, method=:waldcc) (0.23912728540196335, 1.0)
@test_ci_approx confint(t, method=:wilson) (0.23872670036358601, 0.44358590287381217)
@test_ci_approx confint(t, tail=:left, method=:wilson) (0.0, 0.42541288951088108)
@test_ci_approx confint(t, tail=:right, method=:wilson) (0.25242832328277831, 1.0)
@test_ci_approx confint(t, method=:jeffrey) (0.23626570247518358, 0.44251318323879296)
@test_ci_approx confint(t, tail=:left, method=:jeffrey) (0.0, 0.42466492683653623)
@test_ci_approx confint(t, tail=:right, method=:jeffrey) (0.25098836986261724, 1.0)
@test_ci_approx confint(t, method=:agresti_coull) (0.2384423809121706, 0.44387022232522744)
@test_ci_approx confint(t, tail=:left, method=:agresti_coull) (0.0, 0.42558712894362222)
@test_ci_approx confint(t, tail=:right, method=:agresti_coull) (0.25225408385003706, 1.0)
@test_ci_approx confint(t, method=:arcsine) (0.23366209634204066,0.44117918327686334)
@test_ci_approx confint(t, tail=:left, method=:arcsine) (0.0,0.4235046425920888)
@test_ci_approx confint(t, tail=:right, method=:arcsine) (0.2489264087216164,1.0)
show(IOBuffer(), t)
t = BinomialTest([trues(6); falses(3)])
@test pvalue(t) ≈ 0.5078125000000002
@test pvalue(t, tail=:left) ≈ 0.91015625
@test pvalue(t, tail=:right) ≈ 0.2539062500000001
@test_ci_approx confint(t) (0.2992950562085405, 0.9251453685803082)
@test_ci_approx confint(t, tail=:left) (0.0, 0.9022531865607242)
@test_ci_approx confint(t, tail=:right) (0.3449413659437032, 1.0)
@test_ci_approx confint(t, method=:wald) (0.35868803903340479, 0.97464529429992841)
@test_ci_approx confint(t, tail=:left, method=:wald) (0.0,0.92513047859481645)
@test_ci_approx confint(t, tail=:right, method=:wald) (0.40820285473851681,1.0)
@test_ci_approx confint(t, method=:waldcc) (0.3031324834778487, 1.0)
@test_ci_approx confint(t, tail=:left, method=:waldcc) (0.0, 0.9806860341503718)
@test_ci_approx confint(t, tail=:right, method=:waldcc) (0.35264729918296145, 1.0)
@test_ci_approx confint(t, method=:wilson) (0.35420213558039609,0.87941618161308899)
@test_ci_approx confint(t, tail=:left, method=:wilson) (0.0,0.85802909820500495)
@test_ci_approx confint(t, tail=:right, method=:wilson) (0.39825972868840931,1.0)
@test_ci_approx confint(t, method=:jeffrey) (0.34779179347226591,0.89578677833922582)
@test_ci_approx confint(t, tail=:left, method=:jeffrey) (0.0,0.86830830610561005)
@test_ci_approx confint(t, tail=:right, method=:jeffrey) (0.39604343455469687,1.0)
@test_ci_approx confint(t, method=:agresti_coull) (0.350905767251112,0.88271254994237336)
@test_ci_approx confint(t, tail=:left, method=:agresti_coull) (0.0,0.86049746046629294)
@test_ci_approx confint(t, tail=:right, method=:agresti_coull) (0.39579136642712159,1.0)
@test_ci_approx confint(t, method=:arcsine) (0.345812446615087,0.9188773496172281)
@test_ci_approx confint(t, tail=:left, method=:arcsine) (0.0,0.8879439981269358)
@test_ci_approx confint(t, tail=:right, method=:arcsine) (0.3965293068864491,1.0)
show(IOBuffer(), t)
t = BinomialTest(0, 100, 0.01)
@test pvalue(t) ≈ 0.7320646825464591
show(IOBuffer(), t)
t = BinomialTest(100, 100, 0.99)
@test pvalue(t) ≈ 0.7320646825464584
show(IOBuffer(), t)
# from issue #295
# without clamping: (-0.05457239484968546, 0.4890548596328611)
@test_ci_approx confint(BinomialTest(0, 5), method=:agresti_coull) (0.0, 0.4890548596328611)
# without clamping: (0.5109451403671388, 1.0545723948496855)
@test_ci_approx confint(BinomialTest(5, 5), method=:agresti_coull) (0.5109451403671388, 1.0)
# without clamping: (-0.15060901623063327, 0.5506090162306333)
@test_ci_approx confint(BinomialTest(1, 5), method=:wald) (0.0, 0.5506090162306333)
# without clamping: (0.44939098376936687, 1.1506090162306333)
@test_ci_approx confint(BinomialTest(4, 5), method=:wald) (0.44939098376936687, 1.0)
# without clamping: (-2.7755575615628914e-17, 0.2775327998628899)
@test_ci_approx confint(BinomialTest(0, 10), method=:wilson) (0.0, 0.2775327998628899)
# without clamping: (0.7575059933447587, 1.0000000000000002)
@test_ci_approx confint(BinomialTest(12, 12), method=:wilson) (0.7575059933447587, 1.0)
end
@testset "SignTest" begin
x = [55, 58, 61, 61, 62, 62, 62, 63, 63, 64, 66, 68, 68, 69, 69, 69, 70, 71, 72, 72]
@test pvalue(SignTest(x)) ≈ 1.907348632812499e-6
@test pvalue(SignTest(x), tail=:left) ≈ 1.0
@test pvalue(SignTest(x), tail=:right) ≈ 9.536743164062495e-7
@test pvalue(SignTest(x, 70)) ≈ 0.004425048828125003
@test pvalue(SignTest(x, 70), tail=:left) ≈ 0.0022125244140625013
@test pvalue(SignTest(x, 70), tail=:right) ≈ 0.9996356964111328
@test default_tail(SignTest(x)) == :both
@test_ci_approx confint(SignTest(x, 70)) (62, 69)
@test_ci_approx confint(SignTest(x, 70), level=0.9998) (61, 71)
show(IOBuffer(), SignTest(x, 70))
x = [9, 2, 7, 5]
y = [7, 2, 6, 4]
@test pvalue(SignTest(x, y)) ≈ 0.25
@test_ci_approx confint(SignTest(x, y)) (0, 2)
show(IOBuffer(), SignTest(x, y))
# www.stat.umn.edu/geyer/old03/5102/notes/rank.pdf
x = [-4.7, 3.7, 22.4, 13.6, 8.7, 9.1, -7.8, 10.8, 15.6, 23.5, 14.4, 20.2, 6.5, 10.1, -6.9]
@test pvalue(SignTest(x)) ≈ 0.03515625
@test pvalue(SignTest(x), tail=:left) ≈ 0.996307373046875
@test pvalue(SignTest(x), tail=:right) ≈ 0.017578125000000007
@test_ci_approx confint(SignTest(x), level=0.99995) (-7.8, 23.5)
@test_ci_approx confint(SignTest(x), level=0.9999) (-6.9, 22.4)
@test_ci_approx confint(SignTest(x), level=0.993) (-4.7, 20.2)
@test_ci_approx confint(SignTest(x), level=0.965) (3.7, 15.6)
@test_ci_approx confint(SignTest(x), level=0.882) (6.5, 14.4)
@test_ci_approx confint(SignTest(x), level=0.7) (8.7, 13.6)
@test_ci_approx confint(SignTest(x), level=0.6) (9.1, 10.8)
show(IOBuffer(), SignTest(x))
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 5014 | using HypothesisTests, Test
using HypothesisTests: default_tail
@testset "Box-Pierce and Ljung-Box" begin
sim_data_h0=[
0.297287984535462;0.382395967790608;-0.597634476728231;-0.0104452446373756;
-0.839026854388764;0.311111338498334;2.29508782383731;-2.26708634880053;
0.529965576166746;0.431421526422912;0.583708287568779;0.963271605038191;
0.458790955053717;-0.522336757421508;0.408395838324752;-0.0504512299336653;
-0.693653643803886;-1.77383325340806;0.120765964937439;-0.757633037720528;
-1.72975618139069;0.795948622004616;0.670061981256062;0.550852377500761;
-0.0633745924295606;1.33694278225092;-0.0731486333377393;-0.745464316640756;
-1.22005512853465;-0.0531773375276925;-0.165136357802834;-2.11537024842731;
-0.0667679865065892;1.22246184846806;0.567695459738444;0.763498928323387;
0.378598879853350;-0.645597056636597;-0.664646244391031;-1.80302632421089;
-1.28904760384974;-0.335270079518118;0.0704676013611580;0.341793767379823;
1.73516566605438;1.29991596431019;0.206364081402617;-1.00885995553760;
-0.850055670315398;1.12940943588433;-1.34853345649183;1.24029090042906;
-0.0556470932073243;0.759390213945460;-0.0302668866467625;-0.361082667756094;
-2.00730320253256;-0.568859127346638;-1.14962752439700;1.88062217463119;
-1.47062454138738;-0.535210970165732;-0.963543959825501;-1.38510806767591;
0.134300237561270;-0.616116666008819;-1.71998935631974;0.320769279987411;
-1.44737289788151;-0.492271188069566;-0.413087383983183;1.00192851245595;
1.17468132597511;-1.32697034506205;-1.59321486804407;-0.438709975758797;
1.22579749799787;1.48909027806961;2.15943318710085;-0.909479018037503;
1.14782030061250;-0.505072196522373;-0.267067035218130;1.49908239393073;
0.797304160175390;-0.171640443307097;-0.469079609930096;0.217624021208600;
0.359146407602350;0.320024715708058;0.259216328055686;0.459695985041628;
0.209986360042143;1.52317539117726;1.25979460361220;-0.165283101114261;
0.156194494887636;-0.814315294376699
]
@testset "Box-Pierce" begin
t = HypothesisTests.BoxPierceTest(sim_data_h0,2,1)
@test t.n == 98
@test t.lag == 2
@test t.dof == 1
@test t.Q ≈ 1.233942980734545
@test pvalue(t) ≈ 0.2666415904008932
@test default_tail(t) == :right
show(IOBuffer(), t)
end
@testset "Ljung-Box" begin
t = HypothesisTests.LjungBoxTest(sim_data_h0,5,2)
@test t.n == 98
@test t.lag == 5
@test t.dof == 2
@test t.Q ≈ 3.2090126519163626
@test pvalue(t) ≈ 0.36050846449240337
@test default_tail(t) == :right
show(IOBuffer(), t)
end
sim_data_h1 = [
0.297287984535462;0.739141549233162;0.200148986990924;0.00799107498178517;
-0.889482260507899;-0.758664696605681;1.65153486606286;-0.0576451005433905;
-0.0346690043041814;0.407112251420912;1.08264369056513;2.14031035829007;
2.70237027783226;2.07841446849019;2.09178211716330;1.83616297011523;
0.882207285185406;-1.26603340222014;-1.66313630328235;-2.37358658099330;
-4.07911918759795;-3.38691842881493;-2.17050437704247;-1.03767734630572;
-0.657436094883687;0.859322672282215;1.15526940186602;0.383062163913809;
-1.10696135239789;-1.49644960957930;-1.62878748357863;-3.62098034584788;
-3.92330815645045;-2.39921383551812;-1.13436869594816;0.122020643841029;
0.865334261247033;0.356197863707534;-0.496809086316101;-2.50605658690248;
-4.14727278223788;-4.56018044213284;-4.15756709452688;-3.27923261341258;
-0.952643341682653;1.14051373831478;1.86077356988515;0.881914206830145;
-0.349990693084770;0.444846342133559;-0.709720638006125;0.255172232181642;
0.463475776812484;1.23900947646595;1.31750175206863;0.848216591786478;
-1.38469381800938;-2.48495668649384;-3.71616740278679;-1.83329170276481;
-2.55572436386911;-3.05209269597923;-3.85933788583984;-5.10068572188995;
-4.82872126295472;-4.88037646498750;-6.12782473541832;-5.56850746301833;
-6.29123443287801;-6.37120026861768;-6.17115737646099;-4.49210025871193;
-2.36449177154091;-2.81673039329756;-4.26394380853887;-4.71042342801617;
-3.14752747305988;-0.874815661197385;2.05391263558195;1.81766084302006;
2.71283952156198;2.20503697644599;1.56512548004846;2.71572187705509;
3.58663276862696;3.31760231592873;2.43605333859629;2.14560733274553;
2.20305920531810;2.32001356226611;2.38231484117959;2.62246972577731;
2.64225557862103;3.90714116778931;5.15568733137306;4.84939934619662;
4.42876751091166;3.04538591485831
]
@testset "Box-Pierce" begin
t = HypothesisTests.BoxPierceTest(sim_data_h1,3)
@test t.n == 98
@test t.lag == 3
@test t.dof == 0
@test t.Q ≈ 176.16899390632153
@test pvalue(t) ≈ 5.925682677971866e-38
show(IOBuffer(), t)
end
@testset "Ljung-Box" begin
t = HypothesisTests.LjungBoxTest(sim_data_h1,12)
@test t.n == 98
@test t.lag == 12
@test t.dof == 0
@test t.Q ≈ 271.8894095341075
@test pvalue(t) ≈ 3.6622231247462687e-51
show(IOBuffer(), t)
end
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 18337 | using HypothesisTests, Test
using HypothesisTests: default_tail
@testset "Breusch-Godfrey" begin
# data simulated under H_1
data_h1 = [
-2.1844072302156263 1 -0.02187576598418861 1.4250842322231618 -2.0224314101114222
-3.8237365225754556 1 -2.1844072302156263 -0.3986195023723653 -0.725318617093708
-4.692622964314854 1 -3.8237365225754556 0.865359034508392 -0.9716762048860438
-9.465165251695765 1 -4.692622964314854 -1.5248868209889381 -1.8178664695259354
-3.784086411104036 1 -9.465165251695765 -0.018434833227298542 0.8719091772543835
-7.682951955540945 1 -3.784086411104036 -0.6298048032223702 -1.6804917747830277
-8.068822143998775 1 -7.682951955540945 0.3994394061296323 -0.5382489016869288
-8.558608055778492 1 -8.068822143998775 -0.34662848289604303 -1.0915556882219897
-10.905266364277344 1 -8.558608055778492 0.13174261149628444 -2.373156801968529
-3.7593874757578343 1 -10.905266364277344 1.2873446803519781 1.3193356146665325
-0.4071004208759922 1 -3.7593874757578343 0.6312912597626849 0.2928588585051935
-0.21264428099357685 1 -0.4071004208759922 -1.2337261440146907 0.6677002797481758
-0.2566792446386543 1 -0.21264428099357685 -0.8585845030636355 0.21112095190111557
1.4652422469376796 1 -0.2566792446386543 0.2582660780400912 0.3254542082853489
-0.03370549493934421 1 1.4652422469376796 -1.4599892950591262 0.3142665708225735
-3.6655187094551787 1 -0.03370549493934421 0.5095274347206296 -1.2436129408018743
-3.67007844594898 1 -3.6655187094551787 -1.2459007156231243 0.8724432818783148
-4.269483828240617 1 -3.67007844594898 -1.3316534960103243 0.402333915295087
-9.072321453339633 1 -4.269483828240617 -1.360732996599522 -0.918403552104298
-6.298475056265913 1 -9.072321453339633 0.5429237557639659 0.564993224895932
-8.851275959789886 1 -6.298475056265913 -2.63399370777994 -0.8745409882369648
-7.240409805869097 1 -8.851275959789886 0.1499014406502077 -0.487019467609227
-8.742193488440103 1 -7.240409805869097 -1.6587759684101517 -0.5287577864433531
-8.085128207595446 1 -8.742193488440103 -2.748600587280482 0.6442930345934977
-4.595734505262792 1 -8.085128207595446 -0.4180662233306449 0.909924517665989
-8.876081007098774 1 -4.595734505262792 -1.4313262030289144 -1.3628300743751958
-6.097510119608872 1 -8.876081007098774 1.1540597669111703 0.8739856083349014
-8.187395934761742 1 -6.097510119608872 -0.4855284875097715 -0.8548933573000406
-4.630296021087888 1 -8.187395934761742 0.7754380459705584 0.7550975795526141
-6.678197570842665 1 -4.630296021087888 0.7560596380052317 -0.8436185092902743
-8.454654098952108 1 -6.678197570842665 -1.626729284162485 0.27766300810348893
-8.87315711823648 1 -8.454654098952108 -0.944684415100926 -0.9030356944859604
-8.299137304666294 1 -8.87315711823648 0.658322671059814 -1.513350928595663
-7.66583122908761 1 -8.299137304666294 -0.4489512342884181 -0.6593759619410697
-5.544754187110598 1 -7.66583122908761 1.1851174294240252 -0.7403475629601508
-0.2346062802414116 1 -5.544754187110598 1.9716204287413468 1.1351529072038815
-2.7080211703552033 1 -0.2346062802414116 -0.0740194597978335 -0.8957439911719416
-4.405304542289478 1 -2.7080211703552033 -0.20212227601885754 0.02136996876872505
-10.874421844205603 1 -4.405304542289478 -1.458002434697322 -1.5544394018554584
-7.980300798148038 1 -10.874421844205603 1.797342002330958 0.193735930526397
-6.092985977023801 1 -7.980300798148038 -0.9064866353733989 0.9206450790295183
-5.429540806278794 1 -6.092985977023801 -0.9702203522809195 0.16364495372354845
-2.8135611982312048 1 -5.429540806278794 -0.7689287953327062 0.2606593892993496
-5.233993628762067 1 -2.8135611982312048 -0.3959933139142994 -2.620564252102542
-4.636500469478656 1 -5.233993628762067 0.4751826349484905 -1.0562153109753674
-3.951599322839157 1 -4.636500469478656 0.6386323305899096 -0.0903512992302431
-4.5338888862750215 1 -3.951599322839157 -0.3987477530370317 0.27865272355818926
-3.27448245549044 1 -4.5338888862750215 -0.0803466446475703 -0.06596847546469198
-2.116669048507199 1 -3.27448245549044 1.0018399414103412 -0.1569479584427068
-5.632636058340474 1 -2.116669048507199 -0.7048446599977012 -1.8390689017857673
-6.612580447433536 1 -5.632636058340474 -1.4340505462257125 -0.5674519382746356
-6.047621290327909 1 -6.612580447433536 0.4347509475695458 -0.9192186367107573
-12.316195547709809 1 -6.047621290327909 -0.09220577556331351 -3.8819978594268876
-9.790653346165218 1 -12.316195547709809 -0.46408289171823325 0.8665458026221579
-7.081636830140645 1 -9.790653346165218 2.187832361106393 0.432306709021104
-7.798466676804453 1 -7.081636830140645 0.5791414166174949 -0.3229959302497174
-8.48368570601047 1 -7.798466676804453 -0.9147242711971281 0.3402161710448687
-6.844741808358232 1 -8.48368570601047 -0.1550598509968508 -0.29961787965293785
-1.9143881179353244 1 -6.844741808358232 0.060717820312243403 1.9136035721789713
-6.350825197915615 1 -1.9143881179353244 -0.27085887966353506 -1.6190985435203415
-5.386740290175477 1 -6.350825197915615 0.11104289827811374 0.5169712744781768
-8.201462522665064 1 -5.386740290175477 0.6427956685597893 -1.2825811121125588
-6.86037895816535 1 -8.201462522665064 -1.0932960849422242 1.0840840119878734
-7.681177025769711 1 -6.86037895816535 0.0867583435648074 -0.7944197379913668
-8.700601165824938 1 -7.681177025769711 -0.07077890859801883 -0.025668064894330093
-6.737037436370262 1 -8.700601165824938 1.2497099131508578 -0.011462506736218826
-3.6689503491552253 1 -6.737037436370262 0.1512033860208509 1.4678868411216563
-1.249607364746875 1 -3.6689503491552253 0.35515785025036173 1.315845372889509
-1.9479972265280567 1 -1.249607364746875 -0.9253434974479612 0.27236940715678176
0.06459657520168782 1 -1.9479972265280567 -0.233103327838231 0.44237536440754566
1.6736047640968876 1 0.06459657520168782 1.3606109850208474 -1.1966483101519632
3.3481475962652025 1 1.6736047640968876 0.7311973736313007 0.48457993854995624
4.395242135786573 1 3.3481475962652025 0.4787377009574211 1.4147590837932418
5.718254592907931 1 4.395242135786573 0.6051343777576946 1.0451679003902126
7.701764680294246 1 5.718254592907931 1.276972611856289 -0.1978660512585745
8.761139787455583 1 7.701764680294246 -1.3961992590989196 0.32892107972067225
8.130728492876539 1 8.761139787455583 0.11709983671299977 -1.7983067508193347
12.0528015874146 1 8.130728492876539 0.6266845348314155 1.44050014454746
11.188183563801353 1 12.0528015874146 0.3133823643278484 -0.5232908450257276
12.92107497611711 1 11.188183563801353 0.9862522782876494 0.43490251042216804
12.271768495692909 1 12.92107497611711 0.5066085599761962 0.07774415899993356
14.189399733550822 1 12.271768495692909 0.8718155606585614 0.14324697267944667
15.088143644678663 1 14.189399733550822 0.6995645399732705 -0.43422769970595093
17.365142073656695 1 15.088143644678663 2.0096551932105817 0.24387704638876334
15.474852839205559 1 17.365142073656695 0.15269868152330113 -0.12389276233418343
14.228935730675236 1 15.474852839205559 -0.7879019375423509 0.42889110309176043
17.394434630323023 1 14.228935730675236 0.9986772266084378 1.189248289168407
16.54384322429009 1 17.394434630323023 -0.4953901743665539 0.2059465326047665
18.353069936157006 1 16.54384322429009 0.3638388194911837 1.0218854109275881
16.07119383937772 1 18.353069936157006 0.6753443406355725 -1.1990648633034413
20.977942062323052 1 16.07119383937772 0.6008899714463747 2.3805130457880845
23.626966845968067 1 20.977942062323052 -1.5021368491168559 2.1896086828053907
27.902989083231745 1 23.626966845968067 -0.3727356407152467 2.1299921566412503
24.021974044852822 1 27.902989083231745 -1.2766407160812419 -0.3876601960862665
22.470178938207653 1 24.021974044852822 0.6451054034379425 -0.23211025519653547
22.71778230013325 1 22.470178938207653 1.9058844942684128 0.20626950528981075
18.975581322758284 1 22.71778230013325 -1.5881288112102452 1.107610369079468
19.971416875068105 1 18.975581322758284 0.29738396177383514 0.8667513992731141
23.11402529567158 1 19.971416875068105 0.3028824231221631 1.6776251628069427
17.780386660161668 1 23.11402529567158 -0.10176910274960058 -1.4298441320561919
]
coeff_vec = data_h1[:,2:end]\data_h1[:,1]
res_vec = data_h1[:,1] - data_h1[:,2:end]*coeff_vec
t = BreuschGodfreyTest(data_h1[:,2:end],res_vec,4)
@test t.n == 100
@test t.lag == 4
@test t.BG ≈ 31.39810637185552
@test pvalue(t) ≈ 2.5390992557054064e-6
@test default_tail(t) == :right
show(IOBuffer(), t)
t = BreuschGodfreyTest(data_h1[:,2:end],res_vec,2,false)
@test t.n == 98
@test t.lag == 2
@test t.BG ≈ 27.71445552148237
@test pvalue(t) ≈ 9.591409846298036e-7
show(IOBuffer(), t)
coeff_vec = data_h1[:,3:end]\data_h1[:,1] # no constant
res_vec = data_h1[:,1] - data_h1[:,3:end]*coeff_vec
t = BreuschGodfreyTest(data_h1[:,3:end],res_vec,10)
@test t.n == 100
@test t.lag == 10
@test t.BG ≈ 34.562955523063515
@test pvalue(t) ≈ 0.0001482189344859451
show(IOBuffer(), t)
# data simulated under H_0
data_h0 = [
-2.6393758379263925 1 -0.22997735515901174 1.4250842322231618 -2.0224314101114222
-3.8148641358053834 1 -2.6393758379263925 -0.3986195023723653 -0.725318617093708
-4.677326144975626 1 -3.8148641358053834 0.865359034508392 -0.9716762048860438
-8.864079316218326 1 -4.677326144975626 -1.5248868209889381 -1.8178664695259354
-3.460887006123175 1 -8.864079316218326 -0.018434833227298542 0.8719091772543835
-8.998633967744288 1 -3.460887006123175 -0.6298048032223702 -1.6804917747830277
-7.665975510821412 1 -8.998633967744288 0.3994394061296323 -0.5382489016869288
-8.56702198923559 1 -7.665975510821412 -0.34662848289604303 -1.0915556882219897
-11.214833972884769 1 -8.56702198923559 0.13174261149628444 -2.373156801968529
-4.446594124802662 1 -11.214833972884769 1.2873446803519781 1.3193356146665325
-1.6998765285430706 1 -4.446594124802662 0.6312912597626849 0.2928588585051935
-1.6972964464315492 1 -1.6998765285430706 -1.2337261440146907 0.6677002797481758
-1.2272304633377735 1 -1.6972964464315492 -0.8585845030636355 0.21112095190111557
0.30586906328114577 1 -1.2272304633377735 0.2582660780400912 0.3254542082853489
-1.041825499276659 1 0.30586906328114577 -1.4599892950591262 0.3142665708225735
-4.0872691626960425 1 -1.041825499276659 0.5095274347206296 -1.2436129408018743
-2.8079705764801184 1 -4.0872691626960425 -1.2459007156231243 0.8724432818783148
-3.5781229211748493 1 -2.8079705764801184 -1.3316534960103243 0.402333915295087
-7.919753510576073 1 -3.5781229211748493 -1.360732996599522 -0.918403552104298
-4.050334580805227 1 -7.919753510576073 0.5429237557639659 0.564993224895932
-7.385113567278499 1 -4.050334580805227 -2.63399370777994 -0.8745409882369648
-6.389907039488093 1 -7.385113567278499 0.1499014406502077 -0.487019467609227
-8.362337662947732 1 -6.389907039488093 -1.6587759684101517 -0.5287577864433531
-7.698895749951619 1 -8.362337662947732 -2.748600587280482 0.6442930345934977
-5.183985240958993 1 -7.698895749951619 -0.4180662233306449 0.909924517665989
-9.354302625888938 1 -5.183985240958993 -1.4313262030289144 -1.3628300743751958
-6.0060845548714905 1 -9.354302625888938 1.1540597669111703 0.8739856083349014
-7.251074336523842 1 -6.0060845548714905 -0.4855284875097715 -0.8548933573000406
-3.750382446404393 1 -7.251074336523842 0.7754380459705584 0.7550975795526141
-5.770679903165536 1 -3.750382446404393 0.7560596380052317 -0.8436185092902743
-6.1571290241435745 1 -5.770679903165536 -1.626729284162485 0.27766300810348893
-6.758646960354187 1 -6.1571290241435745 -0.944684415100926 -0.9030356944859604
-7.251801456499875 1 -6.758646960354187 0.658322671059814 -1.513350928595663
-7.120615787554741 1 -7.251801456499875 -0.4489512342884181 -0.6593759619410697
-5.588509539557388 1 -7.120615787554741 1.1851174294240252 -0.7403475629601508
-0.5390053133408673 1 -5.588509539557388 1.9716204287413468 1.1351529072038815
-2.5300623604990955 1 -0.5390053133408673 -0.0740194597978335 -0.8957439911719416
-3.7798892423452592 1 -2.5300623604990955 -0.20212227601885754 0.02136996876872505
-9.04942964730818 1 -3.7798892423452592 -1.458002434697322 -1.5544394018554584
-5.4354744982455365 1 -9.04942964730818 1.797342002330958 0.193735930526397
-3.5679532514488668 1 -5.4354744982455365 -0.9064866353733989 0.9206450790295183
-3.2063386742141633 1 -3.5679532514488668 -0.9702203522809195 0.16364495372354845
-1.051934916538913 1 -3.2063386742141633 -0.7689287953327062 0.2606593892993496
-4.863145941477073 1 -1.051934916538913 -0.3959933139142994 -2.620564252102542
-5.212678725939295 1 -4.863145941477073 0.4751826349484905 -1.0562153109753674
-4.614614610635563 1 -5.212678725939295 0.6386323305899096 -0.0903512992302431
-4.424400676415464 1 -4.614614610635563 -0.3987477530370317 0.27865272355818926
-2.5809040973960595 1 -4.424400676415464 -0.0803466446475703 -0.06596847546469198
-2.283035131341285 1 -2.5809040973960595 1.0018399414103412 -0.1569479584427068
-4.838392113346874 1 -2.283035131341285 -0.7048446599977012 -1.8390689017857673
-6.765964527239637 1 -4.838392113346874 -1.4340505462257125 -0.5674519382746356
-6.146713996908273 1 -6.765964527239637 0.4347509475695458 -0.9192186367107573
-12.93695213339396 1 -6.146713996908273 -0.09220577556331351 -3.8819978594268876
-10.328147452628222 1 -12.93695213339396 -0.46408289171823325 0.8665458026221579
-7.312623658528083 1 -10.328147452628222 2.187832361106393 0.432306709021104
-6.601242580580354 1 -7.312623658528083 0.5791414166174949 -0.3229959302497174
-7.007982630266133 1 -6.601242580580354 -0.9147242711971281 0.3402161710448687
-4.711869773110432 1 -7.007982630266133 -0.1550598509968508 -0.29961787965293785
-1.3112388084541342 1 -4.711869773110432 0.060717820312243403 1.9136035721789713
-4.778553640411378 1 -1.3112388084541342 -0.27085887966353506 -1.6190985435203415
-3.597048209305651 1 -4.778553640411378 0.11104289827811374 0.5169712744781768
-5.91625887800437 1 -3.597048209305651 0.6427956685597893 -1.2825811121125588
-3.8341200305975844 1 -5.91625887800437 -1.0932960849422242 1.0840840119878734
-5.05155415725161 1 -3.8341200305975844 0.0867583435648074 -0.7944197379913668
-5.902658917952474 1 -5.05155415725161 -0.07077890859801883 -0.025668064894330093
-3.0148968638612246 1 -5.902658917952474 1.2497099131508578 -0.011462506736218826
-0.5435623298882797 1 -3.0148968638612246 0.1512033860208509 1.4678868411216563
2.576402881110434 1 -0.5435623298882797 0.35515785025036173 1.315845372889509
1.840001826392218 1 2.576402881110434 -0.9253434974479612 0.27236940715678176
3.7629568916181633 1 1.840001826392218 -0.233103327838231 0.44237536440754566
4.300779090152549 1 3.7629568916181633 1.3606109850208474 -1.1966483101519632
4.890327561532721 1 4.300779090152549 0.7311973736313007 0.48457993854995624
6.712083346070772 1 4.890327561532721 0.4787377009574211 1.4147590837932418
8.918662089794555 1 6.712083346070772 0.6051343777576946 1.0451679003902126
10.889228410523366 1 8.918662089794555 1.276972611856289 -0.1978660512585745
10.771798896063286 1 10.889228410523366 -1.3961992590989196 0.32892107972067225
8.897958495974741 1 10.771798896063286 0.11709983671299977 -1.7983067508193347
11.231705359232382 1 8.897958495974741 0.6266845348314155 1.44050014454746
11.085832271063609 1 11.231705359232382 0.3133823643278484 -0.5232908450257276
12.02548460222439 1 11.085832271063609 0.9862522782876494 0.43490251042216804
11.819287696755126 1 12.02548460222439 0.5066085599761962 0.07774415899993356
13.96911393915951 1 11.819287696755126 0.8718155606585614 0.14324697267944667
13.840528753974972 1 13.96911393915951 0.6995645399732705 -0.43422769970595093
15.684175759900603 1 13.840528753974972 2.0096551932105817 0.24387704638876334
14.08213146714004 1 15.684175759900603 0.15269868152330113 -0.12389276233418343
13.303842222767337 1 14.08213146714004 -0.7879019375423509 0.42889110309176043
16.40951365835989 1 13.303842222767337 0.9986772266084378 1.189248289168407
15.406011864201629 1 16.40951365835989 -0.4953901743665539 0.2059465326047665
17.105004411081747 1 15.406011864201629 0.3638388194911837 1.0218854109275881
14.766483437171006 1 17.105004411081747 0.6753443406355725 -1.1990648633034413
19.48191551080787 1 14.766483437171006 0.6008899714463747 2.3805130457880845
22.133552497574904 1 19.48191551080787 -1.5021368491168559 2.1896086828053907
25.492693395853813 1 22.133552497574904 -0.3727356407152467 2.1299921566412503
20.970851703684147 1 25.492693395853813 -1.2766407160812419 -0.3876601960862665
19.83986700193583 1 20.970851703684147 0.6451054034379425 -0.23211025519653547
20.241165411067264 1 19.83986700193583 1.9058844942684128 0.20626950528981075
17.31664682866259 1 20.241165411067264 -1.5881288112102452 1.107610369079468
19.675283574585194 1 17.31664682866259 0.29738396177383514 0.8667513992731141
21.79754881195714 1 19.675283574585194 0.3028824231221631 1.6776251628069427
16.68579877178968 1 21.79754881195714 -0.10176910274960058 -1.4298441320561919
]
coeff_vec = data_h0[:,2:end]\data_h0[:,1]
res_vec = data_h0[:,1] - data_h0[:,2:end]*coeff_vec
t = BreuschGodfreyTest(data_h0[:,2:end],res_vec,4)
@test t.n == 100
@test t.lag == 4
@test t.BG ≈ 1.9781996740849623
@test pvalue(t) ≈ 0.7397687483602012
show(IOBuffer(), t)
t = BreuschGodfreyTest(data_h0[:,2:end],res_vec,2,false)
@test t.n == 98
@test t.lag == 2
@test t.BG ≈ 0.03720525092311448
@test pvalue(t) ≈ 0.9815693354165801
show(IOBuffer(), t)
coeff_vec = data_h0[:,3:end]\data_h0[:,1] # no constant
res_vec = data_h0[:,1] - data_h0[:,3:end]*coeff_vec
t = BreuschGodfreyTest(data_h0[:,3:end],res_vec,10)
@test t.n == 100
@test t.lag == 10
@test t.BG ≈ 11.156984521656943
@test pvalue(t) ≈ 0.3454190353708124
show(IOBuffer(), t)
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 1478 | using HypothesisTests, Test
using HypothesisTests: default_tail
@testset "Circular" begin
@testset "Fisher, 1995 example 4.11" begin
@test abs(pvalue(RayleighTest(0.2370, 60)) - 0.034) <= 0.001
end
@testset "Fisher, 1995 example 4.12" begin
t = RayleighTest(
[2, 9, 18, 24, 30, 35, 35, 39, 39, 44,
44, 49, 56, 70, 76, 76, 81, 86, 91, 112,
121, 127, 133, 134, 138, 147, 152, 157, 166, 171,
177, 187, 206, 210, 211, 215, 238, 246, 269, 270,
285, 292, 305, 315, 325, 328, 329, 343, 354, 359]
*pi/180)
@test abs(pvalue(t) - 0.20) <= 0.01
@test default_tail(t) == :both
show(IOBuffer(), t)
end
wind_direction_6am =
[356, 97, 211, 232, 343, 292, 157, 302, 335, 302,
324, 85, 324, 340, 157, 238, 254, 146, 232, 122,
329]*pi/180
wind_direction_12pm =
[119, 162, 221, 259, 270, 29, 97, 292, 40, 313,
94, 45, 47, 108, 221, 270, 119, 248, 270, 45,
23]*pi/180
@testset "Fisher, 1995 example 6.8" begin
t = FisherTLinearAssociation(wind_direction_6am, wind_direction_12pm)
@test abs(t.rho_t- 0.191) < 0.001
@test abs(pvalue(t) - 0.01) < 0.01
@test default_tail(t) == :both
show(IOBuffer(), t)
end
@testset "Jammaladak, 2001 example 8.1" begin
t = JammalamadakaCircularCorrelation(wind_direction_6am, wind_direction_12pm)
@test abs(t.r - 0.2704648) < 1e-7
@test abs(pvalue(t) - 0.2247383) < 1e-7
@test default_tail(t) == :both
show(IOBuffer(), t)
end
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 985 | using HypothesisTests, Test
@testset "Clark-West tests" begin
e1 = [ 9.78432, 12.73500, 8.67224, 2.62740, 5.60947,
7.57809, 4.53774, 2.51084, 0.49290, 3.48394,
9.46152, 9.41220, 2.36289, 0.34495, 3.33599,
5.31357, 4.28219, -3.74471, -5.73575, -3.71781 ]
e2 = [ 2.82053, 4.39754, -1.78647, -4.30662, 3.69526,
3.37259, -1.09002, -0.50984, -0.78973, 3.89077,
7.52849, 2.82373, -3.95838, -0.13606, 4.54444,
4.18216, 1.67993, -5.38077, -0.85686, 2.70479 ]
atol = 1e-4
cw_test = ClarkWestTest(e1, e2)
@test pvalue(cw_test) ≈ 0.0002 atol=atol
@test pvalue(cw_test, tail=:right) ≈ 0.0001 atol=atol
cw_test = ClarkWestTest(e1, e2, 3)
@test pvalue(cw_test) ≈ 0.0157 atol=atol
@test pvalue(cw_test, tail=:right) ≈ 0.0079 atol=atol
show(IOBuffer(), cw_test)
@test_throws DimensionMismatch ClarkWestTest(rand(3), rand(4))
end | HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 385 | using HypothesisTests, Test
mutable struct TestTest <: HypothesisTests.HypothesisTest end
@testset "Common" begin
@test_throws DimensionMismatch HypothesisTests.check_same_length([1], [])
@test_throws ArgumentError HypothesisTests.check_level(1.0)
result = HypothesisTests.population_param_of_interest(TestTest())
@test result[1] == "not implemented yet"
@test isnan(result[2])
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 1727 | using HypothesisTests
using Test
using DelimitedFiles
@testset "Correlation" begin
# Columns are line number, calcium, iron
nutrient = readdlm(joinpath(@__DIR__, "data", "nutrient.txt"))[:, 1:3]
w = CorrelationTest(nutrient[:,2], nutrient[:,3])
let out = sprint(show, w)
@test occursin("reject h_0", out) && !occursin("fail to", out)
end
let ci = confint(w)
@test first(ci) ≈ 0.3327138 atol=1e-6
@test last(ci) ≈ 0.4546639 atol=1e-6
end
@test nobs(w) == 737
@test dof(w) == 735
@test pvalue(w) < 1e-25
x = CorrelationTest(nutrient[:,1], nutrient[:,2])
@test occursin("fail to reject", sprint(show, x))
let ci = confint(x)
@test first(ci) ≈ -0.1105478 atol=1e-6
@test last(ci) ≈ 0.0336730 atol=1e-6
end
@test pvalue(x) ≈ 0.2948405 atol=1e-6
end
@testset "Partial correlation" begin
# Columns are information, similarities, arithmetic, picture completion
wechsler = readdlm(joinpath(@__DIR__, "data", "wechsler.txt"))[:,2:end]
w = CorrelationTest(wechsler[:,1], wechsler[:,2], wechsler[:,3:4])
let out = sprint(show, w)
@test occursin("reject h_0", out) && !occursin("fail to", out)
end
let ci = confint(w)
@test first(ci) ≈ 0.4963917 atol=1e-6
@test last(ci) ≈ 0.8447292 atol=1e-6
end
@test nobs(w) == 37
@test dof(w) == 33
@test pvalue(w) < 0.00001
X = [ 2 1 0
4 2 0
15 3 1
20 4 1]
x = CorrelationTest(view(X,:,1), view(X,:,2), view(X,:,3))
@test occursin("fail to reject", sprint(show, x))
@test confint(x) == (-1.0, 1.0)
@test nobs(x) == 4
@test dof(x) == 1
@test pvalue(x) ≈ 0.25776212 atol=1e-6
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 1495 | using HypothesisTests, Test
using HypothesisTests: default_tail
@testset "Diebold-Mariano tests" begin
e_ets = [0.002241270, -0.000661906, -1.200002613, -4.000218178, 3.799373533,
3.401005111, -1.199692125, -0.800490048, -1.200048999, 3.399847229,
7.000708948, 2.200989241, -4.800165569, -1.201043375, 3.400167556,
3.000709085, 0.400267950, -6.800169207, -2.401259050, 1.200112198]
e_arima = [0.1209998, 8.0622269, -0.9189429, -1.7952436, 5.3431277, 2.0459823,
-0.6073261, 0.5516816, -0.7633238, 4.1229472, 5.8785333, 1.2828331,
-3.4854233, 1.1971370, 3.1709314, 2.3408457, 0.4962286, -5.9841362,
0.1537114, 0.4207951]
atol = 1e-3
dm_test = DieboldMarianoTest(e_ets, e_arima)
@test pvalue(dm_test) ≈ 0.8871 atol=atol
@test pvalue(dm_test, tail=:right) ≈ 0.5565 atol=atol
@test pvalue(dm_test, tail=:left) ≈ 0.4435 atol=atol
dm_test = DieboldMarianoTest(e_ets, e_arima; lookahead=10)
@test pvalue(dm_test) ≈ 0.9362 atol=atol
@test pvalue(dm_test, tail=:right) ≈ 0.5319 atol=atol
@test pvalue(dm_test, tail=:left) ≈ 0.4681 atol=atol
dm_test = DieboldMarianoTest(e_ets, e_arima; loss=abs)
@test pvalue(dm_test) ≈ 0.7818 atol=atol
@test pvalue(dm_test, tail=:right) ≈ 0.3909 atol=atol
@test pvalue(dm_test, tail=:left) ≈ 0.6091 atol=atol
show(IOBuffer(), dm_test)
@test_throws DimensionMismatch DieboldMarianoTest(rand(3), rand(4))
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 11557 | using HypothesisTests, Test
using HypothesisTests: default_tail
@testset "Durbin-Watson" begin
x_sim = [
0.2972879845354616, 0.3823959677906078, -0.5976344767282311, -0.01044524463737564,
-0.839026854388764, 0.31111133849833383, 2.2950878238373105, -2.2670863488005306,
0.5299655761667461, 0.43142152642291204, 0.5837082875687786, 0.9632716050381906,
0.45879095505371686, -0.5223367574215084, 0.40839583832475224, -0.050451229933665284,
-0.6936536438038856, -1.7738332534080556, 0.12076596493743928, -0.7576330377205277,
-1.7297561813906863, 0.7959486220046159, 0.6700619812560624, 0.5508523775007609,
-0.06337459242956062, 1.3369427822509223, -0.07314863333773934, -0.7454643166407556,
-1.2200551285346526, -0.05317733752769253, -0.1651363578028337, -2.115370248427311,
-0.0667679865065892, 1.2224618484680618, 0.5676954597384435, 0.7634989283233873,
0.37859887985335006, -0.645597056636597, -0.6646462443910314, -1.8030263242108941,
-1.2890476038497443, -0.3352700795181175, 0.07046760136115796, 0.34179376737982303,
1.7351656660543822, 1.299915964310192, 0.20636408140261675, -1.0088599555376034,
-0.8500556703153979, 1.1294094358843267, -1.348533456491827, 1.2402909004290597,
-0.055647093207324264, 0.7593902139454598, -0.030266886646762546,
-0.36108266775609366, -2.0073032025325626, -0.5688591273466379, -1.1496275243969976,
1.880622174631185, -1.4706245413873802, -0.5352109701657319, -0.9635439598255011,
-1.3851080676759138, 0.13430023756127, -0.6161166660088192, -1.719989356319742,
0.32076927998741056, -1.4473728978815112, -0.4922711880695664, -0.4130873839831828,
1.001928512455953, 1.174681325975111, -1.326970345062047, -1.593214868044067,
-0.43870997575879667, 1.225797497997867, 1.4890902780696147, 2.1594331871008534,
-0.9094790180375028, 1.1478203006125018, -0.5050721965223731, -0.2670670352181297,
1.499082393930729, 0.7973041601753904, -0.17164044330709693, -0.46907960993009634,
0.21762402120860017, 0.35914640760234967, 0.3200247157080577, 0.2592163280556861,
0.459695985041628, 0.20998636004214272, 1.5231753911772645, 1.2597946036121963,
-0.16528310111426064, 0.15619449488763584, -0.8143152943766987, -1.7098682060045913,
1.4999378761140325, -0.1289156385300165
]
y_p1_sim = [ # simulated with 0.9 error correlation
-2.201341073669063, -4.307803337512109, -0.09857411277132777, -1.541105730821739,
-0.027145670802778188, -2.686792369309708, 1.0325029592455204, -4.546430983473314,
-0.05574145987936152, -1.0484672373273398, -0.0727407422074402, 2.928588488596894,
2.431548457465139, -1.6824694270670264, -1.1425390408702634, -0.05703441237172502,
-3.7519965683524736, -2.093296650507312, -3.017127214946707, -5.023733247576096,
-6.99222421705045, -1.5297654016216695, -7.079699435755043, -3.653535679506873,
-7.199787077141922, -8.99013125698203, -7.629907186756253, -9.932939819777665,
-5.792469964809508, -6.07806145541466, -3.499680333201193, -4.202234791648873,
-5.778858317935674, -4.24373192427373, -2.085017620018707, -3.014335715988717,
-0.1471613303199173, 1.8578539252085335, -0.23403766619329314, -1.6531056420525947,
-3.788213810884947, 2.4223665300397057, -0.7782405228814611, -1.446646277164314,
-0.439089647647926, -0.6568645300510487, -0.1479791111026496, -0.37816853906616543,
-1.5546979990960859, 0.7934110284198954, 0.5250598397936805, 0.715179599821307,
-2.6619881622077957, 0.6738306385872681, -0.5829579084083533, -1.6036851727710095,
1.7676938677132092, 2.1178719441137925, -0.9822453774326113, 2.644398248982846,
-0.4222365679492326, -0.08802559167948826, 0.004781669065527239, 0.772037726995288,
-0.589376818822907, -0.009942853176962085, -1.2940732511754347, 3.3672146186572194,
0.5720957571272467, 1.9994832545202734, -0.2408374457735749, 1.6235559488713027,
4.765160983845028, 2.2423062077647176, 2.018531795146693, 3.6912668457665974,
7.052100921101374, 2.891089489994272, 5.012011484448072, 2.9058206661961257,
4.74433866373019, 4.522254758963782, 4.483117294212917, 7.161931707757217,
6.608363617973065, 8.54801536915603, 5.975318310443797, 4.404349461089431,
6.93366550050009, 4.447502046635322, 5.24747472180249, 6.072362283142831,
5.9553560646539605, 3.2489334527924516, 3.5194287418405414, -0.24943173222751147,
2.619648178234713, 4.7339671460783475, -1.5079676768571109, 3.805732205983656,
2.384418539000519
]
# regression
n = length(y_p1_sim)
X = [ones(n, 1) x_sim]
b = X \ y_p1_sim
resid = y_p1_sim - X * b
t = DurbinWatsonTest(X, resid) # asymptotic p-values
@test t.n == 101
@test t.DW ≈ 0.40499929824035813
@test t.p_compute == :ndep
@test pvalue(t) ≈ 5.158964292454297e-16
@test pvalue(t, tail = :left) ≈ 0.9999999999999998
@test pvalue(t, tail = :right) ≈ 2.5794821462271485e-16
@test default_tail(t) == :both
show(IOBuffer(), t)
t = DurbinWatsonTest(X, resid; p_compute = :exact) # exact p-values
@test t.n == 101
@test t.DW ≈ 0.40499929824035813
@test t.p_compute == :exact
@test pvalue(t) ≈ 3.6994415420651786e-24
@test pvalue(t, tail = :left) ≈ 1.00
@test pvalue(t, tail = :right) ≈ 1.8497207710325893e-24
@test default_tail(t) == :both
show(IOBuffer(), t)
y_m1_sim = [ # simulated with -0.9 error correlation
-1.3910099248613454, -1.5236862020915085, 4.097936666328973, -1.8511224691327444,
4.089543164538723, -4.495552189456728, 7.111817193652225, -5.978343737983263,
6.002151715790337, -2.927307499513737, 5.458083999297893, 1.169591175532601,
4.594296073450898, -4.243581518221936, 2.8299935873046445, -0.5860831006926581,
-0.9991240800029624, 0.10615464305915895, -1.7044498818807359, -0.9995564116656306,
-3.5319792844484295, 4.179137229344947, -5.254163800722545, 5.711864125579977,
-5.990925805935972, 1.5816393282765917, -1.7032484999745658, -0.617286443723021,
1.5845107369357039, -0.6096898012505031, 3.3496253127300184, -1.1686422345229122,
-1.5918280931408098, 1.1415907584907719, 3.006908809246799, 0.16279484914286346,
4.785411299104295, 2.2981183100018683, 0.212429391905895, -1.163256462733893,
-3.062755396990661, 5.4435487477430335, -3.425834811822814, 2.6321872628475,
-0.837244387584767, 4.031062468957392, 0.24230351459424804, 2.563723587223389,
-2.388107267343436, 3.894089606181092, -0.005377707121046793, 1.4234173532692622,
-1.8229221872128627, 3.8287942020863945, -0.6858661742876399, 1.1178057096772471,
2.5196873774438067, 0.38418130890537316, -1.4155851844623182, 2.8866125226188566,
-0.4941340798489638, -0.0011241065963577546, 0.43409066782110806, 0.6425507130120189,
-1.3986687332385075, 1.8531056183925938, -2.1057647202687244, 5.003685916104994,
-2.3348521765098624, 3.0528589106154387, -3.234749402470284, 4.142408525714717,
2.75967828902951, 1.8334770219703578, -0.9220644601902186, 2.498387343549808,
3.580976074314626, -0.37369360814264785, 4.713559024928862, 0.05056665062182075,
3.374560008823081, 1.6454107505584676, 1.5983424828203905, 3.9197926529917604,
2.7024280115597086, 4.662666562844124, -0.805868878530069, 0.9823593012348448,
2.8591273650074895, -0.12192899074208174, 2.8388011459132807, 1.716213267783003,
2.7887106550396696, -1.3611491982524841, 3.6582922884633065, -3.3126745262864654,
5.030080939945388, 1.0915507567022984, -2.9861092295546072, 3.7140067907674967,
0.6518327501226435
]
# regression
n = length(y_m1_sim)
X = [ones(n, 1) x_sim]
b = X \ y_m1_sim
resid = y_m1_sim - X * b
t = DurbinWatsonTest(X, resid) # asymptotic p-values
@test t.n == 101
@test t.DW ≈ 3.1196941838878423
@test t.p_compute == :ndep
@test pvalue(t) ≈ 1.3691928363065143e-8
@test pvalue(t, tail = :left) ≈ 6.8459641815325715e-9
@test pvalue(t, tail = :right) ≈ 0.9999999931540359
@test default_tail(t) == :both
show(IOBuffer(), t)
t = DurbinWatsonTest(X, resid; p_compute = :exact) # exact p-values
@test t.n == 101
@test t.DW ≈ 3.1196941838878423
@test t.p_compute == :exact
@test pvalue(t) ≈ 6.608698033261362e-10
@test pvalue(t, tail = :left) ≈ 3.304349016630681e-10
@test pvalue(t, tail = :right) ≈ 0.9999999996695651
@test default_tail(t) == :both
show(IOBuffer(), t)
y_0_sim = [ # simulated with 0 error correlation
-1.7961754992652044, -2.5510957528383353, 3.2525339877180928, 0.19231575061789374,
1.89169121462802, -1.7386623034795425, 3.258218157382714, -2.526695955245271,
2.3288443884260106, 0.7381645606308258, 1.8471935105613477, 4.537960965742147,
2.7213734745790865, -1.9897890454508897, -0.30877316780251873, 1.466080926146517,
-2.613632233922138, 0.24522161603320347, -1.3710354663088093, -2.4209400297411765,
-3.4512221745897302, 2.881796133532548, -3.597925434303817, 1.8506552588011762,
-2.380926529249864, -3.160258392310042, 0.09071892000097082, -2.6081167226985844,
2.088064405287688, -0.024234312547235515, 2.385739734138283, 0.3967490275831522,
-2.3202265548315593, 0.33309301826620985, 2.8843408018580714, 0.8655964597465511,
3.7488337387014004, 4.297643800846097, 0.1873148360133016, -1.207270876248609,
-3.205052473244388, 4.259413925143798, -0.7425056693856398, -0.598646937182016,
1.1973080753889698, 1.507929336481593, 2.1567293512995978, 1.2684047056422159,
-0.6475511763894612, 1.968716146589186, 1.6551464263288553, 0.8306015804336573,
-1.9237481856587493, 2.628892109084551, 0.7853215622266103, -0.28924845119256015,
3.3683615196802235, 1.5894237058883518, -1.9790760667912535, 2.570502472637483,
-0.34918890076289344, -0.07692872949280205, 0.2585418367307264, 0.9004832694436649,
-1.0522919323231783, 0.5574000211207956, -0.8615471735157796, 3.820189106289126,
-0.14496612583980942, 1.218044512431157, -1.2637743788791052, 1.5357218567794906,
4.895903296016806, 1.1354244022005544, 0.36426053387077517, 1.7715587797565924,
4.779742721710445, -0.30330824012822477, 3.393632860526853, 1.3438900516253283,
2.7745850292681986, 2.4674323600529258, 1.7461500847342628, 4.242713515247852,
3.1964332401219315, 4.847669943114067, 0.8363177531165059, -0.35817985387610163,
3.3565008608192253, 0.32924436697495, 1.9868939670380534, 2.810384666312773,
2.4117663029348924, -0.4810983070564472, 1.5143233221817027, -1.7185645332767443,
2.4464053017635212, 3.997453694160127, -3.8861258284250813, 3.094705799661703,
1.4768492077143098
]
# regression
n = length(y_0_sim)
X = [ones(n, 1) x_sim]
b = X \ y_0_sim
resid = y_0_sim - X * b
t = DurbinWatsonTest(X, resid)
@test t.n == 101
@test t.DW ≈ 2.0315450779948154
@test t.p_compute == :ndep
@test pvalue(t) ≈ 0.8794168553233327
@test pvalue(t, tail = :left) ≈ 0.43970842766166635
@test pvalue(t, tail = :right) ≈ 0.5602915723383337
@test default_tail(t) == :both
show(IOBuffer(), t)
t = DurbinWatsonTest(X, resid; p_compute = :exact) # exact p-values
@test t.n == 101
@test t.DW ≈ 2.0315450779948154
@test t.p_compute == :exact
@test pvalue(t) ≈ 0.8794168553233327 # exact p-values outsid [0,1], use approx.
@test pvalue(t, tail = :left) ≈ 0.43970842766166635
@test pvalue(t, tail = :right) ≈ 0.5602915723383337
@test default_tail(t) == :both
show(IOBuffer(), t)
# test corner cases
t1 = DurbinWatsonTest(X, size(X,1), 0.00, :exact)
@test pvalue(t1) == 0.00
@test pvalue(t1, tail = :left) == 1.00
@test pvalue(t1, tail = :right) == 0.00
show(IOBuffer(), t1)
t1 = DurbinWatsonTest(X, size(X,1), 4.00, :exact)
@test pvalue(t1) == 0.00
@test pvalue(t1, tail = :left) == 0.00
@test pvalue(t1, tail = :right) == 1.00
show(IOBuffer(), t1)
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 1544 | using HypothesisTests, Test
using HypothesisTests: default_tail
using StableRNGs
@testset "F-tests" begin
@testset "Basic variance F-test" begin
rng = StableRNG(12)
y1_h0 = 4 .+ randn(rng, 500)
y2_h0 = 4 .+ randn(rng, 400)
t = VarianceFTest(y1_h0, y2_h0)
@test t.n_x == 500
@test t.n_y == 400
@test t.df_x == 499
@test t.df_y == 399
@test t.F ≈ 0.859582 rtol=1e-5
@test pvalue(t) ≈ 0.109714 rtol=1e-5
@test pvalue(t, tail=:left) ≈ 0.0548572 rtol=1e-5
@test pvalue(t, tail=:right) ≈ 0.945143 rtol=1e-5
@test default_tail(t) == :both
t = VarianceFTest(y2_h0, y1_h0)
@test t.n_x == 400
@test t.n_y == 500
@test t.df_x == 399
@test t.df_y == 499
@test t.F ≈ 1.163355 rtol=1e-5
@test pvalue(t) ≈ 0.109714 rtol=1e-5
@test pvalue(t, tail=:right) ≈ 0.0548572 rtol=1e-5
@test pvalue(t, tail=:left) ≈ 0.945143 rtol=1e-5
@test default_tail(t) == :both
y1_h1 = 0.7*randn(rng, 200)
y2_h1 = 1.3*randn(rng, 120)
t = VarianceFTest(y1_h1, y2_h1)
@test t.n_x == 200
@test t.n_y == 120
@test t.df_x == 199
@test t.df_y == 119
@test t.F ≈ 0.264161 rtol=1e-5
@test pvalue(t) < 1e-8
@test default_tail(t) == :both
@test pvalue(t, tail=:left) < 1e-8
@test pvalue(t, tail=:right) > 1.0 - 1e-8
end
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 5838 | using HypothesisTests, Test
using HypothesisTests: default_tail
@testset "Fisher" begin
t = @inferred(HypothesisTests.FisherExactTest(1, 1, 1, 1))
@test t.ω ≈ 1.0
@test pvalue(t; tail=:left) ≈ 0.8333333333333337
@test pvalue(t; tail=:right) ≈ 0.8333333333333337
@test pvalue(t; method=:central) ≈ 1.0
@test pvalue(t; method=:minlike) ≈ 1.0
@test default_tail(t) == :both
@test_ci_approx confint(t; tail=:left) (0.0, 76.24918299781056)
@test_ci_approx confint(t; tail=:right) (0.013114894621608135, Inf)
@test_ci_approx confint(t; method=:central) (0.006400016357911029, 156.2496006379585)
#@test_approx_eq [confint(t; method=:minlike)...] [0.0131, 76.2492]
show(IOBuffer(), t)
# http://en.wikipedia.org/wiki/Fisher%27s_exact_test
t = HypothesisTests.FisherExactTest(1, 9, 11, 3)
@test t.ω ≈ 0.03720908483238119
@test pvalue(t; tail=:left) ≈ 0.0013797280926100427
@test pvalue(t; tail=:right) ≈ 0.9999663480953023
@test pvalue(t; method=:central) ≈ 0.0027594561852200853
@test pvalue(t; method=:minlike) ≈ 0.002759456185220088
@test_ci_approx confint(t; tail=:left) (0.0, 0.32600296913224913)
@test_ci_approx confint(t; tail=:right) (0.0012948958389639856, Inf)
@test_ci_approx confint(t; method=:central) (0.0006360029488751071, 0.42586647569637387)
#@test_approx_eq [confint(t; method=:minlike)...] [0.0013, 0.3567]
show(IOBuffer(), t)
# http://www.physics.csbsju.edu/stats/exact.html
t = HypothesisTests.FisherExactTest(7, 12, 0, 5)
@test t.ω ≈ Inf
@test pvalue(t; tail=:left) ≈ 1.0
@test pvalue(t; tail=:right) ≈ 0.1455862977602108
@test pvalue(t; method=:central, tail=:both) ≈ 0.2911725955204216
@test pvalue(t; method=:minlike, tail=:both) ≈ 0.2720685111989459
@test_ci_approx confint(t; tail=:left) (0.0, Inf)
@test_ci_approx confint(t; tail=:right) (0.539859556284207, Inf)
@test_ci_approx confint(t; method=:central) (0.39239937500428096, Inf)
#@test_approx_eq [confint(t; method=:minlike)...] [0.5171, Inf]
show(IOBuffer(), t)
t = HypothesisTests.FisherExactTest(12, 7, 5, 0)
@test t.ω ≈ 0.0
@test pvalue(t; tail=:left) ≈ 0.1455862977602108
@test pvalue(t; tail=:right) ≈ 1.0
@test pvalue(t; method=:central, tail=:both) ≈ 0.29117259552042146
@test pvalue(t; method=:minlike, tail=:both) ≈ 0.2720685111989459
@test_ci_approx confint(t; tail=:left) (0.0, 1.852333608546057)
@test_ci_approx confint(t; tail=:right) (0.0, Inf)
@test_ci_approx confint(t; method=:central) (0.0, 2.5484240386190433)
#@test_approx_eq [confint(t; method=:minlike)...] [0.0, 1.9338]
show(IOBuffer(), t)
t = HypothesisTests.FisherExactTest(0, 5, 7, 12)
@test t.ω ≈ 0.0
@test pvalue(t; tail=:left) ≈ 0.1455862977602108
@test pvalue(t; tail=:right) ≈ 1.0
@test pvalue(t; method=:central, tail=:both) ≈ 0.29117259552042146
@test pvalue(t; method=:minlike, tail=:both) ≈ 0.2720685111989459
@test_ci_approx confint(t; tail=:left) (0.0, 1.8523336085460567)
@test_ci_approx confint(t; tail=:right) (0.0, Inf)
@test_ci_approx confint(t; method=:central) (0.0, 2.5484240386190433)
#@test_approx_eq [confint(t; method=:minlike)...] [0.0, 1.9338]
show(IOBuffer(), t)
t = HypothesisTests.FisherExactTest(5, 0, 12, 7)
@test t.ω ≈ Inf
@test pvalue(t; tail=:left) ≈ 1.0
@test pvalue(t; tail=:right) ≈ 0.1455862977602108
@test pvalue(t; method=:central, tail=:both) ≈ 0.29117259552042146
@test pvalue(t; method=:minlike, tail=:both) ≈ 0.2720685111989459
@test_ci_approx confint(t; tail=:left) (0.0, Inf)
@test_ci_approx confint(t; tail=:right) (0.5398595562842079, Inf)
@test_ci_approx confint(t; method=:central) (0.39239937500428096, Inf)
#@test_approx_eq [confint(t; method=:minlike)...] [0.5171, Inf]
show(IOBuffer(), t)
# http://www.stata.com/support/faqs/statistics/fishers-exact-test/
t = HypothesisTests.FisherExactTest(2, 31, 136, 15532)
@test t.ω ≈ 7.3653226779913386
@test pvalue(t; tail=:left) ≈ 0.9970112864705307
@test pvalue(t; tail=:right) ≈ 0.03390271476034175
@test pvalue(t; method=:central, tail=:both) ≈ 0.06780542952068347
@test pvalue(t; method=:minlike, tail=:both) ≈ 0.03390271476034175
@test_ci_approx confint(t; tail=:left) (0.0,25.20252454804777)
@test_ci_approx confint(t; tail=:right) (1.2436262312601785, Inf)
@test_ci_approx confint(t; method=:central) (0.8458141614657836, 29.44434308524672)
#@test_approx_eq [confint(t; method=:minlike)...] [1.2436, 28.3557]
show(IOBuffer(), t)
# http://www.utstat.toronto.edu/~brunner/oldclass/312f12/lectures/312f12FisherWithR.pdf
# http://vassarstats.net/odds2x2.html
t = HypothesisTests.FisherExactTest(4, 1, 20, 1)
@test t.ω ≈ 0.21821789023599236
@test pvalue(t; tail=:left) ≈ 0.353846153846154
@test pvalue(t; tail=:right) ≈ 0.9692307692307692
@test pvalue(t; method=:central) ≈ 0.7076923076923074
@test pvalue(t; method=:minlike) ≈ 0.353846153846154
@test_ci_approx confint(t; tail=:left) (0.0, 9.594302003876502)
@test_ci_approx confint(t; tail=:right) (0.004963263361921223, Inf)
@test_ci_approx confint(t; method=:central) (0.002430190787475382, 19.59477744071154)
#@test_approx_eq [confint(t; method=:minlike)...] [0.005, 9.5943]
show(IOBuffer(), t)
# Corner cases gh #276
t = HypothesisTests.FisherExactTest(5, 0, 5, 0)
@test pvalue(t; tail=:left) ≈ 1
@test pvalue(t; tail=:right) ≈ 1
@test pvalue(t; method=:central) ≈ 1
@test pvalue(t; method=:minlike) ≈ 1
@test_ci_approx confint(t; tail=:left) (0.0, Inf)
@test_ci_approx confint(t; tail=:right) (0.0, Inf)
@test_ci_approx confint(t; method=:central) (0.0, Inf)
t = HypothesisTests.FisherExactTest(0, 5, 0, 5)
@test pvalue(t; tail=:left) ≈ 1
@test pvalue(t; tail=:right) ≈ 1
@test pvalue(t; method=:central) ≈ 1
@test pvalue(t; method=:minlike) ≈ 1
@test_ci_approx confint(t; tail=:left) (0.0, Inf)
@test_ci_approx confint(t; tail=:right) (0.0, Inf)
@test_ci_approx confint(t; method=:central) (0.0, Inf)
t = HypothesisTests.FisherExactTest(1, 1, 1, 1)
@test HypothesisTests.pvalue(t, tail=:both) <= 1
show(IOBuffer(), t)
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 3176 | using HypothesisTests
using Test
using DelimitedFiles
@testset "Hotelling utility functions" begin
HT = HypothesisTests
@test HT.checkdims(rand(3, 2), rand(4, 2)) == (2, 3, 4)
# Mismatched number of variables
@test_throws DimensionMismatch HT.checkdims(rand(4, 3), rand(4, 6))
# Empty observations
@test_throws ArgumentError HT.checkdims(rand(0, 4), rand(2, 4))
Sx = [ 3.0 -1.5 0.0
-1.5 1.0 0.5
0.0 0.5 1.0]
Sy = fill(4.5, (3, 3))
out = [3.5 0.5 1.5
0.5 2.166667 1.833333
1.5 1.833333 2.166667]
@test HT.poolcov!(Sx, 2, Sy, 1) ≈ out atol=1e-6
# Input is modified
@test Sx ≈ out atol=1e-6
# Positive semi-definite but not positive definite
P = [ 1.0000 0.7426 0.1601 -0.7000 0.5500
0.7426 1.0000 -0.2133 -0.5818 0.5000
0.1601 -0.2133 1.0000 -0.1121 0.1000
-0.7000 -0.5818 -0.1121 1.0000 0.4500
0.5500 0.5000 0.1000 0.4500 1.0000]
# Positive definite
Q = [ 1.0 -0.5 0.0
-0.5 1.0 -0.5
0.0 -0.5 1.0]
@test @inferred(HT.At_Binv_A(ones(5), P)) ≈ -0.8008792 atol=1e-6
@test @inferred(HT.At_Binv_A(ones(3), Q)) ≈ 10.0
end
@testset "One sample Hotelling's T²" begin
# Columns are calcium, iron, protein, vitamin A, vitamin C
nutrient = readdlm(joinpath(@__DIR__, "data", "nutrient.txt"))[:,2:end]
t = OneSampleHotellingT2Test(nutrient, [1000, 15, 60, 800, 75])
@test nobs(t) == 737
@test dof(t) == (5, 732)
@test pvalue(t) ≈ 0.0 atol=eps()
@test t.T² ≈ 1758.5413137 atol=1e-6
@test t.F ≈ 349.7968048 atol=1e-6
let out = sprint(show, t)
@test occursin("reject h_0", out) && !occursin("fail to", out)
end
# Columns are survey answers: husbands' to questions 1-4, wives' to questions 1-4
spouse = readdlm(joinpath(@__DIR__, "data", "spouse.txt"))
# Paired
p = OneSampleHotellingT2Test(spouse[:,1:4], spouse[:,5:end])
@test nobs(p) == 30
@test dof(p) == (4, 26)
@test pvalue(p) ≈ 0.039369144 atol=1e-6
@test p.T² ≈ 13.127840261 atol=1e-6
@test p.F ≈ 2.942446955 atol=1e-6
let out = sprint(show, p)
@test occursin("reject h_0", out) && !occursin("fail to", out)
end
end
@testset "Two sample Hotelling's T²" begin
# Columns are type, length, left, right, bottom, top, diag
swiss = readdlm(joinpath(@__DIR__, "data", "swiss3.txt"))
genuine = convert(Matrix{Float64}, swiss[view(swiss, :, 1) .== "real", 2:end])
counterfeit = convert(Matrix{Float64}, swiss[view(swiss, :, 1) .== "fake", 2:end])
eq = EqualCovHotellingT2Test(genuine, counterfeit)
@test nobs(eq) == (100, 100)
@test dof(eq) == (6, 193)
@test pvalue(eq) ≈ 0.0 atol=eps()
@test eq.T² ≈ 2412.4506855 atol=1e-6
@test eq.F ≈ 391.9217023 atol=1e-6
@test occursin("reject h_0", sprint(show, eq))
un = UnequalCovHotellingT2Test(genuine, counterfeit)
@test nobs(un) == (100, 100)
@test dof(un) == (6, 193)
@test pvalue(un) ≈ 0.0 atol=eps()
@test un.T² ≈ 2412.4506855 atol=1e-6
@test un.F ≈ 391.9217023 atol=1e-6
@test occursin("reject h_0", sprint(show, un))
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 3439 | using HypothesisTests, Test
using HypothesisTests: default_tail
@testset "Jarque-Bera" begin
sim_data_h0 = 1.0 .+ [
0.2972879845354616, 0.3823959677906078, -0.5976344767282311, -0.01044524463737564,
-0.839026854388764, 0.31111133849833383, 2.2950878238373105, -2.2670863488005306,
0.5299655761667461, 0.43142152642291204, 0.5837082875687786, 0.9632716050381906,
0.45879095505371686, -0.5223367574215084, 0.40839583832475224, -0.050451229933665284,
-0.6936536438038856, -1.7738332534080556, 0.12076596493743928, -0.7576330377205277,
-1.7297561813906863, 0.7959486220046159, 0.6700619812560624, 0.5508523775007609,
-0.06337459242956062, 1.3369427822509223, -0.07314863333773934, -0.7454643166407556,
-1.2200551285346526, -0.05317733752769253, -0.1651363578028337, -2.115370248427311,
-0.0667679865065892, 1.2224618484680618, 0.5676954597384435, 0.7634989283233873,
0.37859887985335006, -0.645597056636597, -0.6646462443910314, -1.8030263242108941,
-1.2890476038497443, -0.3352700795181175, 0.07046760136115796, 0.34179376737982303,
1.7351656660543822, 1.299915964310192, 0.20636408140261675, -1.0088599555376034,
-0.8500556703153979, 1.1294094358843267, -1.348533456491827, 1.2402909004290597,
-0.055647093207324264, 0.7593902139454598, -0.030266886646762546, -0.36108266775609366,
-2.0073032025325626, -0.5688591273466379, -1.1496275243969976, 1.880622174631185,
-1.4706245413873802, -0.5352109701657319, -0.9635439598255011, -1.3851080676759138,
0.13430023756127, -0.6161166660088192, -1.719989356319742, 0.32076927998741056,
-1.4473728978815112, -0.4922711880695664, -0.4130873839831828, 1.001928512455953,
1.174681325975111, -1.326970345062047, -1.593214868044067, -0.43870997575879667,
1.225797497997867, 1.4890902780696147, 2.1594331871008534, -0.9094790180375028,
1.1478203006125018, -0.5050721965223731, -0.2670670352181297, 1.499082393930729,
0.7973041601753904, -0.17164044330709693, -0.46907960993009634, 0.21762402120860017,
0.35914640760234967, 0.3200247157080577, 0.2592163280556861, 0.459695985041628,
0.20998636004214272, 1.5231753911772645, 1.2597946036121963, -0.16528310111426064,
0.15619449488763584, -0.8143152943766987, -1.7098682060045913, 1.4999378761140325,
-0.1289156385300165, -0.4501839715598432
]
t = JarqueBeraTest(sim_data_h0)
@test t.n == 102
@test t.JB ≈ 1.0204197333021678
@test t.skew ≈ -0.020527653857777352
@test t.kurt ≈ 2.5117242352057993
@test pvalue(t) ≈ 0.6003695680393418
@test default_tail(t) == :right
show(IOBuffer(), t)
t = JarqueBeraTest(sim_data_h0; adjusted=true)
@test t.JB ≈ 0.9170583190120135
@test pvalue(t) ≈ 0.6322128462414497
show(IOBuffer(), t)
sim_data_h1 = [
0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,
0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0,
1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1,
1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1
]
t = JarqueBeraTest(sim_data_h1)
@test t.n == 102
@test t.JB ≈ 17.00081983024691
@test t.skew ≈ 0.11785113019775637
@test t.kurt ≈ 1.0138888888888888
@test pvalue(t) ≈ 0.00020338498134114293
@test default_tail(t) == :right
show(IOBuffer(), t)
t = JarqueBeraTest(sim_data_h1; adjusted=true)
@test t.JB ≈ 18.529299970269175
@test pvalue(t) ≈ 9.471388144608105e-5
show(IOBuffer(), t)
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 2889 | using HypothesisTests, Distributions, Test
@testset "Kolmogorov-Smirnov" begin
# sample drawn from uniform distribution
x = [0.3500, 0.1966, 0.2511, 0.6160, 0.4733,
0.3517, 0.8308, 0.5853, 0.5497, 0.9172,
0.2858, 0.7572, 0.7537, 0.3804, 0.5678,
0.0759, 0.0540, 0.5308, 0.7792, 0.9340,
0.1299, 0.5688, 0.4694, 0.0119, 0.3371
]
t = ApproximateOneSampleKSTest(x, Uniform())
@test t.δ ≈ 0.1440
@test t.δn ≈ 0.0571
@test t.δp ≈ 0.1440
@test pvalue(t) ≈ 0.6777349664784745
@test pvalue(t; tail=:left) ≈ 0.849573771973747
@test pvalue(t; tail=:right) ≈ 0.3545875485608989
@test default_tail(t) == :both
show(IOBuffer(), t)
t = ApproximateTwoSampleKSTest(x, [(0:24)/25...])
@test t.δ ≈ 0.12
@test t.δn ≈ 0.08
@test t.δp ≈ 0.12
@test pvalue(t) ≈ 0.993764859699076
@test pvalue(t; tail=:left) ≈ 0.8521437889662113
@test pvalue(t; tail=:right) ≈ 0.697676326071031
@test default_tail(t) == :both
show(IOBuffer(), t)
t = ExactOneSampleKSTest(x, Uniform())
@test t.δ ≈ 0.1440
@test t.δn ≈ 0.0571
@test t.δp ≈ 0.1440
@test pvalue(t) ≈ 0.6263437768244742
@test pvalue(t; tail=:left) ≈ 0.8195705417998183
@test pvalue(t; tail=:right) ≈ 0.32350648882777194
@test default_tail(t) == :both
show(IOBuffer(), t)
## check fit to normal distribution
t = ApproximateOneSampleKSTest(x, Normal())
@test t.δ ≈ 0.5047473010922947
@test t.δn ≈ 0.5047473010922947
@test t.δp ≈ 0.17515194649718513
@test pvalue(t) ≈ 5.871827067532435e-6
@test pvalue(t; tail=:left) ≈ 2.9359135337662175e-6
@test pvalue(t; tail=:right) ≈ 0.21569061887162347
## check unequal sample size
t = ApproximateTwoSampleKSTest(x, [(0:5)/6...])
@test t.δ ≈ 0.22
@test t.δn ≈ 0.22
@test t.δp ≈ 0.09333333333333346
@test pvalue(t) ≈ 0.973300892518972
@test pvalue(t; tail=:left) ≈ 0.6260111498528065
@test pvalue(t; tail=:right) ≈ 0.9191544797498837
# http://ocw.mit.edu/courses/mathematics/18-443-statistics-for-applications-fall-2006/lecture-notes/lecture14.pdf
x = [0.58, 0.42, 0.52, 0.33, 0.43, 0.23, 0.58, 0.76, 0.53, 0.64]
t = ApproximateOneSampleKSTest(x, Uniform())
@test t.δ ≈ 0.26
@test t.δn ≈ 0.23
@test t.δp ≈ 0.26
@test pvalue(t) ≈ 0.5084937988981307
@test pvalue(t; tail=:left) ≈ 0.3471494153245104
@test pvalue(t; tail=:right) ≈ 0.25872229825964005
t = ApproximateTwoSampleKSTest(x, [(0:9)/10...])
@test t.δ ≈ 0.3
@test t.δn ≈ 0.3
@test t.δp ≈ 0.2
@test pvalue(t) ≈ 0.7590978384203948
@test pvalue(t; tail=:left) ≈ 0.406569659740599
@test pvalue(t; tail=:right) ≈ 0.6703200460356393
t = ExactOneSampleKSTest(x, Uniform())
@test t.δ ≈ 0.26
@test t.δn ≈ 0.23
@test t.δp ≈ 0.26
@test pvalue(t) ≈ 0.4351284228580825
@test pvalue(t; tail=:left) ≈ 0.3013310572470338
@test pvalue(t; tail=:right) ≈ 0.2193143479950862
# Check two samples with ties
t = ApproximateTwoSampleKSTest(ones(10), ones(10))
@test isapprox(t.δ, 0., atol=1e-16)
@test isapprox(t.δp, 0., atol=1e-16)
@test isapprox(t.δn, 0., atol=1e-16)
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 1650 | using HypothesisTests, Test
using HypothesisTests: default_tail
@testset "Kruskal-Wallis" begin
# www.uni-siegen.de/phil/sozialwissenschaften/soziologie/mitarbeiter/ludwig-mayerhofer/statistik/statistik_downloads/statistik_ii_7.pdf
u5 = [620, 5350, 7220]
u250 = [3580, 4180, 5690]
u2500 = [3600, 3820, 3840, 3850, 4160, 5300, 6900, 7120, 9370]
more = [3920, 4520, 4760, 8560, 10350]
t = HypothesisTests.KruskalWallisTest(u5, u250, u2500, more)
@test t.n_i == [length(u5), length(u250), length(u2500), length(more)]
@test t.df == 3
@test t.R_i == [31, 25, 88, 66]
@test t.H ≈ 1.5803174603174597
@test t.tie_adjustment == 1
@test pvalue(t) ≈ 0.6638608922384397
@test default_tail(t) == :right
show(IOBuffer(), t)
# http://www.brightstat.com/index.php?option=com_content&task=view&id=41&Itemid=1&limit=1&limitstart=2
city1 = [68, 93, 123, 83, 108, 122]
city2 = [119, 116, 101, 103, 113, 84]
city3 = [70, 68, 54, 73, 81, 68]
city4 = [61, 54, 59, 67, 59, 70]
t = HypothesisTests.KruskalWallisTest(city1, city2, city3, city4)
@test t.n_i == [length(city1), length(city2), length(city3), length(city4)]
@test t.df == 3
@test t.R_i == [104, 113, 53, 30]
@test t.H ≈ 16.028783253379856
@test t.tie_adjustment ≈ 0.9969565217391304
@test pvalue(t) ≈ 0.0011186794961869423
show(IOBuffer(), t)
# example with non-integer rank sum
t1 = [1.2,1.9,2.1]
t2 = [3.4,1.9,5.6]
t3 = [1.3,4.4,9.9]
t = KruskalWallisTest(t1, t2, t3)
@test t.n_i == [length(t1), length(t2), length(t3)]
@test t.df == 2
@test t.R_i == [9.5, 17.5, 18.0]
@test t.H ≈ 2.039215686274513
@test t.tie_adjustment ≈ 0.9916666666666667
@test pvalue(t) ≈ 0.3607363776845705
show(IOBuffer(), t)
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 3751 | using HypothesisTests, Test
using HypothesisTests: default_tail
@testset "Mann-Whitney" begin
@testset "Basic exact test" begin
@test abs(@inferred(pvalue(ExactMannWhitneyUTest([1:10;], [2.1:2:21;]))) - 0.0232) <= 1e-4
@test abs(@inferred(pvalue(ExactMannWhitneyUTest([2.1:2:21;], [1:10;]))) - 0.0232) <= 1e-4
@test abs(@inferred(pvalue(ExactMannWhitneyUTest([1.5:10:100;], [2.1:2:21;]))) - 0.0068) <= 1e-4
@test abs(@inferred(pvalue(ExactMannWhitneyUTest([2.1:2:21;], [1.5:10:100;]))) - 0.0068) <= 1e-4
@test default_tail(ExactMannWhitneyUTest([1:10;], [2.1:2:21;])) == :both
show(IOBuffer(), ExactMannWhitneyUTest([1:10;], [2.1:2:21;]))
end
@testset "Exact with ties" begin
@test abs(@inferred(pvalue(ExactMannWhitneyUTest([1:10;], [1:10;]))) - 1) <= 1e-4
@test abs(@inferred(pvalue(ExactMannWhitneyUTest([1:10;], [2:11;]))) - 0.5096) <= 1e-4
@test abs(@inferred(pvalue(ExactMannWhitneyUTest([2:11;], [1:10;]))) - 0.5096) <= 1e-4
@test abs(@inferred(pvalue(ExactMannWhitneyUTest([1:10;], [1:5; ones(5)]))) - 0.0057) <= 1e-4
@test abs(@inferred(pvalue(ExactMannWhitneyUTest([1:5; ones(5)], [1:10;]))) - 0.0057) <= 1e-4
show(IOBuffer(), ExactMannWhitneyUTest([1:10;], [1:10;]))
end
@testset "Exact with ties and unequal lengths" begin
@test abs(@inferred(pvalue(ExactMannWhitneyUTest([1:10;], [2:2:24;]))) - 0.0118) <= 1e-4
@test abs(@inferred(pvalue(ExactMannWhitneyUTest([2:2:24;], [1:10;]))) - 0.0118) <= 1e-4
show(IOBuffer(), ExactMannWhitneyUTest([1:10;], [2:2:24;]))
end
@testset "Approximate test" begin
@test abs(@inferred(pvalue(ApproximateMannWhitneyUTest([1:10;], [2.1:2:21;]))) - 0.0257) <= 1e-4
@test abs(@inferred(pvalue(ApproximateMannWhitneyUTest([2.1:2:21;], [1:10;]))) - 0.0257) <= 1e-4
@test abs(@inferred(pvalue(ApproximateMannWhitneyUTest([1.5:10:100;], [2.1:2:21;]))) - 0.0091) <= 1e-4
@test abs(@inferred(pvalue(ApproximateMannWhitneyUTest([2.1:2:21;], [1.5:10:100;]))) - 0.0091) <= 1e-4
@test default_tail(ApproximateMannWhitneyUTest([1:10;], [2.1:2:21;])) == :both
show(IOBuffer(), ApproximateMannWhitneyUTest([1:10;], [2.1:2:21;]))
end
@testset "Approximate with ties" begin
@test abs(@inferred(pvalue(ApproximateMannWhitneyUTest([1:10;], [1:10;]))) - 1) <= 1e-4
@test abs(@inferred(pvalue(ApproximateMannWhitneyUTest([1:10;], [2:11;]))) - 0.4948) <= 1e-4
@test abs(@inferred(pvalue(ApproximateMannWhitneyUTest([2:11;], [1:10;]))) - 0.4948) <= 1e-4
@test abs(@inferred(pvalue(ApproximateMannWhitneyUTest([1:10;], [1:5; ones(5)]))) - 0.0076) <= 1e-4
@test abs(@inferred(pvalue(ApproximateMannWhitneyUTest([1:5; ones(5)], [1:10;]))) - 0.0076) <= 1e-4
show(IOBuffer(), ApproximateMannWhitneyUTest([1:10;], [1:10;]))
end
@testset "Tests for automatic selection" begin
@test abs(@inferred(pvalue(MannWhitneyUTest([1:10;], [2.1:2:21;]))) - 0.0232) <= 1e-4
@test abs(@inferred(pvalue(MannWhitneyUTest([1:10;], [2:11;]))) - 0.4948) <= 1e-4
show(IOBuffer(), MannWhitneyUTest([1:10;], [2.1:2:21;]))
end
@testset "Issue #39" begin
@test abs(@inferred(pvalue(ExactMannWhitneyUTest(Float32[1:10;], Float32[2:11;]))) - 0.5096) <= 1e-4
end
@testset "Issue #113" begin
@test abs(pvalue(ApproximateMannWhitneyUTest(Float32[1:10;], Float32[2:11;])) - 0.4948) <= 1e-4
end
@testset "Issue #126 pvalues above 1" begin
A = [1.34937, 1.75722,0.276514, 1.04546, 1.69085, 0.738085, 2.36313]
B = [2.62325, 1.16533, 1.1327, 0.728714]
m = ExactMannWhitneyUTest(A,B)
p = @inferred(pvalue(m; tail = :both))
@test p == 1
A = [12,10,7,6,3,1]
B = [11,9,8,5,4,2]
m = MannWhitneyUTest(A,B)
p = @inferred(pvalue(m; tail = :both))
@test p == 1
m = ApproximateMannWhitneyUTest(A, B)
p = @inferred(pvalue(m; tail = :both))
end
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 1136 | using HypothesisTests, Test, Statistics, StableRNGs
@testset "Permutation" begin
@testset "ExactPermutationTest" begin
@test pvalue(ExactPermutationTest([1,2,3], [4,5,6], mean), tail=:both) ≈ 0.1
@test pvalue(ExactPermutationTest([4,5,6], [1,2,3], mean), tail=:both) ≈ 0.1
@test pvalue(ExactPermutationTest([1,2,3], [4,5,6], mean), tail=:left) ≈ 0.05
@test pvalue(ExactPermutationTest([4,5,6], [1,2,3], mean), tail=:right) ≈ 0.05
end
@testset "ApproximatePermutationTest" begin
rng = StableRNG(12345)
@test pvalue(ApproximatePermutationTest(rng, [1,2,3], [4,5,6], mean, 100), tail=:both) ≈ 0.14
@test pvalue(ApproximatePermutationTest(rng, [4,5,6], [1,2,3], mean, 100), tail=:both) ≈ 0.08
@test pvalue(ApproximatePermutationTest(rng, [1,2,3], [4,5,6], mean, 100), tail=:left) ≈ 0.05
@test pvalue(ApproximatePermutationTest(rng, [4,5,6], [1,2,3], mean, 100), tail=:right) ≈ 0.05
# Test that the non-rng method works
@test ApproximatePermutationTest([4,5,6], [1,2,3], mean, 100) isa HypothesisTests.PermutationTest{Float64}
end
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 5697 | using HypothesisTests, Test
using StatsBase
using HypothesisTests: default_tail
@testset "Power Divergence" begin
#Example 1 in R
#Agresti (2007) p. 39
d = [[762,484] [327,239] [468,477]]
m = PowerDivergenceTest(d)
@test m.theta0 ≈ [0.25523082406125785,0.19670969099133556,0.11593952361049113,0.08935608756107216,0.1935739395970214,0.1491899341788219]
@test m.thetahat ≈ [0.2763873775843308,0.1755531374682626,0.11860718171926006,0.08668842945230323,0.16974972796517954,0.17301414581066377]
c = confint(m, method=:sison_glaz)
c0 = [(.25788900979, .29554669435),
(.15705476968, .19471245423),
(.10010881393, .13776649848),
(.06819006166, .10584774622),
(.15125136017, .18890904473),
(.15451577802, .19217346257)]
for i = 1:length(c)
@test c[i][1] ≈ c0[i][1]
@test c[i][2] ≈ c0[i][2]
end
@test pvalue(m) ≈ 2.9535891832117357e-7
@test default_tail(m) == :right
@test m.stat ≈ 30.070149095754687
@test m.df ≈ 2
@test m.n ≈ 2757
@test m.residuals ≈ reshape([2.198855766015898,-2.504669492560728,0.4113701700566286,-0.46858294710127296,-2.8432397155451494,3.2386734435365825], size(d))
@test m.stdresiduals ≈ reshape([4.502053521086705,-4.502053521086705,0.6994517329844298,-0.6994517329844298,-5.315945542704929,5.315945542704929], size(d))
m = PowerDivergenceTest(d,lambda=0.0)
testname(m)
pvalue(m)
show(IOBuffer(), m)
m = PowerDivergenceTest(d,lambda=-1.0)
testname(m)
pvalue(m)
show(IOBuffer(), m)
m = PowerDivergenceTest(d,lambda=-2.0)
testname(m)
pvalue(m)
show(IOBuffer(), m)
m = PowerDivergenceTest(d,lambda=-0.5)
testname(m)
pvalue(m)
show(IOBuffer(), m)
m = PowerDivergenceTest(d,lambda=2/3)
testname(m)
pvalue(m)
show(IOBuffer(), m)
m = ChisqTest(d)
m = MultinomialLRTest(d)
confint(m)
confint(m, tail=:left)
confint(m, tail=:right)
confint(m, method = :auto)
confint(m, method = :auto, tail=:left)
confint(m, method = :auto, tail=:right)
confint(m, method = :bootstrap)
confint(m, method = :bootstrap, tail=:left)
confint(m, method = :bootstrap, tail=:right)
confint(m, method = :gold)
confint(m, method = :gold, tail=:left)
confint(m, method = :gold, tail=:right)
confint(m, method = :quesenberry_hurst)
confint(m, method = :quesenberry_hurst, tail=:left)
confint(m, method = :quesenberry_hurst, tail=:right)
confint(m, method = :sison_glaz)
confint(m, method = :sison_glaz, correct=false)
confint(m, method = :sison_glaz, tail=:left)
confint(m, method = :sison_glaz, tail=:right)
@test_throws ArgumentError confint(m, method=:FOO)
@test_throws ArgumentError confint(m, tail=:fox)
@test confint(m, method = :quesenberry_hurst) == confint(m, method = :auto) == confint(m)
#Example 3 in R
d = [ 20, 15, 25 ]
m = PowerDivergenceTest(d)
@test m.theta0 ≈ [0.3333333333333333,0.3333333333333333,0.3333333333333333]
@test m.thetahat ≈ [0.3333333333333333,0.25,0.4166666666666667]
c = confint(m)
c0 = [(.21666666667, .48098082062),
(.13333333333, .39764748728),
(.30000000000, .56431415395)]
for i in 1:length(c)
@test c[i][1] ≈ c0[i][1]
@test c[i][2] ≈ c0[i][2]
end
@test pvalue(m) ≈ 0.2865047968601901
@test m.stat ≈ 2.5
@test m.df ≈ 2
@test m.n ≈ 60
@test m.residuals ≈ [0.0,-1.118033988749895,1.118033988749895]
@test m.stdresiduals ≈ [0.0,-1.3693063937629153,1.3693063937629153]
m = PowerDivergenceTest(d,lambda=0.0)
testname(m)
pvalue(m)
show(IOBuffer(), m)
m = PowerDivergenceTest(d,lambda=-1.0)
testname(m)
pvalue(m)
show(IOBuffer(), m)
m = PowerDivergenceTest(d,lambda=-2.0)
testname(m)
pvalue(m)
show(IOBuffer(), m)
m = PowerDivergenceTest(d,lambda=-0.5)
testname(m)
pvalue(m)
show(IOBuffer(), m)
m = PowerDivergenceTest(d,lambda=2/3)
testname(m)
pvalue(m)
show(IOBuffer(), m)
m = ChisqTest(d)
m = MultinomialLRTest(d)
confint(m)
confint(m, tail=:left)
confint(m, tail=:right)
confint(m, method = :auto)
confint(m, method = :auto, tail=:left)
confint(m, method = :auto, tail=:right)
confint(m, method = :bootstrap)
confint(m, method = :bootstrap, tail=:left)
confint(m, method = :bootstrap, tail=:right)
confint(m, method = :gold)
confint(m, method = :gold, tail=:left)
confint(m, method = :gold, tail=:right)
confint(m, method = :quesenberry_hurst)
confint(m, method = :quesenberry_hurst, tail=:left)
confint(m, method = :quesenberry_hurst, tail=:right)
confint(m, method = :sison_glaz)
confint(m, method = :sison_glaz, correct=false)
confint(m, method = :sison_glaz, tail=:left)
confint(m, method = :sison_glaz, tail=:right)
@test_throws ArgumentError confint(m, method=:FOO)
@test_throws ArgumentError confint(m, tail=:fox)
@test confint(m, method = :sison_glaz) == confint(m, method = :auto) == confint(m)
#
x=[1,2,3,1,2,3]
y=[1,1,1,2,2,3]
d = counts(x,y,3)
ChisqTest(d)
MultinomialLRTest(d)
PowerDivergenceTest(x,y,3)
PowerDivergenceTest(x,y,(1:3,1:3))
ChisqTest(x,y,3)
ChisqTest(x,y,(1:3,1:3))
MultinomialLRTest(x,y,3)
MultinomialLRTest(x,y,(1:3,1:3))
# Test that large counts don't cause overflow (issue #43)
d = [113997 1031298
334453 37471]
PowerDivergenceTest(d)
# Pearson's Chi-Squared Test
# As in https://en.wikipedia.org/wiki/Pearson's_chi-squared_test#Fairness_of_dice
O = [5,8,9,8,10,20]
E = fill(10,6)
m = ChisqTest(O,E)
@test pvalue(m) ≈ 0.01990522033477436
@test m.stat ≈ 13.4
@test m.df == 5
@test m.n == 60
@test m.residuals ≈ reshape([-1.5811388300841895,-0.6324555320336759,-0.31622776601683794,-0.6324555320336759, 0.0, 3.162277660168379],size(O))
# As in https://en.wikipedia.org/wiki/Pearson's_chi-squared_test#Goodness_of_fit
O = [44,56]
E = fill(50,2)
m = ChisqTest(O,E)
@test pvalue(m) ≈ 0.23013934044341544
@test m.stat ≈ 1.44
@test m.df == 1
@test m.n == 100
@test m.residuals ≈ reshape([-0.848528137423857,0.848528137423857],size(O))
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 1209 | using Test, Random, Statistics
# Confidence intervals should be tested component-wise against
# expected results; splatting them into arrays and checking for
# approximate array equality is incorrect when either limit is
# infinite.
macro test_ci_approx(x::Expr, y::Expr)
return quote
Test.@test typeof($(esc(x))) <: Tuple{Real,Real}
Test.@test typeof($(esc(x))) == typeof($(esc(y)))
Test.@test all(map(isapprox, $(esc(x)), $(esc(y))))
end
end
include("anderson_darling.jl")
include("augmented_dickey_fuller.jl")
include("bartlett.jl")
include("binomial.jl")
include("box_test.jl")
include("breusch_godfrey.jl")
include("circular.jl")
include("common.jl")
include("durbin_watson.jl")
include("fisher.jl")
include("jarque_bera.jl")
include("hotelling.jl")
include("kolmogorov_smirnov.jl")
include("kruskal_wallis.jl")
include("mann_whitney.jl")
include("correlation.jl")
include("permutation.jl")
include("power_divergence.jl")
include("shapiro_wilk.jl")
include("show.jl")
include("t.jl")
include("wald_wolfowitz.jl")
include("wilcoxon.jl")
include("z.jl")
include("f.jl")
include("diebold_mariano.jl")
include("clark_west.jl")
include("white.jl")
include("var_equality.jl")
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 5318 | using HypothesisTests, LinearAlgebra, Test, Random
using StableRNGs
@testset "Shapiro-Wilk" begin
@testset "shapiro_wilk_coefs" begin
@test HypothesisTests.shapiro_wilk_coefs(3) == [sqrt(2.0) / 2.0, 0.0, -sqrt(2.0) / 2.0]
swc = HypothesisTests.shapiro_wilk_coefs(10)
@test swc[4] == -swc[7]
@test swc[2] == -swc[9]
swc = HypothesisTests.shapiro_wilk_coefs(11)
@test swc[6] == 0.0
@test swc[5] == -swc[7]
@test swc[3] == -swc[9]
@test swc[1] == -swc[11]
#anti-symmetry
swc = HypothesisTests.shapiro_wilk_coefs(20)
@test all([swc[i] == -swc[end - i + 1] for i in eachindex(swc)])
# Values obtained by calling `_swilkfort` fortran subroutine directly.
swc10 = HypothesisTests.shapiro_wilk_coefs(10)
res = swc10[1:5] .- [0.573715, 0.32897, 0.214349, 0.122791, 0.0400887]
@test norm(res, 1) ≈ 0.0 atol = length(swc10) * eps(Float32)
swc20 = HypothesisTests.shapiro_wilk_coefs(20)
res = swc20[1:10] .-
[0.473371, 0.32174, 0.255663, 0.208297, 0.16864, 0.133584, 0.101474,
0.0712893, 0.0423232, 0.0140351]
@test norm(res, 1) ≈ 0.0 atol = length(swc20) * eps(Float32)
rng = StableRNG(0x5bca7c69b794f8ce)
X = sort(rand(rng, Float64, 10))
# W, pval, _ = swilkfort(X)
W = 0.9088434774710951
# pval = 0.2731410626084226
@test HypothesisTests.unsafe_swstat(X, swc10) ≈ W atol = eps(Float32)
end
@testset "Shapiro-Wilk" begin
# syntactic tests
@test_throws ArgumentError ShapiroWilkTest([1, 2])
@test_throws ArgumentError("at least 3 samples are required, got 2") ShapiroWilkTest([1, 2], HypothesisTests.shapiro_wilk_coefs(3))
@test_throws ArgumentError ShapiroWilkTest([1, 2, 3], censored=4)
@test_throws DimensionMismatch ShapiroWilkTest([1, 2, 3],
HypothesisTests.shapiro_wilk_coefs(4))
@test_throws ArgumentError("sample doesn't seem to be sorted or is constant (up to numerical accuracy)") ShapiroWilkTest([1,1,1])
@test_throws ArgumentError("sample is constant (up to numerical accuracy)") ShapiroWilkTest([1,1,1], sorted=false)
t = ShapiroWilkTest([1, 2, 3])
@test t.W == 1.0
@test pvalue(t) == 1.0
@test_throws ArgumentError("censored samples not implemented yet") pvalue(ShapiroWilkTest(1:4, censored=1))
str = sprint(show, t)
@test str ==
"""Shapiro-Wilk normality test
---------------------------
Population details:
parameter of interest: Squared correlation of data and expected order statistics of N(0,1) (W)
value under h_0: 1.0
point estimate: 1.0
Test summary:
outcome with 95% confidence: fail to reject h_0
one-sided p-value: 1.0000
Details:
number of observations: 3
censored ratio: 0.0
W-statistic: 1.0
"""
# testing different cases of N
for N in (3, 5, 11, 12)
rng = StableRNG(0x5bca7c69b794f8ce)
X = sort(randn(rng, N))
t = ShapiroWilkTest(X; sorted=true)
# analytic properties from Shapiro-Wilk 1965:
# Lemma 1: Scale and origin invariance:
scale, shift = rand(rng, 2)
@test t.W ≈ ShapiroWilkTest(X .+ shift).W
@test t.W ≈ ShapiroWilkTest(scale .* X).W
@test t.W ≈ ShapiroWilkTest(scale .* X .+ shift).W
# Lemma 2, 3: upper and lower bounds
@test N * t.coefs[1]^2 / (N - 1) ≤ t.W ≤ 1.0
# test the computation of pvalue in those cases
@test pvalue(t) ≥ 0.05
end
@testset "Worked Example" begin
# **Worked Example** (Section 4) from
# PATRICK ROYSTON Approximating the Shapiro-Wilk W-test for non-normality
# *Statistics and Computing* (1992) **2**, 117-119
X = [48.4, 49.0, 59.5, 59.6, 60.7, 88.8, 98.2, 109.4, 169.1, 227.1]
swc = HypothesisTests.shapiro_wilk_coefs(length(X))
@test norm(swc[1:5] .- [0.5737, 0.3290, 0.2143, 0.1228, 0.0401], Inf) < 5.0e-5
W = HypothesisTests.unsafe_swstat(X, swc)
@test W ≈ 0.8078 atol = 2.9e-5
t = ShapiroWilkTest(X)
@test t.W == W
@test pvalue(t) ≈ 0.018 atol = 4.7e-5
@test pvalue(t) ≈ pvalue(ShapiroWilkTest(X, sorted=true))
@test iszero(HypothesisTests.censored_ratio(t))
@test length(t.coefs) == length(X)
# test for un-sorted sample
X2 = X[[9,8,2,3,4,5,7,10,1,6]]
t2 = ShapiroWilkTest(X2)
@test_throws ArgumentError ShapiroWilkTest(X2, sorted=true)
@test t2.W ≈ t.W
@test pvalue(t2) ≈ pvalue(t)
X3 = X[[2,8,9,3,4,5,7,10,1,6]]
t3 = ShapiroWilkTest(X3)
@test t3.W ≈ t.W
@test pvalue(t3) ≈ pvalue(t)
@test pvalue(t3) ≠ pvalue(ShapiroWilkTest(X3, sorted=true))
end
end
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 7655 | using HypothesisTests, Test
@testset "Show" begin
# based on power_divergence.jl tests
d = [[762,484] [327,239] [468,477]]
m = PowerDivergenceTest(d)
if VERSION < v"1.4"
@test sprint(show, m, context=:compact => true) ==
"""
Pearson's Chi-square Test
-------------------------
Population details:
parameter of interest: Multinomial Probabilities
value under h_0: [0.255231, 0.19671, 0.11594, 0.0893561, 0.193574, 0.14919]
point estimate: [0.276387, 0.175553, 0.118607, 0.0866884, 0.16975, 0.173014]
95% confidence interval: Tuple{Float64,Float64}[(0.2545, 0.2994), (0.1573, 0.1955), (0.1033, 0.1358), (0.07357, 0.1019), (0.1517, 0.1894), (0.1548, 0.1928)]
Test summary:
outcome with 95% confidence: reject h_0
one-sided p-value: <1e-6
Details:
Sample size: 2757
statistic: 30.070149095754687
degrees of freedom: 2
residuals: [2.19886, -2.50467, 0.41137, -0.468583, -2.84324, 3.23867]
std. residuals: [4.50205, -4.50205, 0.699452, -0.699452, -5.31595, 5.31595]
"""
d = [ 20, 15, 25 ]
m = PowerDivergenceTest(d)
@test sprint(show, m, context=:compact => true) ==
"""
Pearson's Chi-square Test
-------------------------
Population details:
parameter of interest: Multinomial Probabilities
value under h_0: [0.333333, 0.333333, 0.333333]
point estimate: [0.333333, 0.25, 0.416667]
95% confidence interval: Tuple{Float64,Float64}[(0.2167, 0.481), (0.1333, 0.3976), (0.3, 0.5643)]
Test summary:
outcome with 95% confidence: fail to reject h_0
one-sided p-value: 0.2865
Details:
Sample size: 60
statistic: 2.5
degrees of freedom: 2
residuals: [0.0, -1.11803, 1.11803]
std. residuals: [0.0, -1.36931, 1.36931]
"""
elseif VERSION < v"1.6"
@test sprint(show, m, context=:compact => true) ==
"""
Pearson's Chi-square Test
-------------------------
Population details:
parameter of interest: Multinomial Probabilities
value under h_0: [0.255231, 0.19671, 0.11594, 0.0893561, 0.193574, 0.14919]
point estimate: [0.276387, 0.175553, 0.118607, 0.0866884, 0.16975, 0.173014]
95% confidence interval: [(0.2545, 0.2994), (0.1573, 0.1955), (0.1033, 0.1358), (0.07357, 0.1019), (0.1517, 0.1894), (0.1548, 0.1928)]
Test summary:
outcome with 95% confidence: reject h_0
one-sided p-value: <1e-6
Details:
Sample size: 2757
statistic: 30.070149095754687
degrees of freedom: 2
residuals: [2.19886, -2.50467, 0.41137, -0.468583, -2.84324, 3.23867]
std. residuals: [4.50205, -4.50205, 0.699452, -0.699452, -5.31595, 5.31595]
"""
d = [ 20, 15, 25 ]
m = PowerDivergenceTest(d)
@test sprint(show, m, context=:compact => true) ==
"""
Pearson's Chi-square Test
-------------------------
Population details:
parameter of interest: Multinomial Probabilities
value under h_0: [0.333333, 0.333333, 0.333333]
point estimate: [0.333333, 0.25, 0.416667]
95% confidence interval: [(0.2167, 0.481), (0.1333, 0.3976), (0.3, 0.5643)]
Test summary:
outcome with 95% confidence: fail to reject h_0
one-sided p-value: 0.2865
Details:
Sample size: 60
statistic: 2.5
degrees of freedom: 2
residuals: [0.0, -1.11803, 1.11803]
std. residuals: [0.0, -1.36931, 1.36931]
"""
else
@test sprint(show, m, context=:compact => true) ==
"""
Pearson's Chi-square Test
-------------------------
Population details:
parameter of interest: Multinomial Probabilities
value under h_0: [0.255231, 0.19671, 0.11594, 0.0893561, 0.193574, 0.14919]
point estimate: [0.276387, 0.175553, 0.118607, 0.0866884, 0.16975, 0.173014]
95% confidence interval: [(0.2545, 0.2994), (0.1573, 0.1955), (0.1033, 0.1358), (0.07357, 0.1019), (0.1517, 0.1894), (0.1548, 0.1928)]
Test summary:
outcome with 95% confidence: reject h_0
one-sided p-value: <1e-06
Details:
Sample size: 2757
statistic: 30.070149095754687
degrees of freedom: 2
residuals: [2.19886, -2.50467, 0.41137, -0.468583, -2.84324, 3.23867]
std. residuals: [4.50205, -4.50205, 0.699452, -0.699452, -5.31595, 5.31595]
"""
d = [ 20, 15, 25 ]
m = PowerDivergenceTest(d)
@test sprint(show, m, context=:compact => true) ==
"""
Pearson's Chi-square Test
-------------------------
Population details:
parameter of interest: Multinomial Probabilities
value under h_0: [0.333333, 0.333333, 0.333333]
point estimate: [0.333333, 0.25, 0.416667]
95% confidence interval: [(0.2167, 0.481), (0.1333, 0.3976), (0.3, 0.5643)]
Test summary:
outcome with 95% confidence: fail to reject h_0
one-sided p-value: 0.2865
Details:
Sample size: 60
statistic: 2.5
degrees of freedom: 2
residuals: [0.0, -1.11803, 1.11803]
std. residuals: [0.0, -1.36931, 1.36931]
"""
end
# based on t.jl tests
tst = OneSampleTTest(-5:10)
@test sprint(show, tst) ==
"""
One sample t-test
-----------------
Population details:
parameter of interest: Mean
value under h_0: 0
point estimate: 2.5
95% confidence interval: (-0.03693, 5.037)
Test summary:
outcome with 95% confidence: fail to reject h_0
two-sided p-value: 0.0530
Details:
number of observations: 16
t-statistic: 2.100420126042015
degrees of freedom: 15
empirical standard error: 1.1902380714238083
"""
# issue #248
x = [
6.598170000000001e-7,
6.9452e-7,
2.41933e-7,
2.4264999999999997e-7,
4.830650000000001e-7,
2.67262e-7,
2.5027699999999996e-7,
2.51241e-7,
2.67511e-7,
2.27148e-7,
2.41169e-7,
2.56646e-7,
4.31067e-7,
2.2686500000000001e-7,
2.35553e-7,
2.32062e-7,
7.36284e-7,
]
y = [
3.59147e-7,
2.75594e-7,
1.63942e-7,
1.7980399999999999e-7,
2.82113e-7,
1.6574299999999998e-7,
1.60492e-7,
1.61266e-7,
2.12196e-7,
1.51524e-7,
1.86578e-7,
2.1346e-7,
1.59902e-7,
1.50073e-7,
1.64e-7,
1.42769e-7,
1.70032e-7,
]
tst = UnequalVarianceTTest(x, y)
@test sprint(show, tst) ==
"""
Two sample t-test (unequal variance)
------------------------------------
Population details:
parameter of interest: Mean difference
value under h_0: 0
point estimate: 1.55673e-7
95% confidence interval: (5.93e-8, 2.52e-7)
Test summary:
outcome with 95% confidence: reject h_0
two-sided p-value: 0.0031
Details:
number of observations: [17,17]
t-statistic: 3.3767280623082523
degrees of freedom: 19.363987783845342
empirical standard error: 4.610162387563106e-8
"""
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 2301 | using HypothesisTests, Test
using HypothesisTests: default_tail
@testset "T-test" begin
@testset "One sample" begin
@test pvalue(OneSampleTTest(-5:5)) == 1
tst = OneSampleTTest(-5:10)
@test abs(pvalue(tst) - 0.0530) <= 1e-4
@test abs(pvalue(tst; tail=:left) - 0.9735) <= 1e-4
@test abs(pvalue(tst; tail=:right) - 0.0265) <= 1e-4
@test default_tail(tst) == :both
show(IOBuffer(), tst)
tst = OneSampleTTest(mean(-5:10), std(-5:10), 16)
@test abs(pvalue(tst) - 0.0530) <= 1e-4
@test all(abs.([confint(tst)...;] - [-0.0369, 5.0369]) .<= 1e-4)
@test all(abs.([confint(tst, level=0.9)...;] - [0.4135, 4.5865]) .<= 1e-4)
c = confint(tst; tail=:left)
@test c[1] == -Inf
@test abs(c[2] - 4.5865) .<= 1e-4
c = confint(tst; tail=:right)
@test abs(c[1] - 0.4135) .<= 1e-4
@test c[2] == Inf
show(IOBuffer(), tst)
tst = OneSampleTTest(-10:5)
@test abs(pvalue(tst) - 0.0530) <= 1e-4
@test abs(pvalue(tst; tail=:left) - 0.0265) <= 1e-4
@test abs(pvalue(tst; tail=:right) - 0.9735) <= 1e-4
@test all(abs.([confint(tst)...] - [-5.0369, 0.0369]) .<= 1e-4)
@test abs.(confint(tst; tail=:left)[2] - (-0.4135)) .<= 1e-4
@test abs.(confint(tst; tail=:right)[1] - (-4.5865)) .<= 1e-4
show(IOBuffer(), tst)
end
@testset "Paired" begin
@test abs(pvalue(OneSampleTTest([1, 1, 2, 1, 0], [0, 1, 1, 1, 0])) - 0.1778) <= 1e-4
end
@testset "Two sample" begin
# From http://en.wikipedia.org/w/index.php?title=Student%27s_t-test&oldid=526762741
a1 = [30.02, 29.99, 30.11, 29.97, 30.01, 29.99]
a2 = [29.89, 29.93, 29.72, 29.98, 30.02, 29.98]
tst = EqualVarianceTTest(a1, a2)
@test tst.df == 10
@test abs(tst.t - 1.959) <= 1e-3
@test abs(pvalue(tst) - 0.078) <= 1e-3
@test all(abs.([confint(tst)...] - [-0.0131, 0.2031]) .<= 1e-4)
@test default_tail(tst) == :both
show(IOBuffer(), tst)
n1 = length(a1)
n2 = length(a2)
m1 = mean(a1)
m2 = mean(a2)
v1 = var(a1)
v2 = var(a2)
tst2 = EqualVarianceTTest(n1, n2, m1, m2, v1, v2)
@test tst.df == tst2.df
@test tst.t == tst2.t
@test pvalue(tst) == pvalue(tst2)
tst = UnequalVarianceTTest(a1, a2)
@test abs(tst.df - 7.03) <= 0.01
@test abs(tst.t - 1.959) <= 1e-3
@test abs(pvalue(tst) - 0.091) <= 1e-3
@test all(abs.([confint(tst)...] - [-0.0196, 0.2096]) .<= 1e-4)
@test default_tail(tst) == :both
show(IOBuffer(), tst)
end
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 2556 | using HypothesisTests
using Test
using Statistics
using DelimitedFiles
@testset "Equality of Variances" begin
# https://en.wikipedia.org/wiki/One-way_analysis_of_variance#Example
groups = [
[6, 8, 4, 5, 3, 4],
[8, 12, 9, 11, 6, 8],
[13, 9, 11, 8, 7, 12]
]
t = OneWayANOVATest(groups...)
@test nobs(t) == fill(6, 3)
@test dof(t) == (2,15)
@test pvalue(t) ≈ 0.002 atol=1e-3
@test occursin("reject h_0", sprint(show, t))
show(IOContext(IOBuffer(), :table => true), t)
show(IOBuffer(), t)
# http://www.real-statistics.com/one-way-analysis-of-variance-anova/confidence-interval-anova/
groups = [
[51, 87, 50, 48, 79, 61, 53],
[82, 91, 92, 80, 52, 79, 73, 74],
[79, 84, 74, 98, 63, 83, 85, 58],
[85, 80, 65, 71, 67, 51],
]
t = OneWayANOVATest(groups...)
@test nobs(t) == [7, 8, 8, 6]
@test dof(t) == (3,25)
@test pvalue(t) ≈ 0.072 atol=1e-3
@test occursin("reject h_0", sprint(show, t))
# http://www.real-statistics.com/one-way-analysis-of-variance-anova/homogeneity-variances/levenes-test/
groups = [
[51, 87, 50, 48, 79, 61, 53, 54],
[82, 91, 92, 80, 52, 79, 73, 74],
[79, 84, 74, 98, 63, 83, 85, 58],
[85, 80, 65, 71, 67, 51, 63, 93],
]
# with means
l = LeveneTest(groups...; statistic=mean)
@test nobs(l) == fill(8, 4)
@test dof(l) == (3,28)
@test pvalue(l) ≈ 0.90357 atol=1e-4
# with medians
l = LeveneTest(groups...; statistic=median)
@test pvalue(l) ≈ 0.97971 atol=1e-4
# with 10% trimmed means
l = LeveneTest(groups...; statistic=v->mean(trim(v, prop=0.1)))
@test pvalue(l) ≈ 0.90357 atol=1e-4
# Fligner-Killeen Test
t = FlignerKilleenTest(groups...)
@test nobs(t) == fill(8, 4)
@test dof(t) == 3
@test pvalue(t) ≈ 0.9878 atol=1e-4
@test HypothesisTests.teststatistic(t) ≈ 0.1311 atol=1e-5
@test occursin("reject h_0", sprint(show, t))
# https://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm
# Columns are gear diameter and batch number
gear = readdlm(joinpath(@__DIR__, "data", "gear.txt"))
samples = reshape(gear[:,1],:,10)
groups2 = tuple((samples[:,i] for i in 1:size(samples,1))...)
# Brown-Forsythe Test
l = BrownForsytheTest(groups2...)
@test nobs(l) == fill(10, 10)
@test dof(l) == (9,90)
@test HypothesisTests.teststatistic(l) ≈ 1.705910 atol=1e-5
@test pvalue(l) ≈ 0.0991 atol=1e-4
@test occursin("reject h_0", sprint(show, l))
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 2126 | using HypothesisTests, Test
using Distributions
@testset "Wald-Wolfowitz test" begin
@testset "Many-Valued Observations" begin
# Get set of dependent observations
x = 1:1000
tst = WaldWolfowitzTest(x)
@test tst.z ≈ -31.575 atol=1e-3
@test pvalue(tst) ≈ 8.052e-219 atol=1e-222
# Test consistency of z-statistics
@test pvalue(tst) == pvalue(Normal(tst.μ, tst.σ), tst.nruns)
@test pvalue(tst, tail=:left) == pvalue(Normal(tst.μ, tst.σ), tst.nruns, tail=:left)
@test pvalue(tst, tail=:right) == pvalue(Normal(tst.μ, tst.σ), tst.nruns, tail=:right)
expected_output = """
Wald-Wolfowitz Test
-------------------
Population details:
parameter of interest: Number of runs
value under h_0: 501.0
point estimate: 2
Test summary:
outcome with 95% confidence: reject h_0
two-sided p-value: <1e-99
Details:
number of runs: 2
z-statistic: -31.575338477995764
"""
output = sprint(show, tst)
@test output == expected_output
end
@testset "Two-Valued Observations" begin
# equivalent data as above (half under median half over)
x = [falses(500); trues(500)]
tst = WaldWolfowitzTest(x)
@test tst.z ≈ -31.575 atol=1e-3
@test pvalue(tst) ≈ 8.052e-219 atol=1e-222
# Test consistency of z-statistics
@test pvalue(tst) == pvalue(Normal(tst.μ, tst.σ), tst.nruns)
@test pvalue(tst, tail=:left) == pvalue(Normal(tst.μ, tst.σ), tst.nruns, tail=:left)
@test pvalue(tst, tail=:right) == pvalue(Normal(tst.μ, tst.σ), tst.nruns, tail=:right)
expected_output = """
Wald-Wolfowitz Test
-------------------
Population details:
parameter of interest: Number of runs
value under h_0: 501.0
point estimate: 2
Test summary:
outcome with 95% confidence: reject h_0
two-sided p-value: <1e-99
Details:
number of runs: 2
z-statistic: -31.575338477995764
"""
output = sprint(show, tst)
@test output == expected_output
end
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 6260 | using HypothesisTests, Test
@testset "White tests" begin
X = [ 4.18 0.77 1.00;
-3.41 0.73 1.00;
5.75 0.81 1.00;
0.05 0.80 1.00;
-2.18 0.82 1.00;
3.88 0.81 1.00;
0.73 0.77 1.00;
5.70 0.77 1.00;
-0.69 0.83 1.00;
-8.14 0.87 1.00;
5.37 0.99 1.00;
1.87 0.95 1.00;
5.76 0.80 1.00;
-0.79 0.89 1.00;
-13.23 1.21 1.00;
3.97 1.26 1.00;
5.20 0.81 1.00;
3.16 0.61 1.00;
6.41 0.53 1.00;
1.72 0.64 1.00;
2.20 0.75 1.00;
1.06 0.95 1.00;
9.54 0.96 1.00;
-4.75 1.31 1.00;
-5.05 1.04 1.00;
0.48 1.07 1.00;
3.41 1.21 1.00;
-2.21 1.08 1.00;
0.21 1.15 1.00;
-2.37 1.35 1.00;
-1.55 1.24 1.00;
-6.91 1.28 1.00;
-7.62 1.24 1.00;
4.81 1.21 1.00;
3.51 1.07 1.00;
-3.68 0.87 1.00;
-3.42 0.80 1.00;
-6.03 0.92 1.00;
-1.99 0.98 1.00;
3.20 1.13 1.00;
-3.88 1.06 1.00;
-3.35 0.96 1.00;
-3.10 1.05 1.00;
11.14 0.76 1.00;
1.17 0.51 1.00;
11.27 0.59 1.00;
4.56 0.63 1.00;
0.78 0.67 1.00;
3.50 0.69 1.00;
2.40 0.62 1.00;
2.84 0.63 1.00;
6.71 0.71 1.00;
0.63 0.69 1.00;
3.11 0.67 1.00;
-3.90 0.74 1.00;
-0.41 0.76 1.00;
0.85 0.76 1.00;
-3.56 0.76 1.00;
2.26 0.70 1.00;
-1.78 0.73 1.00;
-2.06 0.76 1.00;
-4.62 0.71 1.00;
0.61 0.73 1.00;
-0.56 0.81 1.00;
-6.01 0.78 1.00;
1.59 0.75 1.00;
-2.88 0.82 1.00;
10.44 0.83 1.00;
-0.82 0.86 1.00;
-1.01 1.00 1.00;
-1.80 0.73 1.00;
1.73 0.64 1.00;
7.92 0.65 1.00;
1.11 0.58 1.00;
-0.79 0.62 1.00;
-0.94 0.72 1.00;
4.92 0.66 1.00;
1.16 0.55 1.00;
-0.65 0.62 1.00;
-1.03 0.55 1.00;
-4.58 0.60 1.00;
3.79 0.65 1.00;
6.31 0.61 1.00;
3.66 0.65 1.00;
0.42 0.56 1.00;
6.72 0.53 1.00;
4.79 0.60 1.00;
-1.31 0.52 1.00;
4.59 0.49 1.00;
0.90 0.52 1.00;
-6.49 0.52 1.00;
6.16 0.46 1.00;
-8.35 0.45 1.00;
4.47 0.46 1.00;
1.12 0.39 1.00;
-3.13 0.49 1.00;
12.43 0.42 1.00;
4.36 0.43 1.00;
1.90 0.47 1.00;
-2.14 0.44 1.00 ]
e = [ 5.19346;
2.22296;
3.82622;
2.93541;
0.70453;
1.98955;
0.56655;
1.54306;
0.57363;
-0.13346;
1.68565;
9.24558;
7.39317;
2.45484;
-4.83724;
-0.74742;
-0.22633;
0.51537;
2.82822;
9.35943;
5.38263;
6.59691;
1.79080;
0.54506;
4.06661;
-4.18808;
1.69414;
5.40963;
2.92762;
-2.67351;
-2.74613;
-3.52752;
-4.27775;
2.88245;
-8.12566;
0.08760;
2.20495;
-0.45509;
-0.06959;
1.51330;
1.37878;
-2.33046;
0.35730;
-11.41189;
-0.48083;
1.08917;
2.52333;
1.73218;
15.60426;
-0.15961;
-0.22174;
-1.19174;
13.92022;
1.16044;
0.08087;
-5.81547;
-5.14199;
-5.69918;
-0.36585;
-3.70294;
2.83687;
-1.37631;
-2.55403;
-4.10796;
1.32092;
-1.64056;
-4.09963;
-4.85728;
-1.45496;
-3.12612;
-4.36648;
-3.23379;
5.22893;
5.06730;
-0.63041;
-1.70377;
-5.71335;
-2.76831;
2.20443;
-0.10174;
-2.36727;
-5.49859;
-4.78093;
-3.36665;
5.12027;
-3.03180;
-2.52035;
3.10913;
-3.51388;
-0.70389;
-1.01963;
-8.78989;
2.95170;
-3.95464;
-4.01258;
-1.92315;
-4.94209;
5.29138;
1.28435;
0.28832 ]
atol = 1e-4
w_test = WhiteTest(X, e, type = :linear)
@test pvalue(w_test) ≈ 0.1287 atol=atol
w_test = WhiteTest(X, e, type = :linear_and_squares)
@test pvalue(w_test) ≈ 0.2774 atol=atol
w_test = WhiteTest(X, e)
w_pval = pvalue(w_test)
@test w_pval ≈ 0.3458 atol=atol
refstr = """
White's (or Breusch-Pagan's) test for heteroskedasticity
--------------------------------------------------------
Population details:
parameter of interest: T*R2
value under h_0: 0
point estimate: $(sprint(show, w_test.lm; context=:compact => true))
Test summary:
outcome with 95% confidence: fail to reject h_0
one-sided p-value: $(round(w_pval,digits=4))
Details:
T*R^2 statistic: $(sprint(show, w_test.lm ; context=:compact => true))
degrees of freedom: $(sprint(show, w_test.dof ; context=:compact => true))
type: $(w_test.type)
"""
buffer = IOBuffer()
show(buffer, w_test)
str = String(take!(buffer))
@test str == refstr
@test_throws DimensionMismatch WhiteTest([rand(3) ones(3)], rand(4))
@test_throws ArgumentError WhiteTest(ones(4,1), rand(4))
@test_throws ArgumentError WhiteTest([zeros(4) rand(4)], rand(4))
@test_throws ArgumentError WhiteTest(rand(4,2), rand(4))
bp_test = BreuschPaganTest(X, e)
@test pvalue(bp_test) ≈ 0.1287 atol=atol
show(IOBuffer(), bp_test)
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 4330 | using HypothesisTests, Test
using HypothesisTests: default_tail
@testset "Wilcoxon" begin
@testset "Basic exact test" begin
@test abs(@inferred(pvalue(ExactSignedRankTest([1:10;], [2:2:20;]))) - 0.0020) <= 1e-4
@test abs(@inferred(pvalue(ExactSignedRankTest([2:2:20;], [1:10;]))) - 0.0020) <= 1e-4
@test abs(@inferred(pvalue(ExactSignedRankTest([1:10;], [2:2:16; -1; 1]))) - 0.4316) <= 1e-4
@test abs(@inferred(pvalue(ExactSignedRankTest([2:2:16; -1; 1], [1:10;]))) - 0.4316) <= 1e-4
@test default_tail(ExactSignedRankTest([1:10;], [2:2:20;])) == :both
show(IOBuffer(), ExactSignedRankTest([1:10;], [2:2:20;]))
end
@testset "Exact with ties" begin
@test abs(@inferred(pvalue(ExactSignedRankTest([1:10;], [1:10;]))) - 1) <= 1e-4
@test abs(@inferred(pvalue(ExactSignedRankTest([1:10;], [2:11;]))) - 0.0020) <= 1e-4
@test abs(@inferred(pvalue(ExactSignedRankTest([2:11;], [1:10;]))) - 0.0020) <= 1e-4
@test abs(@inferred(pvalue(ExactSignedRankTest(1:10, [1:5; ones(5)]))) - 0.0625) <= 1e-4
@test abs(@inferred(pvalue(ExactSignedRankTest([1:5; ones(5)], [1:10;]))) - 0.0625) <= 1e-4
show(IOBuffer(), ExactSignedRankTest([1:10;], [1:10;]))
end
@testset "Approximate test" begin
@test abs(@inferred(pvalue(ApproximateSignedRankTest([1:10;], [2:2:20;]))) - 0.005922) <= 1e-6
@test abs(@inferred(pvalue(ApproximateSignedRankTest([2:2:20;], [1:10;]))) - 0.005922) <= 1e-6
@test abs(@inferred(pvalue(ApproximateSignedRankTest([1:10;], [2:2:16; -1; 1]))) - 0.4148) <= 1e-4
@test abs(@inferred(pvalue(ApproximateSignedRankTest([2:2:16; -1; 1], [1:10;]))) - 0.4148) <= 1e-4
@test default_tail(ApproximateSignedRankTest([1:10;], [2:2:20;])) == :both
show(IOBuffer(), ApproximateSignedRankTest([1:10;], [2:2:20;]))
end
@testset "Approximate with ties" begin
@test abs(@inferred(pvalue(ApproximateSignedRankTest([1:10;], [1:10;]))) - 1) <= 1e-4
@test abs(@inferred(pvalue(ApproximateSignedRankTest([1:10;], [2:11;]))) - 0.001904) <= 1e-6
@test abs(@inferred(pvalue(ApproximateSignedRankTest([2:11;], [1:10;]))) - 0.001904) <= 1e-6
@test abs(@inferred(pvalue(ApproximateSignedRankTest([1:10;], [1:5; ones(5)]))) - 0.05906) <= 1e-5
@test abs(@inferred(pvalue(ApproximateSignedRankTest([1:5; ones(5)], 1:10))) - 0.05906) <= 1e-5
show(IOBuffer(), ApproximateSignedRankTest([1:10;], [1:10;]))
end
@testset "Tests for automatic selection" begin
@test abs(@inferred(pvalue(SignedRankTest([1:10;], [2:2:20;]))) - 0.0020) <= 1e-4
@test abs(@inferred(pvalue(SignedRankTest([1:10;], [2:11;]))) - 0.0020) <= 1e-4
@test default_tail(SignedRankTest([1:10;], [2:2:20;])) == :both
show(IOBuffer(), SignedRankTest([1:10;], [2:2:20;]))
end
@testset "One Sample tests" begin
# P-value computed using R wilcox.test
@test abs(@inferred(pvalue(SignedRankTest([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] .- 10.1))) - 0.09460449) <= 1e-4
# P-value computed using R wilcox.test
@test abs(@inferred(pvalue(SignedRankTest([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] .- 10.1))) - 0.1928101) <= 1e-4
end
@testset "One Sample tests with ties" begin
# P-value computed using R package exactRankTests wilcox.exact
@test abs(@inferred(pvalue(SignedRankTest([1,2,3,4,5,6,7,10,10,10,10,10,13,14,15] .- 10.1))) - 0.04052734) <= 1e-4
# P-value computed using R wilcox.test
@test abs(@inferred(pvalue(SignedRankTest([1,2,3,4,5,6,7,10,10,10,10,10,13,14,15,16] .- 10.1))) - 0.1021964) <= 1e-4
end
@testset "Issue 128" begin
@test @inferred(pvalue(SignedRankTest([54.5, 54.5, 95.0, 51.5]), tail=:left)) == 1
@test @inferred(pvalue(SignedRankTest([54.5, 54.5, 95.0, 51.5]), tail=:right)) == 0.0625
end
@testset "Test confidence interval" begin
x = [-7.8, -6.9, -4.7, 3.7, 6.5, 8.7, 9.1, 10.1, 10.8, 13.6, 14.4, 16.6, 20.2, 22.4, 23.5]
@test isapprox(@inferred(confint(ExactSignedRankTest(x)))[1], 3.3, atol=1e-4)
@test isapprox(@inferred(confint(ExactSignedRankTest(x)))[2], 15.5, atol=1e-4)
@test isapprox(@inferred(confint(ApproximateSignedRankTest(x)))[1], 3.3, atol=1e-4)
@test isapprox(@inferred(confint(ApproximateSignedRankTest(x)))[2], 15.5, atol=1e-4)
@test isapprox(@inferred(confint(SignedRankTest(x); tail=:left))[1], 4.45, atol=1e-4)
@test isapprox(@inferred(confint(SignedRankTest(x); tail=:right))[2], 14.45, atol=1e-4)
end
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | code | 3515 | using HypothesisTests, Test
using Distributions
using HypothesisTests: default_tail
@testset "Z test" begin
# This is always the null in our tests.
null = Normal(0.0, 1.0)
@testset "One sample" begin
x = -5:5
@test pvalue(OneSampleZTest(x)) == 1
x = -5:10
m, s, n = mean(x), std(x), length(x)
se = s / sqrt(n)
z = (m - 0) / se
tst = OneSampleZTest(x)
@test pvalue(tst) ≈ 2 * min(cdf(null, z), ccdf(null, z))
@test pvalue(tst; tail=:left) ≈ cdf(null, z)
@test pvalue(tst; tail=:right) ≈ ccdf(null, z)
@test default_tail(tst) == :both
show(IOBuffer(), tst)
tst = OneSampleZTest(m, s, n)
@test pvalue(tst) ≈ 2 * min(cdf(null, z), ccdf(null, z))
@test confint(tst)[1] ≈ m + quantile(null, 0.05 / 2) * se
@test confint(tst)[2] ≈ m + cquantile(null, 0.05 / 2) * se
@test confint(tst; level=0.9)[1] ≈ m + quantile(null, 0.10 / 2) * se
@test confint(tst; level=0.9)[2] ≈ m + cquantile(null, 0.10 / 2) * se
@test confint(tst; tail=:left)[1] ≈ -Inf
@test confint(tst; tail=:left)[2] ≈ m + cquantile(null, 0.05) * se
@test confint(tst; tail=:right)[1] ≈ m + quantile(null, 0.05) * se
@test confint(tst; tail=:right)[2] ≈ Inf
@test_throws ArgumentError confint(tst; tail=2)
show(IOBuffer(), tst)
x = -10:5
m, s, n = mean(x), std(x), length(x)
se = s / sqrt(n)
z = (m - 0) / se
tst = OneSampleZTest(x)
@test pvalue(tst) ≈ 2 * min(cdf(null, z), ccdf(null, z))
@test pvalue(tst; tail=:left) ≈ cdf(null, z)
@test pvalue(tst; tail=:right) ≈ ccdf(null, z)
show(IOBuffer(), tst)
tst = OneSampleZTest(m, s, n)
@test pvalue(tst) ≈ 2 * min(cdf(null, z), ccdf(null, z))
@test confint(tst)[1] ≈ m + quantile(null, 0.05 / 2) * se
@test confint(tst)[2] ≈ m + cquantile(null, 0.05 / 2) * se
@test confint(tst; level=0.9)[1] ≈ m + quantile(null, 0.10 / 2) * se
@test confint(tst; level=0.9)[2] ≈ m + cquantile(null, 0.10 / 2) * se
@test confint(tst; tail=:left)[1] ≈ -Inf
@test confint(tst; tail=:left)[2] ≈ m + cquantile(null, 0.05) * se
@test confint(tst; tail=:right)[1] ≈ m + quantile(null, 0.05) * se
@test confint(tst; tail=:right)[2] ≈ Inf
show(IOBuffer(), tst)
end
@testset "Paired samples" begin
x, y = [1, 1, 2, 1, 0], [0, 1, 1, 1, 0]
m, s, n = mean(x - y), std(x - y), length(x - y)
se = s / sqrt(n)
z = (m - 0) / se
tst = OneSampleZTest(x, y)
@test pvalue(tst) ≈ 2 * min(cdf(null, z), ccdf(null, z))
end
@testset "Two sample" begin
a1 = [30.02, 29.99, 30.11, 29.97, 30.01, 29.99]
a2 = [29.89, 29.93, 29.72, 29.98, 30.02, 29.98]
tst = EqualVarianceZTest(a1, a2)
m1, s1sq, n1 = mean(a1), var(a1), length(a1)
m2, s2sq, n2 = mean(a2), var(a2), length(a2)
xbar = (m1 - m2)
avg_var = (n1 - 1) / (n1 + n2 - 2) * s1sq + (n2 - 1) / (n1 + n2 - 2) * s2sq
se = sqrt(avg_var / n1 + avg_var / n2)
z = xbar / se
@test tst.z ≈ z
@test pvalue(tst) ≈ 2 * min(cdf(null, z), ccdf(null, z))
@test pvalue(tst; tail=:left) ≈ cdf(null, z)
@test pvalue(tst; tail=:right) ≈ ccdf(null, z)
@test default_tail(tst) == :both
@test confint(tst)[1] ≈ xbar + quantile(null, 0.05 / 2) * se
@test confint(tst)[2] ≈ xbar + cquantile(null, 0.05 / 2) * se
show(IOBuffer(), tst)
tst = UnequalVarianceZTest(a1, a2)
se = sqrt(s1sq / n1 + s2sq / n2)
z = xbar / se
@test tst.z ≈ z
@test pvalue(tst) ≈ 2 * min(cdf(null, z), ccdf(null, z))
@test pvalue(tst; tail=:left) ≈ cdf(null, z)
@test pvalue(tst; tail=:right) ≈ ccdf(null, z)
@test confint(tst)[1] ≈ xbar + quantile(null, 0.05 / 2) * se
@test confint(tst)[2] ≈ xbar + cquantile(null, 0.05 / 2) * se
show(IOBuffer(), tst)
end
end
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | docs | 1420 | ## HypothesisTests.jl
*HypothesisTests.jl* is a Julia package that implements a wide range of hypothesis tests.
- **Build & Testing Status:**
[![Build Status](https://github.com/JuliaStats/HypothesisTests.jl/actions/workflows/ci.yml/badge.svg?branch=master)](https://github.com/JuliaStats/HypothesisTests.jl/actions/workflows/ci.yml?query=branch%3Amaster)
[![Coverage Status](https://codecov.io/gh/JuliaStats/HypothesisTests.jl/branch/master/graph/badge.svg?token=ztSoTXYVhb)](https://codecov.io/gh/JuliaStats/HypothesisTests.jl)
- **Documentation**: [![][docs-stable-img]][docs-stable-url] [![][docs-latest-img]][docs-latest-url]
[docs-latest-img]: https://img.shields.io/badge/docs-dev-blue.svg
[docs-latest-url]: http://JuliaStats.github.io/HypothesisTests.jl/dev/
[docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg
[docs-stable-url]: http://JuliaStats.github.io/HypothesisTests.jl/stable/
## Quick start
Some examples:
```julia
using HypothesisTests
pvalue(OneSampleTTest(x))
pvalue(OneSampleTTest(x), tail=:left)
pvalue(OneSampleTTest(x), tail=:right)
confint(OneSampleTTest(x))
confint(OneSampleTTest(x, tail=:left))
confint(OneSampleTTest(x, tail=:right))
OneSampleTTest(x).t
OneSampleTTest(x).df
pvalue(OneSampleTTest(x, y))
pvalue(EqualVarianceTTest(x, y))
pvalue(UnequalVarianceTTest(x, y))
pvalue(MannWhitneyUTest(x, y))
pvalue(SignedRankTest(x, y))
pvalue(SignedRankTest(x))
```
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | docs | 211 | # HypothesisTests package
This package implements several hypothesis tests in Julia.
```@contents
Pages = ["methods.md", "parametric.md", "nonparametric.md", "time_series.md", "multivariate.md"]
Depth = 2
```
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | docs | 376 | # Methods
This page documents the generic `confint`, `pvalue` and `testname` methods which are supported
by most tests. Some particular tests support additional arguments: see the
documentation for the relevant methods provided in sections covering these tests.
## Confidence interval
```@docs
confint
```
## p-value
```@docs
pvalue
```
## Test name
```@docs
testname
```
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | docs | 402 | # Multivariate tests
## Hotelling's ``T^2`` test
```@docs
OneSampleHotellingT2Test
EqualCovHotellingT2Test
UnequalCovHotellingT2Test
```
## Equality of covariance matrices
Bartlett's test for equality of two covariance matrices is provided.
This is equivalent to Box's ``M``-test for two groups.
```@docs
BartlettTest
```
## Correlation and partial correlation test
```@docs
CorrelationTest
```
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | docs | 1112 | # Nonparametric tests
## Anderson-Darling test
Available are both one-sample and ``k``-sample tests.
```@docs
OneSampleADTest
KSampleADTest
```
## Binomial test
```@docs
BinomialTest
confint(::BinomialTest)
```
## Fisher exact test
```@docs
FisherExactTest
confint(::FisherExactTest)
pvalue(::FisherExactTest)
```
## Kolmogorov-Smirnov test
Available are an exact one-sample test and approximate (i.e. asymptotic) one- and two-sample
tests.
```@docs
ExactOneSampleKSTest
ApproximateOneSampleKSTest
ApproximateTwoSampleKSTest
```
## Kruskal-Wallis rank sum test
```@docs
KruskalWallisTest
```
## Mann-Whitney U test
```@docs
MannWhitneyUTest
ExactMannWhitneyUTest
ApproximateMannWhitneyUTest
```
## Sign test
```@docs
SignTest
```
## Wald-Wolfowitz independence test
```@docs
WaldWolfowitzTest
```
## Wilcoxon signed rank test
```@docs
SignedRankTest
ExactSignedRankTest
ApproximateSignedRankTest
```
## Permutation test
```@docs
ExactPermutationTest
ApproximatePermutationTest
```
## Fligner-Killeen test
```@docs
FlignerKilleenTest
```
## Shapiro-Wilk test
```@docs
ShapiroWilkTest
```
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | docs | 618 | # Parametric tests
```@setup ht
using HypothesisTests
```
## Power divergence test
```@docs
PowerDivergenceTest
confint(::PowerDivergenceTest)
```
## Pearson chi-squared test
```@docs
ChisqTest
```
## Multinomial likelihood ratio test
```@docs
MultinomialLRTest
```
## t-test
```@docs
OneSampleTTest
EqualVarianceTTest
UnequalVarianceTTest
```
## z-test
```@docs
OneSampleZTest
EqualVarianceZTest
UnequalVarianceZTest
```
## F-test
```@docs
VarianceFTest
```
## One-way ANOVA Test
```@docs
OneWayANOVATest
```
## Levene's Test
```@docs
LeveneTest
```
## Brown-Forsythe Test
```@docs
BrownForsytheTest
```
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.11.3 | 6c3ce99fdbaf680aa6716f4b919c19e902d67c9c | docs | 465 | # Time series tests
## Durbin-Watson test
```@docs
DurbinWatsonTest
```
## Box-Pierce and Ljung-Box tests
```@docs
BoxPierceTest
LjungBoxTest
```
## Breusch-Godfrey test
```@docs
BreuschGodfreyTest
```
## Jarque-Bera test
```@docs
JarqueBeraTest
```
## Augmented Dickey-Fuller test
```@docs
ADFTest
```
## Clark-West test
```@docs
ClarkWestTest
```
## Diebold-Mariano test
```@docs
DieboldMarianoTest
```
## White test
```@docs
WhiteTest
BreuschPaganTest
```
| HypothesisTests | https://github.com/JuliaStats/HypothesisTests.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 874 | using Documenter
# Print `@debug` statements (https://github.com/JuliaDocs/Documenter.jl/issues/955)
if haskey(ENV, "GITHUB_ACTIONS")
ENV["JULIA_DEBUG"] = "Documenter"
end
using MCMCDiagnosticTools
DocMeta.setdocmeta!(
MCMCDiagnosticTools, :DocTestSetup, :(using MCMCDiagnosticTools); recursive=true
)
makedocs(;
modules=[MCMCDiagnosticTools],
authors="David Widmann",
repo=Remotes.GitHub("TuringLang", "MCMCDiagnosticTools.jl"),
sitename="MCMCDiagnosticTools.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://turinglang.github.io/MCMCDiagnosticTools.jl",
assets=String[],
),
pages=["Home" => "index.md"],
warnonly=:footnote,
checkdocs=:exports,
)
deploydocs(;
repo="github.com/TuringLang/MCMCDiagnosticTools.jl", push_preview=true, devbranch="main"
)
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 883 | module MCMCDiagnosticTools
using AbstractFFTs: AbstractFFTs
using DataAPI: DataAPI
using DataStructures: DataStructures
using Distributions: Distributions
using MLJModelInterface: MLJModelInterface as MMI
using SpecialFunctions: SpecialFunctions
using StatsBase: StatsBase
using StatsFuns: StatsFuns, sqrt2
using Tables: Tables
using LinearAlgebra: LinearAlgebra
using Random: Random
using Statistics: Statistics
export bfmi
export discretediag
export ess, ess_rhat, rhat, AutocovMethod, FFTAutocovMethod, BDAAutocovMethod
export gelmandiag, gelmandiag_multivariate
export gewekediag
export heideldiag
export mcse
export rafterydiag
export rstar
include("utils.jl")
include("bfmi.jl")
include("discretediag.jl")
include("ess_rhat.jl")
include("gelmandiag.jl")
include("gewekediag.jl")
include("heideldiag.jl")
include("mcse.jl")
include("rafterydiag.jl")
include("rstar.jl")
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 1984 | """
bfmi(energy::AbstractVector{<:Real}) -> Real
bfmi(energy::AbstractMatrix{<:Real}; dims::Int=1) -> AbstractVector{<:Real}
Calculate the estimated Bayesian fraction of missing information (BFMI).
When sampling with Hamiltonian Monte Carlo (HMC), BFMI quantifies how well momentum
resampling matches the marginal energy distribution.
The current advice is that values smaller than 0.3 indicate poor sampling.
However, this threshold is provisional and may change.
A BFMI value below the threshold often indicates poor adaptation of sampling parameters or
that the target distribution has heavy tails that were not well explored by the Markov
chain.
For more information, see Section 6.1 of [^Betancourt2018] or [^Betancourt2016] for a
complete account.
`energy` is either a vector of Hamiltonian energies of draws or a matrix of energies of
draws for multiple chains.
`dims` indicates the dimension in `energy` that contains the draws.
The default `dims=1` assumes `energy` has the shape `draws` or `(draws, chains)`.
If a different shape is provided, `dims` must be set accordingly.
If `energy` is a vector, a single BFMI value is returned.
Otherwise, a vector of BFMI values for each chain is returned.
[^Betancourt2018]: Betancourt M. (2018).
A Conceptual Introduction to Hamiltonian Monte Carlo.
[arXiv:1701.02434v2](https://arxiv.org/pdf/1701.02434v2.pdf) [stat.ME]
[^Betancourt2016]: Betancourt M. (2016).
Diagnosing Suboptimal Cotangent Disintegrations in Hamiltonian Monte Carlo.
[arXiv:1604.00695v1](https://arxiv.org/pdf/1604.00695v1.pdf) [stat.ME]
"""
function bfmi end
function bfmi(energy::AbstractVector{<:Real})
return Statistics.mean(abs2, diff(energy)) / Statistics.var(energy)
end
function bfmi(energy::AbstractMatrix{<:Real}; dims::Int=1)
energy_diff = diff(energy; dims=dims)
energy_var = Statistics.var(energy; dims=dims)
return dropdims(Statistics.mean(abs2.(energy_diff); dims=dims) ./ energy_var; dims=dims)
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 13404 | function update_hangartner_temp_vars!(u::Matrix{Int}, X::Matrix{Int}, t::Int)
d = size(X, 2)
for j in 1:d
u[X[t, j], j] += 1
end
end
function hangartner_inner(Y::AbstractMatrix, m::Int)
## setup temp vars
n, d = size(Y)
# Count for each category in each chain
u = zeros(Int, m, d)
v = zeros(Int, m, d)
for t in 1:n
# fill out temp vars
update_hangartner_temp_vars!(u, Y, t)
end
phia, chi_stat, m_tot = weiss_sub(u, v, n)
return (n * sum(chi_stat), m_tot)
end
"""
weiss(X::AbstractMatrix)
Assess the convergence of the MCMC chains with the Weiss procedure.
It computes ``\\frac{X^2}{c}`` and evaluates a p-value from the ``\\chi^2`` distribution with ``(|R| − 1)(s − 1)`` degrees of freedom.
"""
function weiss(X::AbstractMatrix)
## number of iterations, number of chains
n, d = size(X)
## mapping of values to integers
v_dict = Dict{eltype(X),Int}()
## max unique categories
mc = map(c -> length(unique(X[:, c])), 1:d)
m = length(unique(X))
## counter of number of unique values in each chain
r0 = 0
## Count for each category in each chain
u = zeros(Int, m, d)
## Number of times a category did not transition in each chain
v = zeros(Int, m, d)
for t in 1:n
for c in 1:d
if !(X[t, c] in keys(v_dict))
r0 += 1
v_dict[X[t, c]] = r0
end
idx1 = v_dict[X[t, c]]
u[idx1, c] += 1
if t > 1
if X[t - 1, c] == X[t, c]
v[idx1, c] += 1
end
end
end
end
phia, chi_stat, m_tot = weiss_sub(u, v, n)
ca = (1 + phia) / (1 - phia)
stat = (n / ca) * sum(chi_stat)
pval = NaN
if ((m_tot - 1) * (d - 1)) >= 1
pval = Distributions.ccdf(Distributions.Chisq((m_tot - 1) * (d - 1)), stat)
end
return (stat, m_tot, pval, ca)
end
function weiss_sub(u::Matrix{Int}, v::Matrix{Int}, t::Int)
m, d = size(u)
nt = 0.0
dt = 0.0
m_tot = 0
mp = zeros(Float64, m, d)
ma = zeros(Float64, m)
phia = 0.0
ca = 0.0
df = 0.0
chi_stat = zeros(Float64, d)
for j in 1:m
p1 = 0.0
p2 = 0.0
for l in 1:d
#aggregate
p1 += v[j, l] / (d * (t - 1))
p2 += u[j, l] / (d * t)
#per chain
mp[j, l] = u[j, l] / t
ma[j] += u[j, l] / (d * t)
end
nt += p1
dt += p2^2
if ma[j] > 0
m_tot += 1
for l in 1:d
chi_stat[l] += (mp[j, l] - ma[j])^2 / ma[j]
end
end
end
phia = 1.0 + (1.0 / t) - ((1 - nt) / (1 - dt))
phia = min(max(phia, 0.0), 1.0 - eps())
return (phia, chi_stat, m_tot)
end
function update_billingsley_temp_vars!(f::Array{Int,3}, X::Matrix{Int}, t::Int)
d = size(X, 2)
for j in 1:d
if t > 1
f[X[t - 1, j], X[t, j], j] += 1
end
end
end
function billingsley_sub(f::Array{Int,3})
df = 0.0
stat = 0.0
m, d = size(f)[2:3]
# marginal transitions, i.e.
# number of transitions from each category
mf = mapslices(sum, f; dims=[2])
# For each category, number of chains for which
# that category was present
A = vec(mapslices((x) -> sum(x .> 0), mf; dims=[3]))
# For each category, number of categories it
# transitioned to
B = vec(mapslices((x) -> sum(x .> 0), mapslices(sum, f; dims=[3]); dims=[2]))
# transition probabilities in each chain
P = f ./ mf
# transition probabilities
mP = (mapslices(sum, f; dims=[3]) ./ mapslices(sum, mf; dims=[3]))
replace!(mP, NaN => 0)
mP = reshape(mP, size(mP)[1:2])
idx = findall((A .* B) .> 0)
for j in idx
#df for billingsley
df += (A[j] - 1) * (B[j] - 1)
#billingsley
for k in idx
if (mP[j, k] > 0.0)
for l in 1:d
if mf[j, 1, l] > 0 && isfinite(P[j, k, l])
stat += mf[j, 1, l] * (P[j, k, l] - mP[j, k])^2 / mP[j, k]
end
end
end
end
end
return (stat, df, mP)
end
function bd_inner(Y::AbstractMatrix, m::Int)
num_iters, num_chains = size(Y)
# Transition matrix for each chain
f = zeros(Int, m, m, num_chains)
for t in 1:num_iters
# fill out temp vars
update_billingsley_temp_vars!(f, Y, t)
end
return billingsley_sub(f)
end
@doc raw"""
simulate_DAR1!(X::Matrix{Int}, phi::Float64, sampler)
Simulate a DAR(1) model independently in each column of `X`.
The DAR(1) model ``(X_t)_{t \geq 0}`` is defined by
```math
X_t = \alpha_t X_{t-1} + (1 - \alpha_t) \epsilon_{t-1},
```
where
```math
\begin{aligned}
X_1 \sim \text{sampler}, \\
\alpha_t \sim \operatorname{Bernoulli}(\phi), \\
\epsilon_{t-1} \sim \text{sampler},
\end{aligned}
```
are independent random variables.
"""
function simulate_DAR1!(X::Matrix{Int}, phi::Float64, sampler)
n = size(X, 1)
n > 0 || error("output matrix must be non-empty")
# for all simulations
@inbounds for j in axes(X, 2)
# sample first value from categorical distribution with probabilities `prob`
X[1, j] = rand(sampler)
for t in 2:n
# compute next value
X[t, j] = if rand() <= phi
# copy previous value with probability `phi`
X[t - 1, j]
else
# sample value with probability `1-phi`
rand(sampler)
end
end
end
return X
end
function simulate_MC(N::Int, P::Matrix{Float64})
X = zeros(Int, N)
n, m = size(P)
X[1] = StatsBase.sample(1:n)
for i in 2:N
X[i] = StatsBase.wsample(1:n, vec(P[X[i - 1], :]))
end
return X
end
function diag_all(
X::AbstractMatrix, method::Symbol, nsim::Int, start_iter::Int, step_size::Int
)
## number of iterations, number of chains
n, d = size(X)
## mapping of values to integers
v_dict = Dict{eltype(X),Int}()
## max unique categories
mc = map(c -> length(unique(X[:, c])), 1:d)
m = length(unique(X))
## counter of number of unique values in each chain
r0 = 0
## Count for each category in each chain
u = zeros(Int, m, d)
## Number of times a category did not transition in each chain
v = zeros(Int, m, d)
## transition matrix for each chain
f = zeros(Int, m, m, d)
length_result = length(start_iter:step_size:n)
result = (
stat=Vector{Float64}(undef, length_result),
df=Vector{Float64}(undef, length_result),
pvalue=Vector{Float64}(undef, length_result),
)
result_iter = 1
for t in 1:n
for c in 1:d
if !(X[t, c] in keys(v_dict))
r0 += 1
v_dict[X[t, c]] = r0
end
idx1 = v_dict[X[t, c]]
u[idx1, c] += 1
if t > 1
idx2 = v_dict[X[t - 1, c]]
f[idx1, idx2, c] += 1
if X[t - 1, c] == X[t, c]
v[idx1, c] += 1
end
end
end
if ((t >= start_iter) && (((t - start_iter) % step_size) == 0))
phia, chi_stat, m_tot = weiss_sub(u, v, t)
hot_stat, df, mP = billingsley_sub(f)
phat = mapslices(sum, u; dims=[2])[:, 1] / sum(mapslices(sum, u; dims=[2]))
ca = (1 + phia) / (1 - phia)
stat = NaN
pval = NaN
df0 = NaN
if method == :hangartner
stat = t * sum(chi_stat)
df0 = (m - 1) * (d - 1)
if m > 1 && !isnan(stat)
pval = Distributions.ccdf(Distributions.Chisq(df0), stat)
end
elseif method == :weiss
stat = (t / ca) * sum(chi_stat)
df0 = (m - 1) * (d - 1)
pval = NaN
if m > 1 && !isnan(stat)
pval = Distributions.ccdf(Distributions.Chisq(df0), stat)
end
elseif method == :DARBOOT
stat = t * sum(chi_stat)
sampler_phat = Distributions.sampler(Distributions.Categorical(phat))
bstats = zeros(nsim)
Y = Matrix{Int}(undef, t, d)
for b in 1:nsim
simulate_DAR1!(Y, phia, sampler_phat)
s = hangartner_inner(Y, m)[1]
@inbounds bstats[b] = s
end
non_nan_bstats = filter(!isnan, bstats)
df0 = Statistics.mean(non_nan_bstats)
pval = Statistics.mean(stat <= x for x in non_nan_bstats)
elseif method == :MCBOOT
bstats = zeros(Float64, nsim)
for b in 1:nsim
Y = reduce(hcat, [simulate_MC(t, mP) for j in 1:d])
s = hangartner_inner(Y, m)[1]
bstats[b] = s
end
non_nan_bstats = filter(!isnan, bstats)
df0 = Statistics.mean(non_nan_bstats)
pval = Statistics.mean(stat <= x for x in non_nan_bstats)
elseif method == :billingsley
stat = hot_stat
df0 = df
if df > 0 && !isnan(hot_stat)
pval = Distributions.ccdf(Distributions.Chisq(df), hot_stat)
end
elseif method == :billingsleyBOOT
stat = hot_stat
bstats = zeros(Float64, nsim)
for b in 1:nsim
Y = reduce(hcat, [simulate_MC(t, mP) for j in 1:d])
(s, sd) = bd_inner(Y, m)[1:2]
bstats[b] = s / sd
end
non_nan_bstats = filter(!isnan, bstats)
df0 = Statistics.mean(non_nan_bstats)
statodf = stat / df
pval = Statistics.mean(statodf <= x for x in non_nan_bstats)
else
error("Unexpected")
end
result.stat[result_iter] = stat
result.df[result_iter] = df0
result.pvalue[result_iter] = pval
result_iter += 1
end
end
return result
end
function discretediag_sub(
c::AbstractArray{<:Real,3},
frac::Real,
method::Symbol,
nsim::Int,
start_iter::Int,
step_size::Int,
)
num_iters, num_chains, num_vars = size(c)
## Between-chain diagnostic
length_results = length(start_iter:step_size:num_iters)
plot_vals_stat = Matrix{Float64}(undef, length_results, num_vars)
plot_vals_pval = Matrix{Float64}(undef, length_results, num_vars)
between_chain_vals = (
stat=Vector{Float64}(undef, num_vars),
df=Vector{Float64}(undef, num_vars),
pvalue=Vector{Float64}(undef, num_vars),
)
for j in 1:num_vars
X = convert(AbstractMatrix{Int}, c[:, :, j])
result = diag_all(X, method, nsim, start_iter, step_size)
plot_vals_stat[:, j] .= result.stat ./ result.df
plot_vals_pval[:, j] .= result.pvalue
between_chain_vals.stat[j] = result.stat[end]
between_chain_vals.df[j] = result.df[end]
between_chain_vals.pvalue[j] = result.pvalue[end]
end
## Within-chain diagnostic
within_chain_vals = (
stat=Matrix{Float64}(undef, num_vars, num_chains),
df=Matrix{Float64}(undef, num_vars, num_chains),
pvalue=Matrix{Float64}(undef, num_vars, num_chains),
)
for k in 1:num_chains
for j in 1:num_vars
x = convert(AbstractVector{Int}, c[:, k, j])
idx1 = 1:round(Int, frac * num_iters)
idx2 = round(Int, num_iters - frac * num_iters + 1):num_iters
x1 = x[idx1]
x2 = x[idx2]
n_min = min(length(x1), length(x2))
Y = [x1[1:n_min] x2[(end - n_min + 1):end]]
result = diag_all(Y, method, nsim, n_min, step_size)
within_chain_vals.stat[j, k] = result.stat[end]
within_chain_vals.df[j, k] = result.df[end]
within_chain_vals.pvalue[j, k] = result.pvalue[end]
end
end
return between_chain_vals, within_chain_vals, plot_vals_stat, plot_vals_pval
end
"""
discretediag(samples::AbstractArray{<:Real,3}; frac=0.3, method=:weiss, nsim=1_000)
Compute discrete diagnostic on `samples` with shape `(draws, chains, parameters)`.
`method` can be one of `:weiss`, `:hangartner`,
`:DARBOOT`, `:MCBOOT`, `:billinsgley`, and `:billingsleyBOOT`.
# References
Benjamin E. Deonovic, & Brian J. Smith. (2017). Convergence diagnostics for MCMC draws of a categorical variable.
"""
function discretediag(
chains::AbstractArray{<:Real,3}; frac::Real=0.3, method::Symbol=:weiss, nsim::Int=1000
)
valid_methods = (:weiss, :hangartner, :DARBOOT, :MCBOOT, :billingsley, :billingsleyBOOT)
method in valid_methods || throw(
ArgumentError("`method` must be one of :" * join(valid_methods, ", :", " and :")),
)
0 < frac < 1 || throw(ArgumentError("`frac` must be in (0,1)"))
num_iters = size(chains, 1)
between_chain_vals, within_chain_vals, _, _ = discretediag_sub(
chains, frac, method, nsim, num_iters, num_iters
)
return between_chain_vals, within_chain_vals
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 24242 | # methods
abstract type AbstractAutocovMethod end
const _DOC_SPLIT_CHAINS = """`split_chains` indicates the number of chains each chain is split into.
When `split_chains > 1`, then the diagnostics check for within-chain convergence. When
`d = mod(draws, split_chains) > 0`, i.e. the chains cannot be evenly split, then 1 draw
is discarded after each of the first `d` splits within each chain."""
"""
AutocovMethod <: AbstractAutocovMethod
The `AutocovMethod` uses a standard algorithm for estimating the mean autocovariance of MCMC
chains.
It is is based on the discussion by [^VehtariGelman2021] and uses the
biased estimator of the autocovariance, as discussed by [^Geyer1992].
[^VehtariGelman2021]: Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P. C. (2021).
Rank-normalization, folding, and localization: An improved ``\\widehat {R}`` for
assessing convergence of MCMC. Bayesian Analysis.
doi: [10.1214/20-BA1221](https://doi.org/10.1214/20-BA1221)
arXiv: [1903.08008](https://arxiv.org/abs/1903.08008)
[^Geyer1992]: Geyer, C. J. (1992). Practical Markov Chain Monte Carlo. Statistical Science, 473-483.
"""
struct AutocovMethod <: AbstractAutocovMethod end
"""
FFTAutocovMethod <: AbstractAutocovMethod
The `FFTAutocovMethod` uses a standard algorithm for estimating the mean autocovariance of
MCMC chains.
The algorithm is the same as the one of [`AutocovMethod`](@ref) but this method uses fast
Fourier transforms (FFTs) for estimating the autocorrelation.
!!! info
To be able to use this method, you have to load a package that implements the
[AbstractFFTs.jl](https://github.com/JuliaMath/AbstractFFTs.jl) interface such
as [FFTW.jl](https://github.com/JuliaMath/FFTW.jl) or
[FastTransforms.jl](https://github.com/JuliaApproximation/FastTransforms.jl).
"""
struct FFTAutocovMethod <: AbstractAutocovMethod end
"""
BDAAutocovMethod <: AbstractAutocovMethod
The `BDAAutocovMethod` uses a standard algorithm for estimating the mean autocovariance of
MCMC chains.
It is is based on the discussion by [^VehtariGelman2021]. and uses the
variogram estimator of the autocorrelation function discussed by [^BDA3].
[^VehtariGelman2021]: Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P. C. (2021).
Rank-normalization, folding, and localization: An improved ``\\widehat {R}`` for
assessing convergence of MCMC. Bayesian Analysis.
doi: [10.1214/20-BA1221](https://doi.org/10.1214/20-BA1221)
arXiv: [1903.08008](https://arxiv.org/abs/1903.08008)
[^BDA3]: Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. CRC press.
"""
struct BDAAutocovMethod <: AbstractAutocovMethod end
# caches
struct AutocovCache{T,S}
samples::Matrix{T}
chain_var::Vector{S}
end
struct FFTAutocovCache{T,S,C,P,I}
samples::Matrix{T}
chain_var::Vector{S}
samples_cache::C
plan::P
invplan::I
end
mutable struct BDAAutocovCache{T,S,M}
samples::Matrix{T}
chain_var::Vector{S}
mean_chain_var::M
end
function build_cache(::AutocovMethod, samples::Matrix, var::Vector)
# check arguments
niter, nchains = size(samples)
length(var) == nchains || throw(DimensionMismatch())
return AutocovCache(samples, var)
end
function build_cache(::FFTAutocovMethod, samples::Matrix, var::Vector)
# check arguments
niter, nchains = size(samples)
length(var) == nchains || throw(DimensionMismatch())
# create cache for FFT
T = complex(eltype(samples))
n = nextprod([2, 3], 2 * niter - 1)
samples_cache = Matrix{T}(undef, n, nchains)
# create plans of FFTs
fft_plan = AbstractFFTs.plan_fft!(samples_cache, 1)
ifft_plan = AbstractFFTs.plan_ifft!(samples_cache, 1)
return FFTAutocovCache(samples, var, samples_cache, fft_plan, ifft_plan)
end
function build_cache(::BDAAutocovMethod, samples::Matrix, var::Vector)
# check arguments
nchains = size(samples, 2)
length(var) == nchains || throw(DimensionMismatch())
return BDAAutocovCache(samples, var, Statistics.mean(var))
end
update!(cache::AutocovCache) = nothing
function update!(cache::FFTAutocovCache)
# copy samples and add zero padding
samples = cache.samples
samples_cache = cache.samples_cache
niter, nchains = size(samples)
n = size(samples_cache, 1)
T = eltype(samples_cache)
@inbounds for j in 1:nchains
for i in 1:niter
samples_cache[i, j] = samples[i, j]
end
for i in (niter + 1):n
samples_cache[i, j] = zero(T)
end
end
# compute unnormalized autocovariance
cache.plan * samples_cache
@. samples_cache = abs2(samples_cache)
cache.invplan * samples_cache
return nothing
end
function update!(cache::BDAAutocovCache)
# recompute mean of within-chain variances
cache.mean_chain_var = Statistics.mean(cache.chain_var)
return nothing
end
function mean_autocov(k::Int, cache::AutocovCache)
# check arguments
samples = cache.samples
niter, nchains = size(samples)
0 ≤ k < niter || throw(ArgumentError("only lags ≥ 0 and < $niter are supported"))
# compute mean of unnormalized autocovariance estimates
firstrange = 1:(niter - k)
lastrange = (k + 1):niter
s = Statistics.mean(1:nchains) do i
return @inbounds LinearAlgebra.dot(
view(samples, firstrange, i), view(samples, lastrange, i)
)
end
# normalize autocovariance estimators by `niter` instead of `niter - k` to obtain biased
# but more stable estimators for all lags as discussed by Geyer (1992)
return s / niter
end
function mean_autocov(k::Int, cache::FFTAutocovCache)
# check arguments
niter, nchains = size(cache.samples)
0 ≤ k < niter || throw(ArgumentError("only lags ≥ 0 and < $niter are supported"))
# compute mean autocovariance
# we use biased but more stable estimators as discussed by Geyer (1992)
samples_cache = cache.samples_cache
chain_var = cache.chain_var
uncorrection_factor = (niter - 1)//niter # undo corrected=true for chain_var
result = Statistics.mean(1:nchains) do i
@inbounds(real(samples_cache[k + 1, i]) / real(samples_cache[1, i])) * chain_var[i]
end
return result * uncorrection_factor
end
function mean_autocov(k::Int, cache::BDAAutocovCache)
# check arguments
samples = cache.samples
niter, nchains = size(samples)
0 ≤ k < niter || throw(ArgumentError("only lags ≥ 0 and < $niter are supported"))
# compute mean autocovariance
n = niter - k
idxs = 1:n
s = Statistics.mean(1:nchains) do j
return sum(idxs) do i
@inbounds abs2(samples[i, j] - samples[k + i, j])
end
end
return cache.mean_chain_var - s / (2 * n)
end
"""
ess(
samples::AbstractArray{<:Union{Missing,Real}};
kind=:bulk,
relative::Bool=false,
autocov_method=AutocovMethod(),
split_chains::Int=2,
maxlag::Int=250,
kwargs...
)
Estimate the effective sample size (ESS) of the `samples` of shape
`(draws, [chains[, parameters...]])` with the `autocov_method`.
Optionally, the `kind` of ESS estimate to be computed can be specified (see below). Some
`kind`s accept additional `kwargs`.
If `relative` is `true`, the relative ESS is returned, i.e. `ess / (draws * chains)`.
$_DOC_SPLIT_CHAINS There must be at least 3 draws in each chain after splitting.
`maxlag` indicates the maximum lag for which autocovariance is computed and must be greater
than 0.
For a given estimand, it is recommended that the ESS is at least `100 * chains` and that
``\\widehat{R} < 1.01``.[^VehtariGelman2021]
See also: [`AutocovMethod`](@ref), [`FFTAutocovMethod`](@ref), [`BDAAutocovMethod`](@ref),
[`rhat`](@ref), [`ess_rhat`](@ref), [`mcse`](@ref)
## Kinds of ESS estimates
If `kind` isa a `Symbol`, it may take one of the following values:
- `:bulk`: basic ESS computed on rank-normalized draws. This kind diagnoses poor convergence
in the bulk of the distribution due to trends or different locations of the chains.
- `:tail`: minimum of the quantile-ESS for the symmetric quantiles where
`tail_prob=0.1` is the probability in the tails. This kind diagnoses poor convergence in
the tails of the distribution. If this kind is chosen, `kwargs` may contain a
`tail_prob` keyword.
- `:basic`: basic ESS, equivalent to specifying `kind=Statistics.mean`.
!!! note
While Bulk-ESS is conceptually related to basic ESS, it is well-defined even if the
chains do not have finite variance.[^VehtariGelman2021] For each parameter,
rank-normalization proceeds by first ranking the inputs using "tied ranking" and then
transforming the ranks to normal quantiles so that the result is standard normally
distributed. This transform is monotonic.
Otherwise, `kind` specifies one of the following estimators, whose ESS is to be estimated:
- `Statistics.mean`
- `Statistics.median`
- `Statistics.std`
- `StatsBase.mad`
- `Base.Fix2(Statistics.quantile, p::Real)`
[^VehtariGelman2021]: Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P. C. (2021).
Rank-normalization, folding, and localization: An improved ``\\widehat {R}`` for
assessing convergence of MCMC. Bayesian Analysis.
doi: [10.1214/20-BA1221](https://doi.org/10.1214/20-BA1221)
arXiv: [1903.08008](https://arxiv.org/abs/1903.08008)
"""
function ess(samples::AbstractArray{<:Union{Missing,Real}}; kind=:bulk, kwargs...)
# if we just call _ess(Val(kind), ...) Julia cannot infer the return type with default
# const-propagation. We keep this type-inferrable by manually dispatching to the cases.
if kind === :bulk
return _ess(Val(:bulk), samples; kwargs...)
elseif kind === :tail
return _ess(Val(:tail), samples; kwargs...)
elseif kind === :basic
return _ess(Val(:basic), samples; kwargs...)
elseif kind isa Symbol
throw(ArgumentError("the `kind` `$kind` is not supported by `ess`"))
else
return _ess(kind, samples; kwargs...)
end
end
function _ess(estimator, samples::AbstractArray{<:Union{Missing,Real}}; kwargs...)
x = _expectand_proxy(estimator, samples)
if x === nothing
throw(ArgumentError("the estimator $estimator is not yet supported by `ess`"))
end
return _ess(Val(:basic), x; kwargs...)
end
function _ess(kind::Val, samples::AbstractArray{<:Union{Missing,Real}}; kwargs...)
return _ess_rhat(kind, samples; kwargs...).ess
end
function _ess(
::Val{:tail}, x::AbstractArray{<:Union{Missing,Real}}; tail_prob::Real=1//10, kwargs...
)
# workaround for https://github.com/JuliaStats/Statistics.jl/issues/136
T = Base.promote_eltype(x, tail_prob)
pl = convert(T, tail_prob / 2)
pu = convert(T, 1 - tail_prob / 2)
S_lower = _ess(Base.Fix2(Statistics.quantile, pl), x; kwargs...)
S_upper = _ess(Base.Fix2(Statistics.quantile, pu), x; kwargs...)
return map(min, S_lower, S_upper)
end
"""
rhat(samples::AbstractArray{Union{Real,Missing}}; kind::Symbol=:rank, split_chains=2)
Compute the ``\\widehat{R}`` diagnostics for each parameter in `samples` of shape
`(draws, [chains[, parameters...]])`.[^VehtariGelman2021]
`kind` indicates the kind of ``\\widehat{R}`` to compute (see below).
$_DOC_SPLIT_CHAINS
See also [`ess`](@ref), [`ess_rhat`](@ref), [`rstar`](@ref)
## Kinds of ``\\widehat{R}``
The following `kind`s are supported:
- `:rank`: maximum of ``\\widehat{R}`` with `kind=:bulk` and `kind=:tail`.
- `:bulk`: basic ``\\widehat{R}`` computed on rank-normalized draws. This kind diagnoses
poor convergence in the bulk of the distribution due to trends or different locations of
the chains.
- `:tail`: ``\\widehat{R}`` computed on draws folded around the median and then
rank-normalized. This kind diagnoses poor convergence in the tails of the distribution
due to different scales of the chains.
- `:basic`: Classic ``\\widehat{R}``.
[^VehtariGelman2021]: Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P. C. (2021).
Rank-normalization, folding, and localization: An improved ``\\widehat {R}`` for
assessing convergence of MCMC. Bayesian Analysis.
doi: [10.1214/20-BA1221](https://doi.org/10.1214/20-BA1221)
arXiv: [1903.08008](https://arxiv.org/abs/1903.08008)
"""
function rhat(samples::AbstractArray{<:Union{Missing,Real}}; kind::Symbol=:rank, kwargs...)
# if we just call _rhat(Val(kind), ...) Julia cannot infer the return type with default
# const-propagation. We keep this type-inferrable by manually dispatching to the cases.
if kind === :rank
return _rhat(Val(:rank), samples; kwargs...)
elseif kind === :bulk
return _rhat(Val(:bulk), samples; kwargs...)
elseif kind === :tail
return _rhat(Val(:tail), samples; kwargs...)
elseif kind === :basic
return _rhat(Val(:basic), samples; kwargs...)
else
return throw(ArgumentError("the `kind` `$kind` is not supported by `rhat`"))
end
end
function _rhat(::Val{:basic}, chains::AbstractArray{<:Union{Missing,Real}}; kwargs...)
# define output array
axes_out = _param_axes(chains)
T = promote_type(eltype(chains), typeof(zero(eltype(chains)) / 1))
rhat = similar(chains, T, axes_out)
if T !== Missing
_rhat_basic!(rhat, chains; kwargs...)
end
return _maybescalar(rhat)
end
function _rhat_basic!(
rhat::AbstractArray{T},
chains::AbstractArray{<:Union{Missing,Real}};
split_chains::Int=2,
) where {T<:Union{Missing,Real}}
# compute size of matrices (each chain may be split!)
niter = size(chains, 1) ÷ split_chains
nchains = split_chains * size(chains, 2)
# define caches for mean and variance
chain_mean = Array{T}(undef, 1, nchains)
chain_var = Array{T}(undef, nchains)
samples = Array{T}(undef, niter, nchains)
# compute correction factor
correctionfactor = (niter - 1)//niter
# for each parameter
for (i, chains_slice) in zip(eachindex(rhat), _eachparam(chains))
# check that no values are missing
if any(x -> x === missing, chains_slice)
rhat[i] = missing
continue
end
# split chains
copyto_split!(samples, chains_slice)
# calculate mean of chains
Statistics.mean!(chain_mean, samples)
# calculate within-chain variance
@inbounds for j in 1:nchains
chain_var[j] = Statistics.var(
view(samples, :, j); mean=chain_mean[j], corrected=true
)
end
W = Statistics.mean(chain_var)
# compute variance estimator var₊, which accounts for between-chain variance as well
# avoid NaN when nchains=1 and set the variance estimator var₊ to the the within-chain variance in that case
var₊ = correctionfactor * W + Statistics.var(chain_mean; corrected=(nchains > 1))
# estimate rhat
rhat[i] = sqrt(var₊ / W)
end
return rhat
end
function _rhat(::Val{:bulk}, x::AbstractArray{<:Union{Missing,Real}}; kwargs...)
return _rhat(Val(:basic), _rank_normalize(x); kwargs...)
end
function _rhat(::Val{:tail}, x::AbstractArray{<:Union{Missing,Real}}; kwargs...)
return _rhat(Val(:bulk), _fold_around_median(x); kwargs...)
end
function _rhat(::Val{:rank}, x::AbstractArray{<:Union{Missing,Real}}; kwargs...)
Rbulk = _rhat(Val(:bulk), x; kwargs...)
Rtail = _rhat(Val(:tail), x; kwargs...)
return map(max, Rtail, Rbulk)
end
"""
ess_rhat(
samples::AbstractArray{<:Union{Missing,Real}};
kind::Symbol=:rank,
kwargs...,
) -> NamedTuple{(:ess, :rhat)}
Estimate the effective sample size and ``\\widehat{R}`` of the `samples` of shape
`(draws, [chains[, parameters...]])`.
When both ESS and ``\\widehat{R}`` are needed, this method is often more efficient than
calling `ess` and `rhat` separately.
See [`rhat`](@ref) for a description of supported `kind`s and [`ess`](@ref) for a
description of `kwargs`.
"""
function ess_rhat(
samples::AbstractArray{<:Union{Missing,Real}}; kind::Symbol=:rank, kwargs...
)
# if we just call _ess_rhat(Val(kind), ...) Julia cannot infer the return type with
# default const-propagation. We keep this type-inferrable by manually dispatching to the
# cases.
if kind === :rank
return _ess_rhat(Val(:rank), samples; kwargs...)
elseif kind === :bulk
return _ess_rhat(Val(:bulk), samples; kwargs...)
elseif kind === :tail
return _ess_rhat(Val(:tail), samples; kwargs...)
elseif kind === :basic
return _ess_rhat(Val(:basic), samples; kwargs...)
else
return throw(ArgumentError("the `kind` `$kind` is not supported by `ess_rhat`"))
end
end
function _ess_rhat(
::Val{:basic},
chains::AbstractArray{<:Union{Missing,Real}};
split_chains::Int=2,
maxlag::Int=250,
kwargs...,
)
# define output arrays
axes_out = _param_axes(chains)
T = promote_type(eltype(chains), typeof(zero(eltype(chains)) / 1))
ess = similar(chains, T, axes_out)
rhat = similar(chains, T, axes_out)
# compute number of iterations (each chain may be split!)
niter = size(chains, 1) ÷ split_chains
if !(niter > 4)
# discard the last pair of autocorrelations, which are poorly estimated and only matter
# when chains have mixed poorly anyways.
# leave the last even autocorrelation as a bias term that reduces variance for
# case of antithetical chains, see below
@warn "number of draws after splitting must be >4 but is $niter. ESS cannot be computed."
fill!(ess, NaN)
_rhat_basic!(rhat, chains; split_chains)
elseif T !== Missing
maxlag > 0 || throw(DomainError(maxlag, "maxlag must be >0."))
maxlag = min(maxlag, niter - 4)
_ess_rhat_basic!(ess, rhat, chains; split_chains, maxlag, kwargs...)
end
return (; ess=_maybescalar(ess), rhat=_maybescalar(rhat))
end
function _ess_rhat_basic!(
ess::TA,
rhat::TA,
chains::AbstractArray{<:Union{Missing,Real}};
relative::Bool=false,
autocov_method::AbstractAutocovMethod=AutocovMethod(),
split_chains::Int=2,
maxlag::Int=250,
) where {T<:Union{Missing,Real},TA<:AbstractArray{T}}
# compute size of matrices (each chain may be split!)
niter = size(chains, 1) ÷ split_chains
nchains = split_chains * size(chains, 2)
ntotal = niter * nchains
# define caches for mean and variance
chain_mean = Array{T}(undef, 1, nchains)
chain_var = Array{T}(undef, nchains)
samples = Array{T}(undef, niter, nchains)
# compute correction factor
correctionfactor = (niter - 1)//niter
# define cache for the computation of the autocorrelation
esscache = build_cache(autocov_method, samples, chain_var)
# set maximum relative ess for antithetic chains, see below
rel_ess_max = log10(oftype(one(T), ntotal))
# for each parameter
for (i, chains_slice) in zip(eachindex(ess), _eachparam(chains))
# check that no values are missing
if any(x -> x === missing, chains_slice)
ess[i] = missing
rhat[i] = missing
continue
end
# split chains
copyto_split!(samples, chains_slice)
# calculate mean of chains
Statistics.mean!(chain_mean, samples)
# calculate within-chain variance
@inbounds for j in 1:nchains
chain_var[j] = Statistics.var(
view(samples, :, j); mean=chain_mean[j], corrected=true
)
end
W = Statistics.mean(chain_var)
# compute variance estimator var₊, which accounts for between-chain variance as well
# avoid NaN when nchains=1 and set the variance estimator var₊ to the the within-chain variance in that case
var₊ = correctionfactor * W + Statistics.var(chain_mean; corrected=(nchains > 1))
inv_var₊ = inv(var₊)
# estimate rhat
rhat[i] = sqrt(var₊ / W)
# center the data around 0
samples .-= chain_mean
# update cache
update!(esscache)
# compute the first two autocorrelation estimates
# by combining autocorrelation (or rather autocovariance) estimates of each chain
ρ_odd = 1 - inv_var₊ * (W - mean_autocov(1, esscache))
ρ_even = one(ρ_odd) # estimate at lag 0 is known
# sum correlation estimates
pₜ = ρ_even + ρ_odd
sum_pₜ = pₜ
k = 2
while k < (maxlag - 1)
# compute subsequent autocorrelation of all chains
# by combining estimates of each chain
ρ_even = 1 - inv_var₊ * (W - mean_autocov(k, esscache))
ρ_odd = 1 - inv_var₊ * (W - mean_autocov(k + 1, esscache))
# stop summation if p becomes non-positive
Δ = ρ_even + ρ_odd
Δ > zero(Δ) || break
# generate a monotone sequence
pₜ = min(Δ, pₜ)
# update sum
sum_pₜ += pₜ
# update indices
k += 2
end
# for antithetic chains
# - reduce variance by averaging truncation to odd lag and truncation to next even lag
# - prevent negative ESS for short chains by ensuring τ is nonnegative
# See discussions in:
# - § 3.2 of Vehtari et al. https://arxiv.org/pdf/1903.08008v5.pdf
# - https://github.com/TuringLang/MCMCDiagnosticTools.jl/issues/40
# - https://github.com/stan-dev/rstan/pull/618
# - https://github.com/stan-dev/stan/pull/2774
ρ_even = maxlag > 1 ? 1 - inv_var₊ * (W - mean_autocov(k, esscache)) : zero(ρ_even)
τ = max(0, 2 * sum_pₜ + max(0, ρ_even) - 1)
# estimate the relative effective sample size
ess[i] = min(inv(τ), rel_ess_max)
end
if !relative
# absolute effective sample size
ess .*= ntotal
end
return (; ess, rhat)
end
function _ess_rhat(::Val{:bulk}, x::AbstractArray{<:Union{Missing,Real}}; kwargs...)
return _ess_rhat(Val(:basic), _rank_normalize(x); kwargs...)
end
function _ess_rhat(
kind::Val{:tail},
x::AbstractArray{<:Union{Missing,Real}};
split_chains::Int=2,
kwargs...,
)
S = _ess(kind, x; split_chains=split_chains, kwargs...)
R = _rhat(kind, x; split_chains=split_chains)
return (ess=S, rhat=R)
end
function _ess_rhat(
::Val{:rank}, x::AbstractArray{<:Union{Missing,Real}}; split_chains::Int=2, kwargs...
)
Sbulk, Rbulk = _ess_rhat(Val(:bulk), x; split_chains=split_chains, kwargs...)
Rtail = _rhat(Val(:tail), x; split_chains=split_chains)
Rrank = map(max, Rtail, Rbulk)
return (ess=Sbulk, rhat=Rrank)
end
# Compute an expectand `z` such that ``\\textrm{mean-ESS}(z) ≈ \\textrm{f-ESS}(x)``.
# If no proxy expectand for `f` is known, `nothing` is returned.
_expectand_proxy(f, x) = nothing
_expectand_proxy(::typeof(Statistics.mean), x) = x
function _expectand_proxy(::typeof(Statistics.median), x)
y = similar(x)
# avoid using the `dims` keyword for median because it
# - can error for Union{Missing,Real} (https://github.com/JuliaStats/Statistics.jl/issues/8)
# - is type-unstable (https://github.com/JuliaStats/Statistics.jl/issues/39)
for (xi, yi) in zip(_eachparam(x), _eachparam(y))
yi .= xi .≤ Statistics.median(vec(xi))
end
return y
end
function _expectand_proxy(::typeof(Statistics.std), x)
return (x .- Statistics.mean(x; dims=_sample_dims(x))) .^ 2
end
function _expectand_proxy(::typeof(StatsBase.mad), x)
x_folded = _fold_around_median(x)
return _expectand_proxy(Statistics.median, x_folded)
end
function _expectand_proxy(f::Base.Fix2{typeof(Statistics.quantile),<:Real}, x)
y = similar(x)
# currently quantile does not support a dims keyword argument
for (xi, yi) in zip(_eachparam(x), _eachparam(y))
if any(ismissing, xi)
# quantile function raises an error if there are missing values
fill!(yi, missing)
else
yi .= xi .≤ f(vec(xi))
end
end
return y
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 4076 | function _gelmandiag(psi::AbstractArray{<:Real,3}; alpha::Real=0.05)
niters, nchains, nparams = size(psi)
nchains > 1 || error("Gelman diagnostic requires at least 2 chains")
rfixed = (niters - 1) / niters
rrandomscale = (nchains + 1) / (nchains * niters)
# `eachslice(psi; dims=2)` breaks type inference
S2 = map(x -> Statistics.cov(x; dims=1), (view(psi, :, i, :) for i in axes(psi, 2)))
W = Statistics.mean(S2)
psibar = dropdims(Statistics.mean(psi; dims=1); dims=1)
B = niters .* Statistics.cov(psibar)
w = LinearAlgebra.diag(W)
b = LinearAlgebra.diag(B)
s2 = mapreduce(LinearAlgebra.diag, hcat, S2)'
psibar2 = vec(Statistics.mean(psibar; dims=1))
var_w = vec(Statistics.var(s2; dims=1)) ./ nchains
var_b = (2 / (nchains - 1)) .* b .^ 2
var_wb =
(niters / nchains) .* (
LinearAlgebra.diag(Statistics.cov(s2, psibar .^ 2)) .-
2 .* psibar2 .* LinearAlgebra.diag(Statistics.cov(s2, psibar))
)
V = @. rfixed * w + rrandomscale * b
var_V = rfixed^2 * var_w + rrandomscale^2 * var_b + 2 * rfixed * rrandomscale * var_wb
df = @. 2 * V^2 / var_V
B_df = nchains - 1
W_df = @. 2 * w^2 / var_w
estimates = Array{Float64}(undef, nparams)
upperlimits = Array{Float64}(undef, nparams)
q = 1 - alpha / 2
for i in 1:nparams
correction = (df[i] + 3) / (df[i] + 1)
rrandom = rrandomscale * b[i] / w[i]
estimates[i] = sqrt(correction * (rfixed + rrandom))
if !isnan(rrandom)
rrandom *= Distributions.quantile(Distributions.FDist(B_df, W_df[i]), q)
end
upperlimits[i] = sqrt(correction * (rfixed + rrandom))
end
return estimates, upperlimits, W, B
end
"""
gelmandiag(samples::AbstractArray{<:Real,3}; alpha::Real=0.95)
Compute the Gelman, Rubin and Brooks diagnostics [^Gelman1992] [^Brooks1998] on `samples`
with shape `(draws, chains, parameters)`. Values of the
diagnostic’s potential scale reduction factor (PSRF) that are close to one suggest
convergence. As a rule-of-thumb, convergence is rejected if the 97.5 percentile of a PSRF
is greater than 1.2.
[^Gelman1992]: Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical science, 7(4), 457-472.
[^Brooks1998]: Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of computational and graphical statistics, 7(4), 434-455.
"""
function gelmandiag(chains::AbstractArray{<:Real,3}; kwargs...)
estimates, upperlimits = _gelmandiag(chains; kwargs...)
return (psrf=estimates, psrfci=upperlimits)
end
"""
gelmandiag_multivariate(samples::AbstractArray{<:Real,3}; alpha::Real=0.05)
Compute the multivariate Gelman, Rubin and Brooks diagnostics on `samples` with shape
`(draws, chains, parameters)`.
"""
function gelmandiag_multivariate(chains::AbstractArray{<:Real,3}; kwargs...)
niters, nchains, nparams = size(chains)
if nparams < 2
error(
"computation of the multivariate potential scale reduction factor requires ",
"at least two variables",
)
end
estimates, upperlimits, W, B = _gelmandiag(chains; kwargs...)
# compute multivariate potential scale reduction factor (PSRF)
# the eigenvalues of `X := W⁻¹ B` and `Y := L⁻¹ B L⁻ᵀ = L⁻¹ Bᵀ L⁻ᵀ = L⁻¹ (L⁻¹ B)ᵀ`,
# where `W = L Lᵀ`, are identical but `Y` is symmetric whereas `X` is not in general
# (remember, `W` and `B` are symmetric positive semi-definite matrices)
# for symmetric matrices specialized implementations for computing eigenvalues are used
rfixed = (niters - 1) / niters
rrandomscale = (nchains + 1) / (nchains * niters)
C = LinearAlgebra.cholesky(LinearAlgebra.Symmetric(W))
L = C.L
Y = L \ (L \ LinearAlgebra.Symmetric(B))'
λmax = LinearAlgebra.eigmax(LinearAlgebra.Symmetric(Y))
multivariate = rfixed + rrandomscale * λmax
return (psrf=estimates, psrfci=upperlimits, psrfmultivariate=multivariate)
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 1725 | """
gewekediag(x::AbstractVector{<:Real}; first::Real=0.1, last::Real=0.5, kwargs...)
Compute the Geweke diagnostic [^Geweke1991] from the `first` and `last` proportion of
samples `x`.
The diagnostic is designed to asses convergence of posterior means estimated with
autocorrelated samples. It computes a normal-based test statistic comparing the sample
means in two windows containing proportions of the first and last iterations. Users should
ensure that there is sufficient separation between the two windows to assume that their
samples are independent. A non-significant test p-value indicates convergence. Significant
p-values indicate non-convergence and the possible need to discard initial samples as a
burn-in sequence or to simulate additional samples.
`kwargs` are forwarded to [`mcse`](@ref).
[^Geweke1991]: Geweke, J. F. (1991). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments (No. 148). Federal Reserve Bank of Minneapolis.
"""
function gewekediag(x::AbstractVector{<:Real}; first::Real=0.1, last::Real=0.5, kwargs...)
0 < first < 1 || throw(ArgumentError("`first` is not in (0, 1)"))
0 < last < 1 || throw(ArgumentError("`last` is not in (0, 1)"))
first + last <= 1 || throw(ArgumentError("`first` and `last` proportions overlap"))
n = length(x)
x1 = x[1:round(Int, first * n)]
x2 = x[round(Int, n - last * n + 1):n]
s = hypot(
Base.first(mcse(reshape(x1, :, 1, 1); split_chains=1, kwargs...)),
Base.first(mcse(reshape(x2, :, 1, 1); split_chains=1, kwargs...)),
)
z = (Statistics.mean(x1) - Statistics.mean(x2)) / s
p = SpecialFunctions.erfc(abs(z) / sqrt2)
return (zscore=z, pvalue=p)
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 2324 | """
heideldiag(
x::AbstractVector{<:Real}; alpha::Real=0.05, eps::Real=0.1, start::Int=1, kwargs...
)
Compute the Heidelberger and Welch diagnostic [^Heidelberger1983]. This diagnostic tests for
non-convergence (non-stationarity) and whether ratios of estimation interval halfwidths to
means are within a target ratio. Stationarity is rejected (0) for significant test p-values.
Halfwidth tests are rejected (0) if observed ratios are greater than the target, as is the
case for `s2` and `beta[1]`.
`kwargs` are forwarded to [`mcse`](@ref).
[^Heidelberger1983]: Heidelberger, P., & Welch, P. D. (1983). Simulation run length control in the presence of an initial transient. Operations Research, 31(6), 1109-1144.
"""
function heideldiag(
x::AbstractVector{<:Real}; alpha::Real=1//20, eps::Real=0.1, start::Int=1, kwargs...
)
n = length(x)
delta = trunc(Int, 0.10 * n)
y = x[trunc(Int, n / 2):end]
T = typeof(zero(eltype(x)) / 1)
s = first(mcse(reshape(y, :, 1, 1); split_chains=1, kwargs...))
S0 = length(y) * s^2
i, pvalue, converged, ybar = 1, one(T), false, T(NaN)
while i < n / 2
y = x[i:end]
m = length(y)
ybar = Statistics.mean(y)
B = cumsum(y) - ybar * collect(1:m)
Bsq = (B .* B) ./ (m * S0)
I = sum(Bsq) / m
pvalue = 1 - T(pcramer(I))
converged = pvalue > alpha
if converged
break
end
i += delta
end
s = first(mcse(reshape(y, :, 1, 1); split_chains=1, kwargs...))
halfwidth = sqrt2 * SpecialFunctions.erfcinv(T(alpha)) * s
passed = halfwidth / abs(ybar) <= eps
return (
burnin=i + start - 2,
stationarity=converged,
pvalue=pvalue,
mean=ybar,
halfwidth=halfwidth,
test=passed,
)
end
## Csorgo S and Faraway JJ. The exact and asymptotic distributions of the
## Cramer-von Mises statistic. Journal of the Royal Statistical Society,
## Series B, 58: 221-234, 1996.
function pcramer(q::Real)
p = 0.0
for k in 0:3
c1 = 4.0 * k + 1.0
c2 = c1^2 / (16.0 * q)
p +=
SpecialFunctions.gamma(k + 0.5) / factorial(k) *
sqrt(c1) *
exp(-c2) *
SpecialFunctions.besselk(0.25, c2)
end
return p / (pi^1.5 * sqrt(q))
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 5908 | const normcdf1 = 0.8413447460685429 # StatsFuns.normcdf(1)
const normcdfn1 = 0.15865525393145705 # StatsFuns.normcdf(-1)
"""
mcse(samples::AbstractArray{<:Union{Missing,Real}}; kind=Statistics.mean, kwargs...)
Estimate the Monte Carlo standard errors (MCSE) of the estimator `kind` applied to `samples`
of shape `(draws, [chains[, parameters...]])`.
See also: [`ess`](@ref)
## Kinds of MCSE estimates
The estimator whose MCSE should be estimated is specified with `kind`. `kind` must accept a
vector of the same `eltype` as `samples` and return a real estimate.
For the following estimators, the effective sample size [`ess`](@ref) and an estimate
of the asymptotic variance are used to compute the MCSE, and `kwargs` are forwarded to
`ess`:
- `Statistics.mean`
- `Statistics.median`
- `Statistics.std`
- `Base.Fix2(Statistics.quantile, p::Real)`
For other estimators, the subsampling bootstrap method (SBM)[^FlegalJones2011][^Flegal2012]
is used as a fallback, and the only accepted `kwargs` are `batch_size`, which indicates the
size of the overlapping batches used to estimate the MCSE, defaulting to
`floor(Int, sqrt(draws * chains))`. Note that SBM tends to underestimate the MCSE,
especially for highly autocorrelated chains. One should verify that autocorrelation is low
by checking the bulk- and tail-ESS values.
[^FlegalJones2011]: Flegal JM, Jones GL. (2011) Implementing MCMC: estimating with confidence.
Handbook of Markov Chain Monte Carlo. pp. 175-97.
[pdf](http://faculty.ucr.edu/~jflegal/EstimatingWithConfidence.pdf)
[^Flegal2012]: Flegal JM. (2012) Applicability of subsampling bootstrap methods in Markov chain Monte Carlo.
Monte Carlo and Quasi-Monte Carlo Methods 2010. pp. 363-72.
doi: [10.1007/978-3-642-27440-4_18](https://doi.org/10.1007/978-3-642-27440-4_18)
"""
function mcse(x::AbstractArray{<:Union{Missing,Real}}; kind=Statistics.mean, kwargs...)
return _mcse(kind, x; kwargs...)
end
_mcse(f, x; kwargs...) = _mcse_sbm(f, x; kwargs...)
function _mcse(
::typeof(Statistics.mean), samples::AbstractArray{<:Union{Missing,Real}}; kwargs...
)
S = _ess(Statistics.mean, samples; kwargs...)
dims = _sample_dims(samples)
return dropdims(Statistics.std(samples; dims=dims); dims=dims) ./ sqrt.(S)
end
function _mcse(
::typeof(Statistics.std), samples::AbstractArray{<:Union{Missing,Real}}; kwargs...
)
dims = _sample_dims(samples)
x = (samples .- Statistics.mean(samples; dims=dims)) .^ 2 # expectand proxy
S = _ess(Statistics.mean, x; kwargs...)
# asymptotic variance of sample variance estimate is Var[var] = E[μ₄] - E[var]²,
# where μ₄ is the 4th central moment
# by the delta method, Var[std] = Var[var] / 4E[var] = (E[μ₄]/E[var] - E[var])/4,
# See e.g. Chapter 3 of Van der Vaart, AW. (200) Asymptotic statistics. Vol. 3.
mean_var = dropdims(Statistics.mean(x; dims=dims); dims=dims)
mean_moment4 = dropdims(Statistics.mean(abs2, x; dims=dims); dims=dims)
return @. sqrt((mean_moment4 / mean_var - mean_var) / S) / 2
end
function _mcse(
f::Base.Fix2{typeof(Statistics.quantile),<:Real},
samples::AbstractArray{<:Union{Missing,Real}};
kwargs...,
)
p = f.x
S = _ess(f, samples; kwargs...)
ndims(samples) < 3 && return _mcse_quantile(vec(samples), p, S)
T = eltype(S)
R = promote_type(eltype(samples), typeof(oneunit(eltype(samples)) / sqrt(oneunit(T))))
values = similar(S, R)
for (i, xi) in zip(eachindex(values, S), _eachparam(samples))
values[i] = _mcse_quantile(vec(xi), p, S[i])
end
return values
end
function _mcse(
::typeof(Statistics.median), samples::AbstractArray{<:Union{Missing,Real}}; kwargs...
)
S = _ess(Statistics.median, samples; kwargs...)
ndims(samples) < 3 && return _mcse_quantile(vec(samples), 1//2, S)
T = eltype(S)
R = promote_type(eltype(samples), typeof(oneunit(eltype(samples)) / sqrt(oneunit(T))))
values = similar(S, R)
for (i, xi) in zip(eachindex(values, S), _eachparam(samples))
values[i] = _mcse_quantile(vec(xi), 1//2, S[i])
end
return values
end
function _mcse_quantile(x, p, Seff)
Seff === missing && return missing
S = length(x)
# quantile error distribution is asymptotically normal; estimate σ (mcse) with 2
# quadrature points: xl and xu, chosen as quantiles so that xu - xl = 2σ
# compute quantiles of error distribution in probability space (i.e. quantiles passed through CDF)
# Beta(α,β) is the approximate error distribution of quantile estimates
α = Seff * p + 1
β = Seff * (1 - p) + 1
prob_x_upper = StatsFuns.betainvcdf(α, β, normcdf1)
prob_x_lower = StatsFuns.betainvcdf(α, β, normcdfn1)
# use inverse ECDF to get quantiles in quantile (x) space
l = max(floor(Int, prob_x_lower * S), 1)
u = min(ceil(Int, prob_x_upper * S), S)
iperm = partialsortperm(x, l:u) # sort as little of x as possible
xl = x[first(iperm)]
xu = x[last(iperm)]
# estimate mcse from quantiles
return (xu - xl) / 2
end
function _mcse_sbm(
f,
x::AbstractArray{<:Union{Missing,Real}};
batch_size::Int=floor(Int, sqrt(size(x, 1) * size(x, 2))),
)
ndims(x) < 3 && return _mcse_sbm(f, vec(x), batch_size)
T = promote_type(eltype(x), typeof(zero(eltype(x)) / 1))
param_dims = _param_dims(x)
axes_out = map(Base.Fix1(axes, x), param_dims)
values = similar(x, T, axes_out)
for (i, xi) in zip(eachindex(values), _eachparam(x))
values[i] = _mcse_sbm(f, vec(xi), batch_size)
end
return values
end
function _mcse_sbm(f, x, batch_size)
any(x -> x === missing, x) && return missing
n = length(x)
i1 = firstindex(x)
v = Statistics.var(
f(view(x, i:(i + batch_size - 1))) for i in i1:(i1 + n - batch_size);
corrected=false,
)
return sqrt(v * (batch_size//n))
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 3591 | @doc raw"""
rafterydiag(
x::AbstractVector{<:Real}; q=0.025, r=0.005, s=0.95, eps=0.001, range=1:length(x)
)
Compute the Raftery and Lewis diagnostic [^Raftery1992]. This diagnostic is used to
determine the number of iterations required to estimate a specified quantile `q` within a
desired degree of accuracy. The diagnostic is designed to determine the number of
autocorrelated samples required to estimate a specified quantile $\theta_q$, such that
$\Pr(\theta \le \theta_q) = q$, within a desired degree of accuracy. In particular, if
$\hat{\theta}_q$ is the estimand and $\Pr(\theta \le \hat{\theta}_q) = \hat{P}_q$ the
estimated cumulative probability, then accuracy is specified in terms of `r` and `s`, where
$\Pr(q - r < \hat{P}_q < q + r) = s$. Thinning may be employed in the calculation of the
diagnostic to satisfy its underlying assumptions. However, users may not want to apply the
same (or any) thinning when estimating posterior summary statistics because doing so results
in a loss of information. Accordingly, sample sizes estimated by the diagnostic tend to be
conservative (too large).
Furthermore, the argument `r` specifies the margin of error for estimated cumulative
probabilities and `s` the probability for the margin of error. `eps` specifies the tolerance
within which the probabilities of transitioning from initial to retained iterations are
within the equilibrium probabilities for the chain. This argument determines the number of
samples to discard as a burn-in sequence and is typically left at its default value.
[^Raftery1992]: A L Raftery and S Lewis. Bayesian Statistics, chapter How Many Iterations in the Gibbs Sampler? Volume 4. Oxford University Press, New York, 1992.
"""
function rafterydiag(
x::AbstractVector{<:Real}; q=0.025, r=0.005, s=0.95, eps=0.001, range=1:length(x)
)
nx = length(x)
phi = sqrt(2.0) * SpecialFunctions.erfinv(s)
nmin = ceil(Int, q * (1.0 - q) * (phi / r)^2)
if nmin > nx
@warn "At least $nmin samples are needed for specified q, r, and s"
kthin = -1
burnin = total = NaN
else
dichot = Int[(x .<= StatsBase.quantile(x, q))...]
kthin = 0
bic = 1.0
local test, ntest
while bic >= 0.0
kthin += 1
test = dichot[1:kthin:nx]
ntest = length(test)
temp = test[1:(ntest - 2)] + 2 * test[2:(ntest - 1)] + 4 * test[3:ntest]
trantest = reshape(StatsBase.counts(temp, 0:7), 2, 2, 2)
g2 = 0.0
for i1 in 1:2, i2 in 1:2, i3 in 1:2
tt = trantest[i1, i2, i3]
if tt > 0
fitted =
sum(trantest[:, i2, i3]) * sum(trantest[i1, i2, :]) /
sum(trantest[:, i2, :])
g2 += 2.0 * tt * log(tt / fitted)
end
end
bic = g2 - 2.0 * log(ntest - 2.0)
end
tranfinal = StatsBase.counts(test[1:(ntest - 1)] + 2 * test[2:ntest], 0:3)
alpha = tranfinal[3] / (tranfinal[1] + tranfinal[3])
beta = tranfinal[2] / (tranfinal[2] + tranfinal[4])
kthin *= step(range)
m = log(eps * (alpha + beta) / max(alpha, beta)) / log(abs(1.0 - alpha - beta))
burnin = kthin * ceil(m) + first(range) - 1
n = ((2.0 - alpha - beta) * alpha * beta * phi^2) / (r^2 * (alpha + beta)^3)
keep = kthin * ceil(n)
total = burnin + keep
end
return (
thinning=kthin, burnin=burnin, total=total, nmin=nmin, dependencefactor=total / nmin
)
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 9803 | """
rstar(
rng::Random.AbstractRNG=Random.default_rng(),
classifier,
samples,
chain_indices::AbstractVector{Int};
subset::Real=0.7,
split_chains::Int=2,
verbosity::Int=0,
)
Compute the ``R^*`` convergence statistic of the table `samples` with the `classifier`.
`samples` must be either an `AbstractMatrix`, an `AbstractVector`, or a table
(i.e. implements the Tables.jl interface) whose rows are draws and whose columns are
parameters.
`chain_indices` indicates the chain ids of each row of `samples`.
This method supports ragged chains, i.e. chains of nonequal lengths.
"""
function rstar(
rng::Random.AbstractRNG,
classifier,
x,
y::AbstractVector{Int};
subset::Real=0.7,
split_chains::Int=2,
verbosity::Int=0,
)
# check the arguments
_check_model_supports_continuous_inputs(classifier)
_check_model_supports_multiclass_targets(classifier)
_check_model_supports_multiclass_predictions(classifier)
MMI.nrows(x) != length(y) && throw(DimensionMismatch())
0 < subset < 1 || throw(ArgumentError("`subset` must be a number in (0, 1)"))
# randomly sub-select training and testing set
ysplit = split_chain_indices(y, split_chains)
train_ids, test_ids = shuffle_split_stratified(rng, ysplit, subset)
0 < length(train_ids) < length(y) ||
throw(ArgumentError("training and test data subsets must not be empty"))
xtable = _astable(x)
ycategorical = MMI.categorical(ysplit)
# train classifier on training data
data = MMI.reformat(classifier, xtable, ycategorical)
train_data = MMI.selectrows(classifier, train_ids, data...)
fitresult, _ = MMI.fit(classifier, verbosity, train_data...)
# compute predictions on test data
# we exploit that MLJ demands that
# reformat(model, args...)[1] = reformat(model, args[1])
# (https://alan-turing-institute.github.io/MLJ.jl/dev/adding_models_for_general_use/#Implementing-a-data-front-end)
test_data = MMI.selectrows(classifier, test_ids, data[1])
predictions = _predict(classifier, fitresult, test_data...)
# compute statistic
ytest = ycategorical[test_ids]
result = _rstar(MMI.scitype(predictions), predictions, ytest)
return result
end
# check that the model supports the inputs and targets, and has predictions of the desired form
function _check_model_supports_continuous_inputs(classifier)
# ideally we would not allow MMI.Unknown but some models do not implement the traits
input_scitype_classifier = MMI.input_scitype(classifier)
if input_scitype_classifier !== MMI.Unknown &&
!(MMI.Table(MMI.Continuous) <: input_scitype_classifier)
throw(
ArgumentError(
"classifier does not support tables of continuous values as inputs"
),
)
end
return nothing
end
function _check_model_supports_multiclass_targets(classifier)
target_scitype_classifier = MMI.target_scitype(classifier)
if target_scitype_classifier !== MMI.Unknown &&
!(AbstractVector{<:MMI.Finite} <: target_scitype_classifier)
throw(
ArgumentError(
"classifier does not support vectors of multi-class labels as targets"
),
)
end
return nothing
end
function _check_model_supports_multiclass_predictions(classifier)
if !(
MMI.predict_scitype(classifier) <: Union{
MMI.Unknown,
AbstractVector{<:MMI.Finite},
AbstractVector{<:MMI.Density{<:MMI.Finite}},
}
)
throw(
ArgumentError(
"classifier does not support vectors of multi-class labels or their densities as predictions",
),
)
end
return nothing
end
_astable(x::AbstractVecOrMat) = Tables.table(x)
_astable(x) = Tables.istable(x) ? x : throw(ArgumentError("Argument is not a valid table"))
# Workaround for https://github.com/JuliaAI/MLJBase.jl/issues/863
# `MLJModelInterface.predict` sometimes returns predictions and sometimes predictions + additional information
# TODO: Remove once the upstream issue is fixed
function _predict(model::MMI.Model, fitresult, x)
y = MMI.predict(model, fitresult, x)
return if :predict in MMI.reporting_operations(model)
first(y)
else
y
end
end
"""
rstar(
rng::Random.AbstractRNG=Random.default_rng(),
classifier,
samples::AbstractArray{<:Real};
subset::Real=0.7,
split_chains::Int=2,
verbosity::Int=0,
)
Compute the ``R^*`` convergence statistic of the `samples` with the `classifier`.
`samples` is an array of draws with the shape `(draws, [chains[, parameters...]])`.`
This implementation is an adaption of algorithms 1 and 2 described by Lambert and Vehtari.
The `classifier` has to be a supervised classifier of the MLJ framework (see the
[MLJ documentation](https://alan-turing-institute.github.io/MLJ.jl/dev/list_of_supported_models/#model_list)
for a list of supported models). It is trained with a `subset` of the samples from each
chain. Each chain is split into `split_chains` separate chains to additionally check for
within-chain convergence. The training of the classifier can be inspected by adjusting the
`verbosity` level.
If the classifier is deterministic, i.e., if it predicts a class, the value of the ``R^*``
statistic is returned (algorithm 1). If the classifier is probabilistic, i.e., if it outputs
probabilities of classes, the scaled Poisson-binomial distribution of the ``R^*`` statistic
is returned (algorithm 2).
!!! note
The correctness of the statistic depends on the convergence of the `classifier` used
internally in the statistic.
# Examples
```jldoctest rstar; setup = :(using Random; Random.seed!(101))
julia> using MLJBase, MLJIteration, EvoTrees, Statistics, StatisticalMeasures
julia> samples = fill(4.0, 100, 3, 2);
```
One can compute the distribution of the ``R^*`` statistic (algorithm 2) with a
probabilistic classifier.
For instance, we can use a gradient-boosted trees model with `nrounds = 100` sequentially stacked trees and learning rate `eta = 0.05`:
```jldoctest rstar
julia> model = EvoTreeClassifier(; nrounds=100, eta=0.05);
julia> distribution = rstar(model, samples);
julia> round(mean(distribution); digits=2)
1.0f0
```
Note, however, that it is recommended to determine `nrounds` based on early-stopping.
With the MLJ framework, this can be achieved in the following way (see the [MLJ documentation](https://alan-turing-institute.github.io/MLJ.jl/dev/controlling_iterative_models/) for additional explanations):
```jldoctest rstar
julia> model = IteratedModel(;
model=EvoTreeClassifier(; eta=0.05),
iteration_parameter=:nrounds,
resampling=Holdout(),
measures=log_loss,
controls=[Step(5), Patience(2), NumberLimit(100)],
retrain=true,
);
julia> distribution = rstar(model, samples);
julia> round(mean(distribution); digits=2)
1.0f0
```
For deterministic classifiers, a single ``R^*`` statistic (algorithm 1) is returned.
Deterministic classifiers can also be derived from probabilistic classifiers by e.g.
predicting the mode. In MLJ this corresponds to a pipeline of models.
```jldoctest rstar
julia> evotree_deterministic = Pipeline(model; operation=predict_mode);
julia> value = rstar(evotree_deterministic, samples);
julia> round(value; digits=2)
1.0
```
# References
Lambert, B., & Vehtari, A. (2020). ``R^*``: A robust MCMC convergence diagnostic with uncertainty using decision tree classifiers.
"""
function rstar(rng::Random.AbstractRNG, classifier, x::AbstractArray; kwargs...)
samples = reshape(x, size(x, 1) * size(x, 2), :)
chain_inds = repeat(axes(x, 2); inner=size(x, 1))
return rstar(rng, classifier, samples, chain_inds; kwargs...)
end
function rstar(classifier, x, y::AbstractVector{Int}; kwargs...)
return rstar(Random.default_rng(), classifier, x, y; kwargs...)
end
# Fix method ambiguity issue
function rstar(rng::Random.AbstractRNG, classifier, x::AbstractVector{Int}; kwargs...)
samples = reshape(x, length(x), :)
chain_inds = ones(Int, length(x))
return rstar(rng, classifier, samples, chain_inds; kwargs...)
end
function rstar(classifier, x::AbstractArray; kwargs...)
return rstar(Random.default_rng(), classifier, x; kwargs...)
end
# R⋆ for deterministic predictions (algorithm 1)
function _rstar(
::Type{<:AbstractVector{<:MMI.Finite}},
predictions::AbstractVector,
ytest::AbstractVector,
)
length(predictions) == length(ytest) ||
error("numbers of predictions and targets must be equal")
mean_accuracy = Statistics.mean(p == y for (p, y) in zip(predictions, ytest))
nclasses = length(MMI.classes(ytest))
return nclasses * mean_accuracy
end
# R⋆ for probabilistic predictions (algorithm 2)
function _rstar(
::Type{<:AbstractVector{<:MMI.Density{<:MMI.Finite}}},
predictions::AbstractVector,
ytest::AbstractVector,
)
length(predictions) == length(ytest) ||
error("numbers of predictions and targets must be equal")
# create Poisson binomial distribution with support `0:length(predictions)`
distribution = Distributions.PoissonBinomial(map(Distributions.pdf, predictions, ytest))
# scale distribution to support in `[0, nclasses]`
nclasses = length(MMI.classes(ytest))
scaled_distribution = (nclasses//length(predictions)) * distribution
return scaled_distribution
end
# unsupported types of predictions and targets
function _rstar(::Any, predictions, targets)
throw(
ArgumentError(
"unsupported types of predictions ($(typeof(predictions))) and targets ($(typeof(targets)))",
),
)
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 7204 | """
copyto_split!(out::AbstractMatrix, x::AbstractMatrix)
Copy the elements of matrix `x` to matrix `out`, in which each column of `x` is split across
multiple columns of `out`.
To split each column of `x` into `split` columns, where the size of `x` is `(m, n)`, the
size of `out` must be `(m ÷ split, n * split)`.
If `d = rem(m, split) > 0`, so that `m` is not evenly divisible by `split`, then a single
row of `x` is discarded after each of the first `d` splits for each column.
"""
function copyto_split!(out::AbstractMatrix, x::AbstractMatrix)
# check dimensions
nrows_out, ncols_out = size(out)
nrows_x, ncols_x = size(x)
nsplits, ncols_extra = divrem(ncols_out, ncols_x)
ncols_extra == 0 || throw(
DimensionMismatch(
"the output matrix must have an integer multiple of the number of columns evenly divisible by the those of the input matrix",
),
)
nrows_out2, nrows_discard = divrem(nrows_x, nsplits)
nrows_out == nrows_out2 || throw(
DimensionMismatch(
"the output matrix must have $nsplits times as many rows as as the input matrix",
),
)
if nrows_discard > 0
offset = firstindex(x)
offset_out = firstindex(out)
for _ in 1:ncols_x, k in 1:nsplits
copyto!(out, offset_out, x, offset, nrows_out)
offset += nrows_out + (k ≤ nrows_discard)
offset_out += nrows_out
end
else
copyto!(out, reshape(x, nrows_out, ncols_out))
end
return out
end
"""
unique_indices(x) -> (unique, indices)
Return the results of `unique(collect(x))` along with the a vector of the same length whose
elements are the indices in `x` at which the corresponding unique element in `unique` is
found.
"""
function unique_indices(x)
inds = eachindex(x)
T = eltype(inds)
ind_map = DataStructures.SortedDict{eltype(x),Vector{T}}()
for i in inds
xi = x[i]
inds_xi = get!(ind_map, xi) do
return T[]
end
push!(inds_xi, i)
end
unique = collect(keys(ind_map))
indices = collect(values(ind_map))
return unique, indices
end
"""
split_chain_indices(
chain_inds::AbstractVector{Int},
split::Int=2,
) -> AbstractVector{Int}
Split each chain in `chain_inds` into `split` chains.
For each chain in `chain_inds`, all entries are assumed to correspond to draws that have
been ordered by iteration number. The result is a vector of the same length as `chain_inds`
where each entry is the new index of the chain that the corresponding draw belongs to.
"""
function split_chain_indices(c::AbstractVector{Int}, split::Int=2)
cnew = similar(c)
if split == 1
copyto!(cnew, c)
return cnew
end
_, indices = unique_indices(c)
chain_ind = 1
for inds in indices
ndraws_per_split, rem = divrem(length(inds), split)
# here we can't use Iterators.partition because it's greedy. e.g. we can't partition
# 4 items across 3 partitions because Iterators.partition(1:4, 1) == [[1], [2], [3]]
# and Iterators.partition(1:4, 2) == [[1, 2], [3, 4]]. But we would want
# [[1, 2], [3], [4]].
i = j = 0
ndraws_this_split = ndraws_per_split + (j < rem)
for ind in inds
cnew[ind] = chain_ind
if (i += 1) == ndraws_this_split
i = 0
j += 1
ndraws_this_split = ndraws_per_split + (j < rem)
chain_ind += 1
end
end
end
return cnew
end
"""
shuffle_split_stratified(
rng::Random.AbstractRNG,
group_ids::AbstractVector,
frac::Real,
) -> (inds1, inds2)
Randomly split the indices of `group_ids` into two groups, where `frac` indices from each
group are in `inds1` and the remainder are in `inds2`.
This is used, for example, to split data into training and test data while preserving the
class balances.
"""
function shuffle_split_stratified(
rng::Random.AbstractRNG, group_ids::AbstractVector, frac::Real
)
_, indices = unique_indices(group_ids)
T = eltype(eltype(indices))
N1_tot = sum(x -> round(Int, length(x) * frac), indices)
N2_tot = length(group_ids) - N1_tot
inds1 = Vector{T}(undef, N1_tot)
inds2 = Vector{T}(undef, N2_tot)
items_in_1 = items_in_2 = 0
for inds in indices
N = length(inds)
N1 = round(Int, N * frac)
N2 = N - N1
Random.shuffle!(rng, inds)
copyto!(inds1, items_in_1 + 1, inds, 1, N1)
copyto!(inds2, items_in_2 + 1, inds, N1 + 1, N2)
items_in_1 += N1
items_in_2 += N2
end
return inds1, inds2
end
"""
_fold_around_median(x::AbstractArray)
Compute the absolute deviation of `x` from `Statistics.median(x)`.
"""
function _fold_around_median(x::AbstractArray)
T = promote_type(eltype(x), typeof(zero(eltype(x)) / 1))
y = similar(x, T)
# avoid using the `dims` keyword for median because it
# - can error for Union{Missing,Real} (https://github.com/JuliaStats/Statistics.jl/issues/8)
# - is type-unstable (https://github.com/JuliaStats/Statistics.jl/issues/39)
for (xi, yi) in zip(_eachparam(x), _eachparam(y))
yi .= abs.(xi .- Statistics.median(vec(xi)))
end
return y
end
"""
_rank_normalize(x::AbstractArray)
Rank-normalize the inputs `x` along the sample dimensions.
Rank-normalization proceeds by first ranking the inputs using "tied ranking"
and then transforming the ranks to normal quantiles so that the result is standard
normally distributed.
"""
function _rank_normalize(x::AbstractArray)
T = promote_type(eltype(x), typeof(zero(eltype(x)) / 1))
y = similar(x, T)
map(_rank_normalize!, _eachparam(y), _eachparam(x))
return y
end
function _rank_normalize!(values, x)
if any(ismissing, x)
fill!(values, missing)
return values
end
rank = StatsBase.tiedrank(x)
_normal_quantiles_from_ranks!(values, rank)
map!(StatsFuns.norminvcdf, values, values)
return values
end
# transform the ranks to quantiles of a standard normal distribution applying the
# "α-β correction" recommended in Eq 6.10.3 of
# Blom. Statistical Estimates and Transformed Beta-Variables. Wiley; New York, 1958
function _normal_quantiles_from_ranks!(q, r; α=3//8)
n = length(r)
q .= (r .- α) ./ (n - 2α + 1)
return q
end
# utilities for supporting input arrays with an arbitrary number of dimensions
_sample_dims(x::AbstractArray) = ntuple(identity, min(2, ndims(x)))
_param_dims(x::AbstractArray) = ntuple(i -> i + 2, max(0, ndims(x) - 2))
_param_axes(x::AbstractArray) = map(Base.Fix1(axes, x), _param_dims(x))
function _params_array(x::AbstractArray, param_dim::Int=3)
param_dim > 0 || throw(ArgumentError("param_dim must be positive"))
sample_sizes = ntuple(Base.Fix1(size, x), param_dim - 1)
return reshape(x, sample_sizes..., :)
end
function _eachparam(x::AbstractArray, param_dim::Int=3)
return eachslice(_params_array(x, param_dim); dims=param_dim)
end
# convert 0-dimensional arrays to scalars
_maybescalar(x::AbstractArray{<:Any,0}) = x[]
_maybescalar(x::AbstractArray) = x
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 297 | using MCMCDiagnosticTools
using Aqua
using Test
@testset "Aqua" begin
# Test ambiguities separately without Base and Core
# Ref: https://github.com/JuliaTesting/Aqua.jl/issues/77
Aqua.test_all(MCMCDiagnosticTools; ambiguities=false)
Aqua.test_ambiguities(MCMCDiagnosticTools)
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 923 | @testset "bfmi.jl" begin
energy = [1, 2, 3, 4]
@test @inferred(bfmi(energy)) isa Real
# compare with energy value computed by hand
@test bfmi(energy) ≈ 0.6
# energy values derived from sampling a 10-dimensional Cauchy
energy = [
42,
44,
45,
46,
42,
43,
36,
36,
31,
36,
36,
32,
36,
31,
31,
29,
29,
30,
25,
26,
29,
29,
27,
30,
31,
29,
]
# compare with energy value computed by Python's arviz.bfmi(energy)
@test bfmi(energy) ≈ 0.2406937229
energy_multichain = repeat(energy, 1, 4)
@test @inferred(bfmi(energy_multichain)) isa Vector{<:Real}
@test bfmi(energy_multichain) ≈ fill(0.2406937229, 4)
@test bfmi(energy_multichain) ≈ bfmi(energy_multichain'; dims=2)
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 1169 | @testset "discretediag.jl" begin
nparams = 4
ndraws = 100
nchains = 2
samples = rand(-100:100, ndraws, nchains, nparams)
@testset "results" begin
for method in
(:weiss, :hangartner, :DARBOOT, :MCBOOT, :billingsley, :billingsleyBOOT)
between_chain, within_chain = @inferred(discretediag(samples; method=method))
@test between_chain isa NamedTuple{(:stat, :df, :pvalue)}
for name in (:stat, :df, :pvalue)
x = getfield(between_chain, name)
@test x isa Vector{Float64}
@test length(x) == nparams
end
@test within_chain isa NamedTuple{(:stat, :df, :pvalue)}
for name in (:stat, :df, :pvalue)
x = getfield(within_chain, name)
@test x isa Matrix{Float64}
@test size(x) == (nparams, nchains)
end
end
end
@testset "exceptions" begin
@test_throws ArgumentError discretediag(samples; method=:somemethod)
for x in (-0.3, 0, 1, 1.2)
@test_throws ArgumentError discretediag(samples; frac=x)
end
end
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 17319 | using Distributions
using DynamicHMC
using FFTW: FFTW
using LogDensityProblems
using LogExpFunctions
using OffsetArrays
using MCMCDiagnosticTools
using MCMCDiagnosticTools: _rank_normalize
using Random
using Statistics
using StatsBase
using Test
struct ExplicitAutocovMethod <: MCMCDiagnosticTools.AbstractAutocovMethod end
struct ExplicitESSCache{S}
samples::S
end
function MCMCDiagnosticTools.build_cache(
::ExplicitAutocovMethod, samples::Matrix, var::Vector
)
return ExplicitESSCache(samples)
end
MCMCDiagnosticTools.update!(::ExplicitESSCache) = nothing
function MCMCDiagnosticTools.mean_autocov(k::Int, cache::ExplicitESSCache)
return mean(autocov(cache.samples, k:k; demean=true))
end
struct CauchyProblem end
LogDensityProblems.logdensity(p::CauchyProblem, θ) = -sum(log1psq, θ)
function LogDensityProblems.logdensity_and_gradient(p::CauchyProblem, θ)
return -sum(log1psq, θ), -2 .* θ ./ (1 .+ θ .^ 2)
end
LogDensityProblems.dimension(p::CauchyProblem) = 50
function LogDensityProblems.capabilities(p::CauchyProblem)
return LogDensityProblems.LogDensityOrder{1}()
end
mymean(x) = mean(x)
@testset "ess_rhat.jl" begin
@testset "ess/ess_rhat/rhat basics" begin
@testset "only promote eltype when necessary" begin
sizes = ((100,), (100, 4), (100, 4, 2), (100, 4, 2, 3))
@testset for kind in (:rank, :bulk, :tail, :basic), sz in sizes
@testset for T in (Float32, Float64, Int)
x = T <: Int ? rand(1:10, sz...) : rand(T, sz...)
TV = length(sz) < 3 ? float(T) : Array{float(T),length(sz) - 2}
kind === :rank || @test @inferred(ess(x; kind=kind)) isa TV
@test @inferred(rhat(x; kind=kind)) isa TV
@test @inferred(ess_rhat(x; kind=kind)) isa
NamedTuple{(:ess, :rhat),Tuple{TV,TV}}
end
end
@testset for kind in (mean, median, mad, std, Base.Fix2(quantile, 0.25)),
sz in sizes
@testset for T in (Float32, Float64, Int)
x = T <: Int ? rand(1:10, sz...) : rand(T, sz...)
TV = length(sz) < 3 ? float(T) : Array{float(T),length(sz) - 2}
@test @inferred(ess(x; kind=kind)) isa TV
end
end
end
@testset "errors" begin # check that issue #137 is fixed
x = rand(4, 3, 5)
x2 = rand(5, 3, 5)
x3 = rand(100, 3, 5)
x4 = rand(1, 3, 5)
@testset for f in (ess, ess_rhat)
@testset for kind in (:rank, :bulk, :tail, :basic)
f === ess && kind === :rank && continue
if f === ess
@test all(isnan, f(x; split_chains=1, kind=kind))
@test all(isnan, f(x4; split_chains=2, kind=kind))
else
@test all(isnan, f(x; split_chains=1, kind=kind).ess)
@test f(x; split_chains=1, kind=kind).rhat ==
rhat(x; split_chains=1, kind=kind)
@test all(isnan, f(x4; split_chains=2, kind=kind).ess)
end
f(x2; split_chains=1, kind=kind)
if f === ess
@test all(isnan, f(x2; split_chains=2, kind=kind))
else
@test all(isnan, f(x2; split_chains=2, kind=kind).ess)
@test f(x2; split_chains=2, kind=kind).rhat ==
rhat(x2; split_chains=2, kind=kind)
end
f(x3; maxlag=1, kind=kind)
@test_throws DomainError f(x3; maxlag=0, kind=kind)
end
@test_throws ArgumentError f(x2; kind=:foo)
end
@test_throws ArgumentError rhat(x2; kind=:foo)
@test_throws ArgumentError ess(x2; kind=mymean)
end
@testset "relative=true" begin
@testset for kind in (:rank, :bulk, :tail, :basic),
niter in (50, 100),
nchains in (2, 4)
ss = niter * nchains
x = rand(niter, nchains, 2)
kind === :rank || @test ess(x; kind, relative=true) ≈ ess(x; kind) / ss
S, R = ess_rhat(x; kind)
S2, R2 = ess_rhat(x; kind, relative=true)
@test S2 ≈ S / ss
@test R2 == R
end
end
@testset "Union{Missing,Float64} eltype" begin
@testset for kind in (:rank, :bulk, :tail, :basic)
x = Array{Union{Missing,Float64}}(undef, 1000, 4, 3)
x .= randn.()
x[1, 1, 1] = missing
S1 = ess(x; kind=kind === :rank ? :bulk : kind)
R1 = rhat(x; kind=kind)
S2, R2 = ess_rhat(x; kind=kind)
@test ismissing(S1[1])
@test ismissing(R1[1])
@test ismissing(S2[1])
@test ismissing(R2[1])
@test !any(ismissing, S1[2:3])
@test !any(ismissing, R1[2:3])
@test !any(ismissing, S2[2:3])
@test !any(ismissing, R2[2:3])
end
end
@testset "produces similar arrays to inputs" begin
@testset for kind in (:rank, :bulk, :tail, :basic),
_axes in ((-5:94, 2:5, 11:15), (-5:94, 2:5, 11:15, 0:2))
# simultaneously checks that we index correctly and that output types are correct
x = randn(map(length, _axes)...)
N = ndims(x)
y = OffsetArray(x, _axes...)
S11 = ess(y; kind=kind === :rank ? :bulk : kind)
R11 = rhat(y; kind=kind)
S12, R12 = ess_rhat(y; kind=kind)
@test S11 isa OffsetArray{Float64,N - 2}
@test S12 isa OffsetArray{Float64,N - 2}
@test R11 isa OffsetArray{Float64,N - 2}
@test R12 isa OffsetArray{Float64,N - 2}
@test axes(S11) == axes(S12) == axes(R11) == axes(R12) == _axes[3:end]
S21 = ess(x; kind=kind === :rank ? :bulk : kind)
R21 = rhat(x; kind=kind)
S22, R22 = ess_rhat(x; kind=kind)
@test S22 == S21 == collect(S21)
@test R21 == R22 == collect(R11)
y = OffsetArray(similar(x, Missing), _axes...)
S31 = ess(y; kind=kind === :rank ? :bulk : kind)
R31 = rhat(y; kind=kind)
S32, R32 = ess_rhat(y; kind=kind)
@test S31 isa OffsetArray{Missing,N - 2}
@test S32 isa OffsetArray{Missing,N - 2}
@test R31 isa OffsetArray{Missing,N - 2}
@test R32 isa OffsetArray{Missing,N - 2}
@test axes(S31) == axes(S32) == axes(R31) == axes(R32) == _axes[3:end]
end
end
@testset "ess, ess_rhat, and rhat consistency" begin
x = randn(1000, 4, 10, 3)
@testset for kind in (:rank, :bulk, :tail, :basic), split_chains in (1, 2)
R1 = rhat(x; kind, split_chains)
for i in axes(x, 4)
@test rhat(x[:, :, :, i]; kind, split_chains) == R1[:, i]
for j in axes(x, 3)
@test rhat(x[:, :, j, i]; kind, split_chains) == R1[j, i]
end
end
@testset for autocov_method in (AutocovMethod(), BDAAutocovMethod()),
maxlag in (100, 10)
kind_ess = kind === :rank ? :bulk : kind
S1 = ess(x; kind=kind_ess, split_chains, autocov_method, maxlag)
S2, R2 = ess_rhat(x; kind, split_chains, autocov_method, maxlag)
@test S1 == S2
@test R1 == R2
for i in axes(x, 4)
xi = x[:, :, :, i]
@test ess(
xi; kind=kind_ess, split_chains, autocov_method, maxlag
) == S1[:, i]
@test ess_rhat(xi; kind, split_chains, autocov_method, maxlag) ==
(ess=S1[:, i], rhat=R1[:, i])
for j in axes(x, 3)
xji = x[:, :, j, i]
@test ess(
xji; kind=kind_ess, split_chains, autocov_method, maxlag
) == S1[j, i]
@test ess_rhat(
xji; kind, split_chains, autocov_method, maxlag
) == (ess=S1[j, i], rhat=R1[j, i])
end
end
end
end
end
end
# now that we have checked mutual consistency of each method, we perform all following
# checks for whichever method is most convenient
@testset "ESS and R̂ (IID samples)" begin
# Repeat tests with different scales
@testset for scale in (1, 50, 100), nchains in (1, 10), split_chains in (1, 2)
x = scale * randn(10_000, nchains, 40)
ntotal = size(x, 1) * size(x, 2)
ess_standard, rhat_standard = ess_rhat(x; split_chains=split_chains)
ess_standard2, rhat_standard2 = ess_rhat(
x; split_chains=split_chains, autocov_method=AutocovMethod()
)
ess_fft, rhat_fft = ess_rhat(
x; split_chains=split_chains, autocov_method=FFTAutocovMethod()
)
ess_bda, rhat_bda = ess_rhat(
x; split_chains=split_chains, autocov_method=BDAAutocovMethod()
)
# check that we get (roughly) the same results
@test ess_standard == ess_standard2
@test ess_standard ≈ ess_fft
@test rhat_standard == rhat_standard2 == rhat_fft == rhat_bda
# check that the estimates are reasonable
@test all(x -> isapprox(x, ntotal; rtol=0.1), ess_standard)
@test all(x -> isapprox(x, ntotal; rtol=0.1), ess_bda)
@test all(x -> isapprox(x, 1; rtol=0.1), rhat_standard)
# BDA method fluctuates more
@test var(ess_standard) < var(ess_bda)
end
end
@testset "ESS and R̂ (identical samples)" begin
x = ones(10_000, 10, 40)
ess_standard, rhat_standard = ess_rhat(x)
ess_standard2, rhat_standard2 = ess_rhat(x; autocov_method=AutocovMethod())
ess_fft, rhat_fft = ess_rhat(x; autocov_method=FFTAutocovMethod())
ess_bda, rhat_bda = ess_rhat(x; autocov_method=BDAAutocovMethod())
# check that the estimates are all NaN
for ess in (ess_standard, ess_standard2, ess_fft, ess_bda)
@test all(isnan, ess)
end
for rhat in (rhat_standard, rhat_standard2, rhat_fft, rhat_bda)
@test all(isnan, rhat)
end
end
@testset "Autocov of AutocovMethod and FFTAutocovMethod equivalent to StatsBase" begin
x = randn(1_000, 10, 40)
ess_exp = ess(x; autocov_method=ExplicitAutocovMethod())
@testset "$autocov_method" for autocov_method in
[FFTAutocovMethod(), AutocovMethod()]
@test ess(x; autocov_method=autocov_method) ≈ ess_exp
end
end
@testset "ESS and R̂ for chains with 2 epochs that have not mixed" begin
# checks that splitting yields lower ESS estimates and higher Rhat estimates
x = randn(1000, 4, 10) .+ repeat([0, 10]; inner=(500, 1, 1))
ess_array, rhat_array = ess_rhat(x; kind=:basic, split_chains=1)
@test all(x -> isapprox(x, 1; rtol=0.1), rhat_array)
ess_array2, rhat_array2 = ess_rhat(x; kind=:basic, split_chains=2)
@test all(ess_array2 .< ess_array)
@test all(>(2), rhat_array2)
end
@testset "ess(x; kind=f)" begin
# we check the ESS estimates by simulating uncorrelated, correlated, and
# anticorrelated chains, mapping the draws to a target distribution, computing the
# estimand, and estimating the ESS for the chosen estimator, computing the
# corresponding MCSE, and checking that the mean estimand is close to the asymptotic
# value of the estimand, with a tolerance chosen using the MCSE.
ndraws = 1000
nchains = 4
nparams = 100
x = randn(ndraws, nchains, nparams)
mymean(x; kwargs...) = mean(x; kwargs...)
@test_throws ArgumentError ess(x; kind=mymean)
estimators = [mean, median, std, mad, Base.Fix2(quantile, 0.25)]
dists = [Normal(10, 100), Exponential(10), TDist(7) * 10 - 20]
# AR(1) coefficients. 0 is IID, -0.3 is slightly anticorrelated, 0.9 is highly autocorrelated
φs = [-0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9]
# account for all but the 2 skipped checks
nchecks = nparams * length(φs) * ((length(estimators) - 1) * length(dists) + 1)
α = (0.01 / nchecks) / 2 # multiple correction
@testset for f in estimators, dist in dists, φ in φs
f === mad && !(dist isa Normal) && continue
σ = sqrt(1 - φ^2) # ensures stationary distribution is N(0, 1)
x = ar1(φ, σ, ndraws, nchains, nparams)
x .= quantile.(dist, cdf.(Normal(), x)) # stationary distribution is dist
μ_mean = dropdims(mapslices(f ∘ vec, x; dims=(1, 2)); dims=(1, 2))
dist = asymptotic_dist(f, dist)
n = @inferred(ess(x; kind=f))
μ = mean(dist)
mcse = sqrt.(var(dist) ./ n)
for i in eachindex(μ_mean, mcse)
atol = quantile(Normal(0, mcse[i]), 1 - α)
@test μ_mean[i] ≈ μ atol = atol
end
end
end
@testset "ESS thresholded for antithetic chains" begin
# for φ = -0.3 (slightly antithetic), ESS without thresholding for low ndraws is
# often >ndraws*log10(ndraws)
# for φ = -0.9 (highly antithetic), ESS without thresholding for low ndraws is
# usually negative
nchains = 4
@testset for ndraws in (10, 100), φ in (-0.3, -0.9)
x = ar1(φ, sqrt(1 - φ^2), ndraws, nchains, 1000)
Smin, Smax = extrema(ess(x; kind=mean))
ntotal = ndraws * nchains
@test Smax == ntotal * log10(ntotal)
@test Smin > 0
end
end
@testset "ess(x; kind=:bulk)" begin
xnorm = randn(1_000, 4, 10)
@test ess(xnorm; kind=:bulk) == ess(_rank_normalize(xnorm); kind=:basic)
xcauchy = quantile.(Cauchy(), cdf.(Normal(), xnorm))
# transformation by any monotonic function should not change the bulk ESS/R-hat
@test ess(xnorm; kind=:bulk) == ess(xcauchy; kind=:bulk)
end
@testset "tail- ESS and R-hat detect mismatched scales" begin
# simulate chains with same stationary mean but different stationary scales
φ = 0.1 # low autocorrelation
σs = sqrt(1 - φ^2) .* [0.1, 1, 10, 100]
ndraws = 1_000
nparams = 100
x = 10 .+ mapreduce(hcat, σs) do σ
return ar1(φ, σ, ndraws, 1, nparams)
end
# recommended convergence thresholds
ess_cutoff = 100 * size(x, 2) # recommended cutoff is 100 * nchains
rhat_cutoff = 1.01
# sanity check that standard and bulk ESS and R-hat both fail to detect
# mismatched scales
S, R = ess_rhat(x; kind=:basic)
@test all(≥(ess_cutoff), S)
@test all(≤(rhat_cutoff), R)
Sbulk, Rbulk = ess_rhat(x; kind=:bulk)
@test all(≥(ess_cutoff), Sbulk)
@test all(≤(rhat_cutoff), Rbulk)
# check that tail- ESS detects mismatched scales and signal poor convergence
S_tail, R_tail = ess_rhat(x; kind=:tail)
@test all(<(ess_cutoff), S_tail)
@test all(>(rhat_cutoff), R_tail)
end
@testset "bulk and tail ESS and R-hat for heavy tailed" begin
# sampling Cauchy distribution with large max depth to allow for better tail
# exploration. From https://avehtari.github.io/rhat_ess/rhat_ess.html chains have
# okay bulk ESS and R-hat values, while some tail ESS and R-hat values are poor.
prob = CauchyProblem()
reporter = NoProgressReport()
algorithm = DynamicHMC.NUTS(; max_depth=20)
rng = Random.default_rng()
posterior_matrices = map(1:4) do _ # ~2.5 mins to sample
result = mcmc_with_warmup(rng, prob, 1_000; algorithm=algorithm, reporter=reporter)
hasproperty(result, :posterior_matrix) && return result.posterior_matrix
return reduce(hcat, result.chain)
end
x = permutedims(cat(posterior_matrices...; dims=3), (2, 3, 1))
Sbulk, Rbulk = ess_rhat(x; kind=:bulk)
Stail, Rtail = ess_rhat(x; kind=:tail)
ess_cutoff = 100 * size(x, 2) # recommended cutoff is 100 * nchains
@test mean(≥(ess_cutoff), Sbulk) > 0.9
@test mean(≥(ess_cutoff), Stail) < mean(≥(ess_cutoff), Sbulk)
@test mean(≤(1.01), Rbulk) > 0.9
@test mean(≤(1.01), Rtail) < 0.8
end
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 977 | @testset "gelmandiag.jl" begin
nparams = 4
ndraws = 100
nchains = 2
samples = randn(ndraws, nchains, nparams)
@testset "results" begin
result = @inferred(gelmandiag(samples))
@test result isa NamedTuple{(:psrf, :psrfci)}
for name in (:psrf, :psrfci)
x = getfield(result, name)
@test x isa Vector{Float64}
@test length(x) == nparams
end
result = @inferred(gelmandiag_multivariate(samples))
@test result isa NamedTuple{(:psrf, :psrfci, :psrfmultivariate)}
for name in (:psrf, :psrfci)
x = getfield(result, name)
@test x isa Vector{Float64}
@test length(x) == nparams
end
@test result.psrfmultivariate isa Float64
end
@testset "exceptions" begin
@test_throws ErrorException gelmandiag(samples[:, 1:1, :])
@test_throws ErrorException gelmandiag_multivariate(samples[:, :, 1:1])
end
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 577 | @testset "gewekediag.jl" begin
@testset "results" begin
@testset for T in (Float32, Float64)
samples = randn(T, 100)
@inferred NamedTuple{(:zscore, :pvalue),Tuple{T,T}} gewekediag(samples)
end
end
@testset "exceptions" begin
samples = randn(100)
for x in (-0.3, 0, 1, 1.2)
@test_throws ArgumentError gewekediag(samples; first=x)
@test_throws ArgumentError gewekediag(samples; last=x)
end
@test_throws ArgumentError gewekediag(samples; first=0.6, last=0.5)
end
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 229 | @testset "heideldiag.jl" begin
@testset "results" begin
@testset for T in (Float32, Float64)
samples = randn(T, 100)
@test @inferred(heideldiag(samples)) isa NamedTuple
end
end
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 1183 | using Distributions, Statistics, StatsBase
# AR(1) process
function ar1(φ::Real, σ::Real, n::Int...)
T = float(Base.promote_eltype(φ, σ))
x = randn(T, n...)
x .*= σ
accumulate!(x, x; dims=1) do xi, ϵ
return muladd(φ, xi, ϵ)
end
return x
end
asymptotic_dist(::typeof(mean), dist) = Normal(mean(dist), std(dist))
function asymptotic_dist(::typeof(var), dist)
μ = var(dist)
σ = μ * sqrt(kurtosis(dist) + 2)
return Normal(μ, σ)
end
function asymptotic_dist(::typeof(std), dist)
μ = std(dist)
σ = μ * sqrt(kurtosis(dist) + 2) / 2
return Normal(μ, σ)
end
asymptotic_dist(::typeof(median), dist) = asymptotic_dist(Base.Fix2(quantile, 1//2), dist)
function asymptotic_dist(f::Base.Fix2{typeof(quantile),<:Real}, dist)
p = f.x
μ = quantile(dist, p)
σ = sqrt(p * (1 - p)) / pdf(dist, μ)
return Normal(μ, σ)
end
function asymptotic_dist(::typeof(mad), dist::Normal)
# Example 21.10 of Asymptotic Statistics. Van der Vaart
d = Normal(zero(dist.μ), dist.σ)
dtrunc = truncated(d; lower=0)
μ = median(dtrunc)
σ = 1 / (4 * pdf(d, quantile(d, 3//4)))
return Normal(μ, σ) / quantile(Normal(), 3//4)
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 4976 | using Test
using Distributions
using MCMCDiagnosticTools
using OffsetArrays
using Statistics
using StatsBase
@testset "mcse.jl" begin
@testset "estimator defaults to mean" begin
x = randn(100, 4, 10)
@test mcse(x) == mcse(x; kind=mean)
end
@testset "ESS-based methods forward kwargs to ess" begin
x = randn(100, 4, 10)
@testset for f in [mean, median, std, Base.Fix2(quantile, 0.1)]
@test @inferred(mcse(x; kind=f, split_chains=1)) ≠ mcse(x; kind=f)
end
end
@testset "mcse falls back to _mcse_sbm" begin
x = randn(100, 4, 10)
estimator = mad
@test @inferred(mcse(x; kind=estimator)) ==
MCMCDiagnosticTools._mcse_sbm(estimator, x) ≠
MCMCDiagnosticTools._mcse_sbm(estimator, x; batch_size=16) ==
mcse(x; kind=estimator, batch_size=16)
end
@testset "handles all sizes correctly" begin
@testset for f in [mean, median, std, Base.Fix2(quantile, 0.1), mad]
x = randn(100, 4, 3, 2)
se = @inferred mcse(x; kind=f)
for i in axes(x, 4)
xi = x[:, :, :, i]
@test @inferred(mcse(xi; kind=f)) ≈ se[:, i]
for j in axes(x, 3)
xij = xi[:, :, j]
@test @inferred(mcse(xij; kind=f)) ≈ se[j, i]
end
end
xv = x[:, 1, 1, 1]
@test @inferred(mcse(xv; kind=f)) ≈ mcse(reshape(xv, :, 1); kind=f)
end
end
@testset "mcse produces similar vectors to inputs" begin
# simultaneously checks that we index correctly and that output types are correct
_axes = (-5:94, 2:5, 11:15, 0:1)
@testset for T in (Float32, Float64),
estimator in [mean, median, std, Base.Fix2(quantile, T(0.1)), mad],
_axes in ((-5:94, 2:5, 11:15), (-5:94, 2:5, 11:15, 0:1))
N = length(_axes) - 2
x = randn(T, map(length, _axes)...)
y = OffsetArray(x, _axes...)
se = mcse(y; kind=estimator)
@test se isa OffsetArray{T,N}
@test axes(se) == _axes[3:end]
se2 = mcse(x; kind=estimator)
@test se2 ≈ collect(se)
# quantile errors if data contains missings
estimator isa Base.Fix2{typeof(quantile)} && continue
y = OffsetArray(similar(x, Missing), _axes...)
@test mcse(y; kind=estimator) isa OffsetArray{Missing,N}
end
end
@testset "mcse with Union{Missing,Float64} eltype" begin
@testset for sz in ((1000, 4), (1000, 4, 3))
x = Array{Union{Missing,Float64}}(undef, sz...)
x .= randn.()
x[1] = missing
@testset for f in [mean, median, std, mad]
se = mcse(x; kind=f)
if ndims(x) > 2
@test ismissing(se[1])
@test !any(ismissing, se[2:end])
else
@test ismissing(se)
end
end
end
end
@testset "estimand is within interval defined by MCSE estimate" begin
# we check the MCSE estimates by simulating uncorrelated, correlated, and
# anticorrelated chains, mapping the draws to a target distribution, computing the
# estimand, estimating the MCSE for the chosen estimator, and checking that the mean
# estimand is close to the asymptotic value of the estimand, with a tolerance chosen
# using the MCSE.
ndraws = 1000
nchains = 4
nparams = 100
estimators = [mean, median, std, Base.Fix2(quantile, 0.25)]
dists = [Normal(10, 100), Exponential(10), TDist(7) * 10 - 20]
mcse_methods = [mcse, MCMCDiagnosticTools._mcse_sbm]
# AR(1) coefficients. 0 is IID, -0.3 is slightly anticorrelated, 0.9 is highly autocorrelated
φs = [-0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9]
# account for all but the 2 skipped checks
nchecks = nparams * (length(φs) + count(≤(5), φs)) * length(dists)
α = (0.01 / nchecks) / 2 # multiple correction
@testset for mcse in mcse_methods, f in estimators, dist in dists, φ in φs
# _mcse_sbm underestimates the MCSE for highly correlated chains
mcse === MCMCDiagnosticTools._mcse_sbm && φ > 0.5 && continue
σ = sqrt(1 - φ^2) # ensures stationary distribution is N(0, 1)
x = ar1(φ, σ, ndraws, nchains, nparams)
x .= quantile.(dist, cdf.(Normal(), x)) # stationary distribution is dist
μ_mean = dropdims(mapslices(f ∘ vec, x; dims=(1, 2)); dims=(1, 2))
μ = mean(asymptotic_dist(f, dist))
se = mcse === MCMCDiagnosticTools._mcse_sbm ? mcse(f, x) : mcse(x; kind=f)
for i in eachindex(μ_mean, se)
atol = quantile(Normal(0, se[i]), 1 - α)
@test μ_mean[i] ≈ μ atol = atol
end
end
end
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 256 | @testset "rafterydiag.jl" begin
samples = randn(5_000)
@testset "results" begin
@test @inferred(rafterydiag(samples)) isa NamedTuple
end
@testset "warning" begin
@test_logs (:warn,) rafterydiag(samples[1:100])
end
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 7897 | using MCMCDiagnosticTools
using Distributions
using EvoTrees
using MLJBase: MLJBase, Pipeline, predict_mode
using MLJDecisionTreeInterface
using MLJLIBSVMInterface
using MLJModels
using MLJXGBoostInterface
using Tables
using Random
using Test
# XGBoost errors on 32bit systems: https://github.com/dmlc/XGBoost.jl/issues/92
const XGBoostClassifiers = if Sys.WORD_SIZE == 64
(XGBoostClassifier(), Pipeline(XGBoostClassifier(); operation=predict_mode))
else
()
end
@testset "rstar.jl" begin
N = 1_000
@testset "samples input type: $wrapper" for wrapper in [Vector, Array, Tables.table]
# In practice, probably you want to use EvoTreeClassifier with early stopping
classifiers = (
EvoTreeClassifier(; nrounds=1_000, eta=0.1),
Pipeline(EvoTreeClassifier(; nrounds=1_000, eta=0.1); operation=predict_mode),
DecisionTreeClassifier(),
SVC(),
XGBoostClassifiers...,
)
@testset "examples (classifier = $classifier)" for classifier in classifiers
sz = wrapper === Vector ? N : (N, 2)
# Compute R⋆ statistic for a mixed chain.
samples = wrapper(randn(sz...))
dist = rstar(classifier, samples, rand(1:3, N))
# Mean of the statistic should be focused around 1, i.e., the classifier does not
# perform better than random guessing.
if classifier isa MLJBase.Deterministic
@test dist isa Float64
else
@test dist isa LocationScale
@test dist.ρ isa PoissonBinomial
@test minimum(dist) == 0
@test maximum(dist) == 6
end
@test mean(dist) ≈ 1 rtol = 0.25
wrapper === Vector && break
# Compute R⋆ statistic for a mixed chain.
samples = wrapper(randn(4 * N, 8))
chain_indices = repeat(1:4, N)
dist = rstar(classifier, samples, chain_indices)
# Mean of the statistic should be closte to 1, i.e., the classifier does not perform
# better than random guessing.
if classifier isa MLJBase.Deterministic
@test dist isa Float64
else
@test dist isa LocationScale
@test dist.ρ isa PoissonBinomial
@test minimum(dist) == 0
@test maximum(dist) == 8
end
@test mean(dist) ≈ 1 rtol = 0.15
# Compute the R⋆ statistic for a non-mixed chain.
samples = wrapper([
sin.(1:N) cos.(1:N)
100 .* cos.(1:N) 100 .* sin.(1:N)
])
chain_indices = repeat(1:2; inner=N)
dist = rstar(classifier, samples, chain_indices; split_chains=1)
# Mean of the statistic should be close to 2, i.e., the classifier should be able to
# learn an almost perfect decision boundary between chains.
if classifier isa MLJBase.Deterministic
@test dist isa Float64
else
@test dist isa LocationScale
@test dist.ρ isa PoissonBinomial
@test minimum(dist) == 0
@test maximum(dist) == 2
end
@test mean(dist) ≈ 2 rtol = 0.15
# Compute the R⋆ statistic for identical chains that individually have not mixed.
samples = ones(sz)
samples[div(N, 2):end, :] .= 2
chain_indices = repeat(1:4; outer=div(N, 4))
dist = rstar(classifier, samples, chain_indices; split_chains=1)
# without split chains cannot distinguish between chains
@test mean(dist) ≈ 1 rtol = 0.15
dist = rstar(classifier, samples, chain_indices)
# with split chains can learn almost perfect decision boundary
@test mean(dist) ≈ 2 rtol = 0.15
end
wrapper === Vector && continue
@testset "exceptions (classifier = $classifier)" for classifier in classifiers
samples = wrapper(randn(N - 1, 2))
@test_throws DimensionMismatch rstar(classifier, samples, rand(1:3, N))
for subset in (-0.3, 0, 1 / (3 * N), 1 - 1 / (3 * N), 1, 1.9)
samples = wrapper(randn(N, 2))
@test_throws ArgumentError rstar(
classifier, samples, rand(1:3, N); subset=subset
)
end
end
end
@testset "table with chain_ids produces same result as 3d array" begin
nchains = 3
samples = randn(N, nchains, 2, 4)
# manually construct samples_mat and chain_inds for comparison
samples_mat = reshape(samples, N * nchains, size(samples, 3) * size(samples, 4))
chain_inds = Vector{Int}(undef, N * nchains)
i = 1
for chain in 1:nchains, draw in 1:N
chain_inds[i] = chain
i += 1
end
# In practice, probably you want to use EvoTreeClassifier with early stopping
rng = MersenneTwister(42)
classifiers = (
EvoTreeClassifier(; rng=rng, nrounds=1_000, eta=0.1),
Pipeline(
EvoTreeClassifier(; rng=rng, nrounds=1_000, eta=0.1); operation=predict_mode
),
DecisionTreeClassifier(; rng=rng),
SVC(),
XGBoostClassifiers...,
)
@testset "classifier = $classifier" for classifier in classifiers
Random.seed!(rng, 42)
dist1 = rstar(rng, classifier, samples_mat, chain_inds)
Random.seed!(rng, 42)
dist2 = rstar(rng, classifier, samples)
Random.seed!(rng, 42)
dist3 = rstar(rng, classifier, reshape(samples, N, nchains, :))
@test dist1 == dist2 == dist3
@test typeof(rstar(classifier, samples)) === typeof(dist2) === typeof(dist3)
end
end
@testset "model traits requirements" begin
samples = randn(2, 3, 4)
inputs_error = ArgumentError(
"classifier does not support tables of continuous values as inputs"
)
model = UnivariateDiscretizer()
@test_throws inputs_error rstar(model, samples)
@test_throws inputs_error MCMCDiagnosticTools._check_model_supports_continuous_inputs(
model
)
targets_error = ArgumentError(
"classifier does not support vectors of multi-class labels as targets"
)
predictions_error = ArgumentError(
"classifier does not support vectors of multi-class labels or their densities as predictions",
)
models = if Sys.WORD_SIZE == 64
(EvoTreeRegressor(), EvoTreeCount(), XGBoostRegressor(), XGBoostCount())
else
(EvoTreeRegressor(), EvoTreeCount())
end
for model in models
@test_throws targets_error rstar(model, samples)
@test_throws targets_error MCMCDiagnosticTools._check_model_supports_multiclass_targets(
model
)
@test_throws predictions_error MCMCDiagnosticTools._check_model_supports_multiclass_predictions(
model
)
end
end
@testset "incorrect type of predictions" begin
@test_throws ArgumentError MCMCDiagnosticTools._rstar(
AbstractVector{<:MLJBase.Continuous}, rand(2), rand(3)
)
@test_throws ArgumentError MCMCDiagnosticTools._rstar(1.0, rand(2), rand(2))
end
@testset "single chain: method ambiguity issue" begin
samples = rand(1:5, N)
rng = MersenneTwister(42)
dist = rstar(rng, DecisionTreeClassifier(), samples)
@test mean(dist) ≈ 1 atol = 0.15
Random.seed!(rng, 42)
dist2 = rstar(rng, DecisionTreeClassifier(), samples, ones(Int, N))
@test dist2 == dist
end
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 1067 | using MCMCDiagnosticTools
using FFTW
using Random
using Statistics
using Test
Random.seed!(1)
@testset "MCMCDiagnosticTools.jl" begin
include("helpers.jl")
@testset "Aqua" begin
include("aqua.jl")
end
@testset "utils" begin
include("utils.jl")
end
@testset "Bayesian fraction of missing information" begin
include("bfmi.jl")
end
@testset "discrete diagnostic" begin
include("discretediag.jl")
end
@testset "ESS and R̂" begin
include("ess_rhat.jl")
end
@testset "Monte Carlo standard error" begin
include("mcse.jl")
end
@testset "Gelman, Rubin and Brooks diagnostic" begin
include("gelmandiag.jl")
end
@testset "Geweke diagnostic" begin
include("gewekediag.jl")
end
@testset "Heidelberger and Welch diagnostic" begin
include("heideldiag.jl")
end
@testset "Raftery and Lewis diagnostic" begin
include("rafterydiag.jl")
end
@testset "R⋆ diagnostic" begin
include("rstar.jl")
end
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | code | 7978 | using MCMCDiagnosticTools
using Test
using OffsetArrays
using Random
using Statistics
@testset "unique_indices" begin
@testset "indices=$(eachindex(inds))" for inds in [
rand(11:14, 100), transpose(rand(11:14, 10, 10))
]
unique, indices = @inferred MCMCDiagnosticTools.unique_indices(inds)
@test unique isa Vector{Int}
if eachindex(inds) isa CartesianIndices{2}
@test indices isa Vector{Vector{CartesianIndex{2}}}
else
@test indices isa Vector{Vector{Int}}
end
@test issorted(unique)
@test issetequal(union(indices...), eachindex(inds))
for i in eachindex(unique, indices)
@test all(inds[indices[i]] .== unique[i])
end
end
end
@testset "copy_split!" begin
# check a matrix with even number of rows
x = rand(50, 20)
# check incompatible sizes
@test_throws DimensionMismatch MCMCDiagnosticTools.copyto_split!(similar(x, 25, 20), x)
@test_throws DimensionMismatch MCMCDiagnosticTools.copyto_split!(similar(x, 50, 40), x)
y = similar(x, 25, 40)
MCMCDiagnosticTools.copyto_split!(y, x)
@test reshape(y, size(x)) == x
# check a matrix with odd number of rows
x = rand(51, 20)
# check incompatible sizes
@test_throws DimensionMismatch MCMCDiagnosticTools.copyto_split!(similar(x, 25, 20), x)
@test_throws DimensionMismatch MCMCDiagnosticTools.copyto_split!(similar(x, 51, 40), x)
MCMCDiagnosticTools.copyto_split!(y, x)
@test reshape(y, 50, 20) == x[vcat(1:25, 27:51), :]
# check with 3 splits
y = similar(x, 16, 60)
x = rand(50, 20)
MCMCDiagnosticTools.copyto_split!(y, x)
@test reshape(y, 48, :) == x[vcat(1:16, 18:33, 35:50), :]
x = rand(49, 20)
MCMCDiagnosticTools.copyto_split!(y, x)
@test reshape(y, 48, :) == x[vcat(1:16, 18:33, 34:49), :]
end
@testset "split_chain_indices" begin
c = [2, 2, 1, 3, 4, 3, 4, 1, 2, 1, 4, 3, 3, 2, 4, 3, 4, 1, 4, 1]
@test @inferred(MCMCDiagnosticTools.split_chain_indices(c, 1)) == c
cnew = @inferred MCMCDiagnosticTools.split_chain_indices(c, 2)
@test issetequal(Base.unique(cnew), 1:maximum(cnew)) # check no indices skipped
unique, indices = MCMCDiagnosticTools.unique_indices(c)
uniquenew, indicesnew = MCMCDiagnosticTools.unique_indices(cnew)
for (i, inew) in enumerate(1:2:7)
@test length(indicesnew[inew]) ≥ length(indicesnew[inew + 1])
@test indices[i] == vcat(indicesnew[inew], indicesnew[inew + 1])
end
cnew = MCMCDiagnosticTools.split_chain_indices(c, 3)
@test issetequal(Base.unique(cnew), 1:maximum(cnew)) # check no indices skipped
unique, indices = MCMCDiagnosticTools.unique_indices(c)
uniquenew, indicesnew = MCMCDiagnosticTools.unique_indices(cnew)
for (i, inew) in enumerate(1:3:11)
@test length(indicesnew[inew]) ≥
length(indicesnew[inew + 1]) ≥
length(indicesnew[inew + 2])
@test indices[i] ==
vcat(indicesnew[inew], indicesnew[inew + 1], indicesnew[inew + 2])
end
end
@testset "shuffle_split_stratified" begin
rng = Random.default_rng()
c = rand(1:4, 100)
unique, indices = MCMCDiagnosticTools.unique_indices(c)
@testset "frac=$frac" for frac in [0.3, 0.5, 0.7]
inds1, inds2 = @inferred(MCMCDiagnosticTools.shuffle_split_stratified(rng, c, frac))
@test issetequal(vcat(inds1, inds2), eachindex(c))
for inds in indices
common_inds = intersect(inds1, inds)
@test length(common_inds) == round(frac * length(inds))
end
end
end
@testset "_rank_normalize" begin
@testset for sz in ((1000,), (1000, 4), (1000, 4, 8), (1000, 4, 8, 2))
x = randexp(sz...)
dims = MCMCDiagnosticTools._sample_dims(x)
z = @inferred MCMCDiagnosticTools._rank_normalize(x)
@test size(z) == size(x)
@test all(xi -> isapprox(xi, 0; atol=1e-13), mean(z; dims))
@test all(xi -> isapprox(xi, 1; rtol=1e-2), std(z; dims))
end
end
@testset "_fold_around_median" begin
@testset for sz in ((1000,), (1000, 4), (1000, 4, 8), (1000, 4, 8, 2))
x = rand(sz...)
dims = MCMCDiagnosticTools._sample_dims(x)
@inferred MCMCDiagnosticTools._fold_around_median(x)
@test MCMCDiagnosticTools._fold_around_median(x) ≈ abs.(x .- median(x; dims))
x = Array{Union{Missing,Float64}}(undef, sz...)
x .= randn.()
x[1] = missing
foldx = @inferred(MCMCDiagnosticTools._fold_around_median(x))
@test all(ismissing, foldx[:, :, 1, 1])
length(sz) > 2 && @test foldx[:, :, 2:end, :] ≈
abs.(x[:, :, 2:end, :] .- median(x[:, :, 2:end, :]; dims))
end
end
@testset "_sample_dims" begin
x = randn(10)
@test @inferred(MCMCDiagnosticTools._sample_dims(x)) === (1,)
x = randn(10, 2)
@test @inferred(MCMCDiagnosticTools._sample_dims(x)) === (1, 2)
x = randn(10, 2, 3)
@test @inferred(MCMCDiagnosticTools._sample_dims(x)) === (1, 2)
x = randn(10, 2, 3, 4)
@test @inferred(MCMCDiagnosticTools._sample_dims(x)) === (1, 2)
end
@testset "_param_dims" begin
x = randn(10)
@test @inferred(MCMCDiagnosticTools._param_dims(x)) === ()
x = randn(10, 2)
@test @inferred(MCMCDiagnosticTools._param_dims(x)) === ()
x = randn(10, 2, 3)
@test @inferred(MCMCDiagnosticTools._param_dims(x)) === (3,)
x = randn(10, 2, 3, 4)
@test @inferred(MCMCDiagnosticTools._param_dims(x)) === (3, 4)
end
@testset "_param_axes" begin
x = OffsetArray(randn(10), -4:5)
@test @inferred(MCMCDiagnosticTools._param_axes(x)) === ()
x = OffsetArray(randn(10, 2), -4:5, 0:1)
@test @inferred(MCMCDiagnosticTools._param_axes(x)) === ()
x = OffsetArray(randn(10, 2, 3), -4:5, 0:1, -3:-1)
@test @inferred(MCMCDiagnosticTools._param_axes(x)) === (axes(x, 3),)
x = OffsetArray(randn(10, 2, 3, 4), -4:5, 0:1, -3:-1, 0:3)
@test @inferred(MCMCDiagnosticTools._param_axes(x)) === (axes(x, 3), axes(x, 4))
end
@testset "_params_array" begin
x = randn(10)
@test MCMCDiagnosticTools._params_array(x) == reshape(x, :, 1, 1)
@test MCMCDiagnosticTools._params_array(x, 1) == x
@test MCMCDiagnosticTools._params_array(x, 2) == reshape(x, :, 1)
@test MCMCDiagnosticTools._params_array(x, 3) == reshape(x, :, 1, 1)
@test MCMCDiagnosticTools._params_array(x, 4) == reshape(x, :, 1, 1, 1)
x = randn(10, 2)
@test MCMCDiagnosticTools._params_array(x) == reshape(x, size(x)..., 1)
@test MCMCDiagnosticTools._params_array(x, 1) == vec(x)
@test MCMCDiagnosticTools._params_array(x, 2) == x
@test MCMCDiagnosticTools._params_array(x, 3) == reshape(x, size(x)..., 1)
@test MCMCDiagnosticTools._params_array(x, 4) == reshape(x, size(x)..., 1, 1)
x = randn(10, 2, 3)
@test MCMCDiagnosticTools._params_array(x) == x
@test MCMCDiagnosticTools._params_array(x, 1) == vec(x)
@test MCMCDiagnosticTools._params_array(x, 2) == reshape(x, size(x, 1), :)
@test MCMCDiagnosticTools._params_array(x, 3) == x
@test MCMCDiagnosticTools._params_array(x, 4) == reshape(x, size(x)..., 1)
x = randn(10, 2, 3, 4)
@test MCMCDiagnosticTools._params_array(x) == reshape(x, size(x, 1), size(x, 2), :)
@test MCMCDiagnosticTools._params_array(x, 1) == vec(x)
@test MCMCDiagnosticTools._params_array(x, 2) == reshape(x, size(x, 1), :)
@test MCMCDiagnosticTools._params_array(x, 3) == reshape(x, size(x, 1), size(x, 2), :)
@test MCMCDiagnosticTools._params_array(x, 4) == x
@test_throws ArgumentError MCMCDiagnosticTools._params_array(x, -1)
@test_throws ArgumentError MCMCDiagnosticTools._params_array(x, 0)
end
@testset "_maybescalar" begin
sz = (1, 2, 3)
@testset for d in 0:length(sz)
x = randn(sz[1:d])
if d == 0
@test MCMCDiagnosticTools._maybescalar(x) === x[]
else
@test MCMCDiagnosticTools._maybescalar(x) === x
end
end
end
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | docs | 1597 | # MCMCDiagnosticTools.jl
[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://turinglang.github.io/MCMCDiagnosticTools.jl/stable)
[![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://turinglang.github.io/MCMCDiagnosticTools.jl/dev)
[![Build Status](https://github.com/TuringLang/MCMCDiagnosticTools.jl/workflows/CI/badge.svg?branch=main)](https://github.com/TuringLang/MCMCDiagnosticTools.jl/actions?query=workflow%3ACI+branch%3Amain)
[![Coverage](https://codecov.io/gh/TuringLang/MCMCDiagnosticTools.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/TuringLang/MCMCDiagnosticTools.jl)
[![Coverage](https://coveralls.io/repos/github/TuringLang/MCMCDiagnosticTools.jl/badge.svg?branch=main)](https://coveralls.io/github/TuringLang/MCMCDiagnosticTools.jl?branch=main)
[![Aqua QA](https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg)](https://github.com/JuliaTesting/Aqua.jl)
[![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle)
[![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet)](https://github.com/SciML/ColPrac)
[![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org)
Functionality for diagnosing samples generated using Markov Chain Monte Carlo.
This package is a joint collaboration between the [Turing](https://turinglang.org/) and [ArviZ](https://www.arviz.org/) projects.
| MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"MIT"
] | 0.3.10 | 8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5 | docs | 1008 | ```@meta
CurrentModule = MCMCDiagnosticTools
```
# MCMCDiagnosticTools
MCMCDiagnosticTools provides functionality for diagnosing samples generated using Markov Chain Monte Carlo.
## Background
Some methods were originally part of [Mamba.jl](https://github.com/brian-j-smith/Mamba.jl) and then [MCMCChains.jl](https://github.com/TuringLang/MCMCChains.jl).
This package is a joint collaboration between the [Turing](https://turinglang.org/) and [ArviZ](https://www.arviz.org/) projects.
## Effective sample size and $\widehat{R}$
```@docs
ess
rhat
ess_rhat
```
The following `autocov_method`s are supported:
```@docs
AutocovMethod
FFTAutocovMethod
BDAAutocovMethod
```
## Monte Carlo standard error
```@docs
mcse
```
## R⋆ diagnostic
```@docs
rstar
```
## Bayesian fraction of missing information
```@docs
bfmi
```
## Other diagnostics
!!! note
These diagnostics are older and less widely used.
```@docs
discretediag
gelmandiag
gelmandiag_multivariate
gewekediag
heideldiag
rafterydiag
``` | MCMCDiagnosticTools | https://github.com/TuringLang/MCMCDiagnosticTools.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 1173 | using Documenter, GigaSOM
makedocs(modules = [GigaSOM],
clean = false,
format = Documenter.HTML(prettyurls = !("local" in ARGS),
canonical = "https://lcsb-biocore.github.io/GigaSOM.jl/stable/",
assets = ["assets/gigasomlogotransp.ico"]),
sitename = "GigaSOM.jl",
authors = "The developers of GigaSOM.jl",
linkcheck = !("skiplinks" in ARGS),
pages = [
"Home" => "index.md",
"Background" => "background.md",
"Tutorial" => [
"Introduction" => "tutorials/basicUsage.md",
"Cytometry data" => "tutorials/processingFCSData.md",
"Advanced distributed processing" => "tutorials/distributedProcessing.md",
"Conclusion" => "tutorials/whereToGoNext.md",
],
"Functions" => "functions.md",
"How to contribute" => "howToContribute.md",
],
)
deploydocs(
repo = "github.com/LCSB-BioCore/GigaSOM.jl.git",
target = "build",
branch = "gh-pages",
devbranch = "develop",
push_preview = true
)
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 1304 | """
Main module for `GigaSOM.jl` - Huge-scale, high-performance flow cytometry clustering
The documentation is here: http://LCSB-BioCore.github.io/GigaSOM.jl
"""
module GigaSOM
using CSV
using DataFrames
using Distances
using Distributed
using DistributedData
using Distributions
using FCSFiles
using FileIO
using DistributedArrays
using NearestNeighbors
using Serialization
using StableRNGs
include("base/structs.jl")
include("base/dataops.jl")
include("base/trainutils.jl")
include("analysis/core.jl")
include("analysis/embedding.jl")
include("io/input.jl")
include("io/process.jl")
include("io/splitting.jl")
#core
export initGigaSOM, trainGigaSOM, mapToGigaSOM
#trainutils
export linearRadius, expRadius, gaussianKernel, bubbleKernel, thresholdKernel, distMatrix
#embedding
export embedGigaSOM
# structs
export Som
#io/input
export readFlowset,
readFlowFrame,
loadFCS,
loadFCSHeader,
getFCSSize,
loadFCSSizes,
loadFCSSet,
selectFCSColumns,
distributeFCSFileVector,
distributeFileVector,
getCSVSize,
loadCSV,
loadCSVSizes,
loadCSVSet
#io/splitting
export slicesof, vcollectSlice, collectSlice
#io/process
export cleanNames!, getMetaData, getMarkerNames
#dataops (higher-level operations on data)
export dtransform_asinh
end # module
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 9295 | """
initGigaSOM(data, args...)
Initializes a SOM by random selection from the training data. A generic
overload that works for matrices and DataFrames that can be coerced to
`Matrix{Float64}`. Other arguments are passed to the data-independent
`initGigaSOM`.
Arguments:
- `data`: matrix of data for running the initialization
"""
function initGigaSOM(data::Union{Matrix,DataFrame}, args...; kwargs...)
d = Matrix{Float64}(data)
(n, ncol) = size(d)
means = [sum(d[:, i]) / n for i = 1:ncol]
sdevs = [sqrt(sum((d[:, i] .- means[i]) .^ 2.0) / n) for i = 1:ncol]
return initGigaSOM(ncol, means, sdevs, args...; kwargs...)
end
"""
function initGigaSOM(data::Dinfo,
xdim::Int64, ydim::Int64 = xdim;
seed=rand(Int), rng=StableRNG(seed))
`initGigaSOM` overload for working with distributed-style `Dinfo`
data. The rest of the arguments is passed to the data-independent
`initGigaSOM`.
Arguments:
- `data`: a `Dinfo` object with the distributed dataset matrix
"""
function initGigaSOM(data::Dinfo, args...; kwargs...)
ncol = get_val_from(data.workers[1], :(size($(data.val))[2]))
(means, sdevs) = dstat(data, Vector(1:ncol))
initGigaSOM(ncol, means, sdevs, args...; kwargs...)
end
"""
function initGigaSOM(ncol::Int64,
means::Vector{Float64}, sdevs::Vector{Float64},
xdim::Int64, ydim::Int64 = xdim;
seed = rand(Int), rng = StableRNG(seed))
Generate a stable random initial SOM with the random distribution that matches the parameters.
Arguments:
- `ncol`: number of desired data columns
- `means`, `sdevs`: vectors that describe the data distribution, both of size `ncol`
- `xdim`, `ydim`: Size of the SOM
- `seed`: a seed (defaults to random seed from the current default random generator
- `rng`: a random number generator to be used (defaults to a `StableRNG` initialized with the `seed`)
Returns: a new `Som` structure
"""
function initGigaSOM(
ncol::Int64,
means::Vector{Float64},
sdevs::Vector{Float64},
xdim::Int64,
ydim::Int64 = xdim;
seed = rand(UInt),
rng = StableRNG(seed),
)
numCodes = xdim * ydim
grid = gridRectangular(xdim, ydim)
# Initialize with an unbiased random gaussian with same mean/sd as the data
# in each dimension
codes = randn(rng, (numCodes, ncol))
for col = 1:ncol
codes[:, col] .*= sdevs[col]
codes[:, col] .+= means[col]
end
return Som(codes = codes, xdim = xdim, ydim = ydim, grid = grid)
end
"""
trainGigaSOM(
som::Som,
dInfo::Dinfo;
kernelFun::Function = gaussianKernel,
metric = Euclidean(),
somDistFun = distMatrix(Chebyshev()),
knnTreeFun = BruteTree,
rStart = 0.0,
rFinal = 0.1,
radiusFun = expRadius(-5.0),
epochs = 20,
eachEpoch = (e, r, som) -> nothing,
)
# Arguments:
- `som`: object of type Som with an initialised som
- `dInfo`: `Dinfo` object that describes a loaded dataset
- `kernelFun::function`: optional distance kernel; one of (`bubbleKernel, gaussianKernel`)
default is `gaussianKernel`
- `metric`: Passed as metric argument to the KNN-tree constructor
- `somDistFun`: Function for computing the distances in the SOM map
- `knnTreeFun`: Constructor of the KNN-tree (e.g. from NearestNeighbors package)
- `rStart`: optional training radius. If zero (default), it is computed from the SOM grid size.
- `rFinal`: target radius at the last epoch, defaults to 0.1
- `radiusFun`: Function that generates radius decay, e.g. `linearRadius` or `expRadius(10.0)`
- `epochs`: number of SOM training iterations (default 10)
- `eachEpoch`: a function to call back after each epoch, accepting arguments
`(epochNumber, radius, som)`. For simplicity, this gets additionally called
once before the first epoch, with `epochNumber` set to zero.
"""
function trainGigaSOM(
som::Som,
dInfo::Dinfo;
kernelFun::Function = gaussianKernel,
metric = Euclidean(),
somDistFun = distMatrix(Chebyshev()),
knnTreeFun = BruteTree,
rStart = 0.0,
rFinal = 0.1,
radiusFun = expRadius(-5.0),
epochs = 20,
eachEpoch = (e, r, som) -> nothing,
)
# set the default radius
if rStart == 0.0
rStart = (som.xdim + som.ydim) / 2
@debug "The radius has been determined automatically." rStart rFinal
end
# get the SOM neighborhood distances
dm = somDistFun(som.grid)
result_som = copy(som)
result_som.codes = copy(som.codes) # prevent rewriting by reference
eachEpoch(0, rStart, result_som)
for epoch = 1:epochs
@debug "Epoch $epoch..."
numerator, denominator = distributedEpoch(
dInfo,
result_som.codes,
knnTreeFun(Array{Float64,2}(transpose(result_som.codes)), metric),
)
r = radiusFun(rStart, rFinal, epoch, epochs)
@debug "radius: $r"
if r <= 0
@error "Sanity check failed: radius must be positive"
error("Radius check")
end
wEpoch = kernelFun(dm, r)
result_som.codes = (wEpoch * numerator) ./ (wEpoch * denominator)
eachEpoch(epoch, r, result_som)
end
return result_som
end
"""
trainGigaSOM(som::Som, train;
kwargs...)
Overload of `trainGigaSOM` for simple DataFrames and matrices. This slices the
data, distributes them to the workers, and runs normal `trainGigaSOM`. Data is
`unscatter`d after the computation.
"""
function trainGigaSOM(som::Som, train; kwargs...)
train = Matrix{Float64}(train)
#this slices the data into parts and and sends them to workers
dInfo = scatter_array(:GigaSOMtrainDataVar, train, workers())
som_res = trainGigaSOM(som, dInfo; kwargs...)
unscatter(dInfo)
return som_res
end
"""
doEpoch(x::Array{Float64, 2}, codes::Array{Float64, 2}, tree)
vectors and the adjustment in radius after each epoch.
# Arguments:
- `x`: training Data
- `codes`: Codebook
- `tree`: knn-compatible tree built upon the codes
"""
function doEpoch(x::Array{Float64,2}, codes::Array{Float64,2}, tree)
# initialise numerator and denominator with 0's
sumNumerator = zeros(Float64, size(codes))
sumDenominator = zeros(Float64, size(codes)[1])
# for each sample in dataset / trainingsset
for s = 1:size(x, 1)
(bmuIdx, bmuDist) = knn(tree, x[s, :], 1)
target = bmuIdx[1]
sumNumerator[target, :] .+= x[s, :]
sumDenominator[target] += 1
end
return sumNumerator, sumDenominator
end
"""
distributedEpoch(dInfo::Dinfo, codes::Matrix{Float64}, tree)
Execute the `doEpoch` in parallel on workers described by `dInfo` and collect
the results. Returns pair of numerator and denominator matrices.
"""
function distributedEpoch(dInfo::Dinfo, codes::Matrix{Float64}, tree)
return dmapreduce(
dInfo,
(data) -> doEpoch(data, codes, tree),
((n1, d1), (n2, d2)) -> (n1 + n2, d1 + d2),
)
end
"""
mapToGigaSOM(som::Som, dInfo::Dinfo;
knnTreeFun = BruteTree, metric = Euclidean(),
output::Symbol=tmp_symbol(dInfo)::Dinfo
Compute the index of the BMU for each row of the input data.
# Arguments
- `som`: a trained SOM
- `dInfo`: `Dinfo` that describes the loaded and distributed data
- `knnTreeFun`: Constructor of the KNN-tree (e.g. from NearestNeighbors package)
- `metric`: Passed as metric argument to the KNN-tree constructor
- `output`: Symbol to save the result, defaults to `tmp_symbol(dInfo)`
Data must have the same number of dimensions as the training dataset
and will be normalised with the same parameters.
"""
function mapToGigaSOM(
som::Som,
dInfo::Dinfo;
knnTreeFun = BruteTree,
metric = Euclidean(),
output::Symbol = tmp_symbol(dInfo),
)::Dinfo
tree = knnTreeFun(Array{Float64,2}(transpose(som.codes)), metric)
return dtransform(dInfo, (d) -> (vcat(knn(tree, transpose(d), 1)[1]...)), output)
end
"""
mapToGigaSOM(som::Som, data;
knnTreeFun = BruteTree,
metric = Euclidean())
Overload of `mapToGigaSOM` for simple DataFrames and matrices. This slices the
data using `DistributedArrays`, sends them the workers, and runs normal
`mapToGigaSOM`. Data is `unscatter`d after the computation.
"""
function mapToGigaSOM(som::Som, data; knnTreeFun = BruteTree, metric = Euclidean())
data = Matrix{Float64}(data)
if size(data, 2) != size(som.codes, 2)
@error "Data dimension ($(size(data,2))) does not match codebook dimension ($(size(som.codes,2)))."
error("Data dimensions do not match")
end
dInfo = scatter_array(:GigaSOMmappingDataVar, data, workers())
rInfo = mapToGigaSOM(som, dInfo, knnTreeFun = knnTreeFun, metric = metric)
res = gather_array(rInfo)
unscatter(dInfo)
unscatter(rInfo)
return DataFrame(index = res)
end
"""
scaleEpochTime(iteration::Int64, epochs::Int64)
Convert iteration ID and epoch number to relative time in training.
"""
function scaleEpochTime(iteration::Int64, epochs::Int64)
# prevent division by zero on 1-epoch training
if epochs > 1
epochs -= 1
end
return Float64(iteration - 1) / Float64(epochs)
end
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 9309 | """
embedGigaSOM(som::GigaSOM.Som,
dInfo::Dinfo;
knnTreeFun = BruteTree,
metric = Euclidean(),
k::Int64=0,
adjust::Float64=1.0,
smooth::Float64=0.0,
m::Float64=10.0,
output::Symbol=tmp_symbol(dInfo))::Dinfo
Return a data frame with X,Y coordinates of EmbedSOM projection of the data.
# Arguments:
- `som`: a trained SOM
- `dInfo`: `Dinfo` that describes the loaded dataset
- `knnTreeFun`: Constructor of the KNN-tree (e.g. from NearestNeighbors package)
- `metric`: Passed as metric argument to the KNN-tree constructor
- `k`: number of nearest neighbors to consider (high values get quadratically
slower)
- `adjust`: position adjustment parameter (higher values avoid non-local
approximations)
- `smooth`: approximation smoothness (the higher the value, the larger the
neighborhood of approximate local linearity of the projection)
- `m`: exponential decay rate for the score when approaching the `k+1`-th neighbor distance
- `output`: variable name for storing the distributed result
Data must have the same number of dimensions as the training dataset,
and must be normalized using the same parameters.
"""
function embedGigaSOM(
som::GigaSOM.Som,
dInfo::Dinfo;
knnTreeFun = BruteTree,
metric = Euclidean(),
k::Int64 = 0,
adjust::Float64 = 1.0,
smooth::Float64 = 0.0,
m::Float64 = 10.0,
output::Symbol = tmp_symbol(dInfo),
)::Dinfo
# convert `smooth` to `boost`
boost = exp(-smooth - 1)
# default `k`
if k == 0
k = Integer(1 + sqrt(som.xdim * som.ydim))
@debug "embedding defaults" k
end
# check if `k` isn't too high
if k > som.xdim * som.ydim
k = Integer(som.xdim * som.ydim)
end
# prepare the kNN-tree for lookups
tree = knnTreeFun(Array{Float64,2}(transpose(som.codes)), metric)
# run the distributed computation
return dtransform(
dInfo,
(d) -> (embedGigaSOM_internal(som, d, tree, k, adjust, boost, m)),
output,
)
end
"""
embedGigaSOM(som::GigaSOM.Som,
data;
knnTreeFun = BruteTree,
metric = Euclidean(),
k::Int64=0,
adjust::Float64=1.0,
smooth::Float64=0.0,
m::Float64=10.0)
Overload of `embedGigaSOM` for simple DataFrames and matrices. This slices the
data using `DistributedArrays`, sends them the workers, and runs normal
`embedGigaSOM`. All data is properly `unscatter`d after the computation.
# Examples:
Produce a 2-column matrix with 2D cell coordinates:
```
e = embedGigaSOM(som, data)
```
Plot the result using 2D histogram from Gadfly:
```
using Gadfly
draw(PNG("output.png",20cm,20cm),
plot(x=e[:,1], y=e[:,2],
Geom.histogram2d(xbincount=200, ybincount=200)))
```
"""
function embedGigaSOM(
som::GigaSOM.Som,
data;
knnTreeFun = BruteTree,
metric = Euclidean(),
k::Int64 = 0,
adjust::Float64 = 1.0,
smooth::Float64 = 0.0,
m::Float64 = 10.0,
)
data = Matrix{Float64}(data)
dInfo = scatter_array(:GigaSOMembeddingDataVar, data, workers())
rInfo = embedGigaSOM(
som,
dInfo,
knnTreeFun = knnTreeFun,
metric = metric,
k = k,
adjust = adjust,
smooth = smooth,
m = m,
)
res = gather_array(rInfo)
unscatter(dInfo)
unscatter(rInfo)
return res
end
"""
embedGigaSOM_internal(som::GigaSOM.Som,
data::Matrix{Float64},
tree,
k::Int64,
adjust::Float64,
boost::Float64,
m::Float64)
Internal function to compute parts of the embedding on a prepared kNN-tree
structure (`tree`) and `smooth` converted to `boost`.
"""
function embedGigaSOM_internal(
som::GigaSOM.Som,
data::Matrix{Float64},
tree,
k::Int64,
adjust::Float64,
boost::Float64,
m::Float64,
)
ndata = size(data, 1)
ncodes = size(som.codes, 1)
dim = size(data, 2)
# output buffer
e = zeros(Float64, ndata, 2)
# in case k<ncodes, we use 1 more neighbor to estimate the decay from 'm'
nk = k
if nk < ncodes
nk += 1
end
# buffer for indexes of the nk nearest SOM points
sp = zeros(Int, nk)
# process all data points in this batch
for di = 1:size(data, 1)
# find the nearest neighbors of the point and sort them by distance
(knidx, kndist) = knn(tree, Array{Float64,1}(data[di, :]), nk)
sortperm!(sp, kndist)
knidx = knidx[sp] # nearest point indexes
kndist = kndist[sp] # their corresponding distances
# Compute the distribution of the weighted distances
mean = 0.0
sd = 0.0
wsum = 0.0
for i = 1:nk
tmp = kndist[i]
w = 1.0 / i #the weight
mean += tmp * w
sd += tmp * tmp * w
wsum += w
end
mean /= wsum
sd = boost / sqrt(sd / wsum - mean * mean)
nmax = m / kndist[nk]
# if there is the cutoff
if k < nk
for i = 1:k
kndist[i] = exp((mean - kndist[i]) * sd) * (1 - exp(kndist[i] * nmax - m))
end
else #no neighborhood cutoff
for i = 1:k
kndist[i] = exp((mean - kndist[i]) * sd)
end
end
# `mtx` is used as a matrix of a linear equation (like A|b) with 2
# unknowns. Derivations of square-error function are added to the
# matrix in a way that solving the matrix (i.e. finding the zero)
# effectively minimizes the error.
mtx = zeros(Float64, 2, 3)
# The embedding works with pairs of points on the SOM, say I and J.
# Thus there are 2 cycles for all pairs of `i` and `j`.
for i = 1:k
idx = knidx[i] # index of I in SOM
ix = Float64(som.grid[idx, 1]) # position of I in 2D space
iy = Float64(som.grid[idx, 2])
is = kndist[i] # precomputed score of I
# a bit of single-point gravity helps with avoiding singularities
gs = 1e-9 * is
mtx[1, 1] += gs
mtx[2, 2] += gs
mtx[1, 3] += gs * ix
mtx[2, 3] += gs * iy
for j = (i+1):k
jdx = knidx[j] # same values for J as for I
jx = Float64(som.grid[jdx, 1])
jy = Float64(som.grid[jdx, 2])
js = kndist[j]
# compute values for approximation
scalar::Float64 = 0 # this will be dot(Point-I, J-I)
sqdist::Float64 = 0 # ... norm(J-I)
for kk = 1:dim
tmp = som.codes[idx, kk] * som.codes[jdx, kk]
sqdist += tmp * tmp
scalar += tmp * (data[di, kk] - som.codes[idx, kk])
end
if scalar != 0
if sqdist == 0
# sounds like I==J ...
continue
else
# If everything went right, `scalar` now becomes the
# position of the point being embedded on the line
# defined by I,J, relatively to both points (I has
# position 0 and J has position 1).
scalar /= sqdist
end
end
# Process this information into matrix coefficients that give
# derivation of the error that the resulting point will have
# from the `scalar` position between 2D images of I and J.
#
# Note: I originally did the math by hand, but, seriously, do
# not waste time with that and use e.g. Sage for getting the
# derivatives right if anything should get modified here.
hx = jx - ix
hy = jy - iy
hp = hx * hx + hy * hy
# Higher `adjust` parameter lowers approximation influence of
# SOM points that are too far in 2D.
s = is * js * ((1 + hp)^(-adjust)) * exp(-((scalar - 0.5)^2))
sihp = s / hp
rhsc = s * (scalar + (hx * ix + hy * iy) / hp)
mtx[1, 1] += hx * hx * sihp
mtx[1, 2] += hx * hy * sihp
mtx[2, 1] += hy * hx * sihp
mtx[2, 2] += hy * hy * sihp
mtx[1, 3] += hx * rhsc
mtx[2, 3] += hy * rhsc
end
end
# Now the matrix contains a derivative of the error sum function;
# solving the matrix using the Cramer rule means finding zero of the
# derivative, which gives the minimum-error position, which is in turn
# the desired embedded point position that gets saved to output `e`.
det = mtx[1, 1] * mtx[2, 2] - mtx[1, 2] * mtx[2, 1]
e[di, 1] = (mtx[1, 3] * mtx[2, 2] - mtx[1, 2] * mtx[2, 3]) / det
e[di, 2] = (mtx[1, 1] * mtx[2, 3] - mtx[2, 1] * mtx[1, 3]) / det
end
return e
end
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 297 | """
dtransform_asinh(dInfo::Dinfo, columns::Vector{Int}, cofactor=5)
Transform columns of the dataset by asinh transformation with `cofactor`.
"""
function dtransform_asinh(dInfo::Dinfo, columns::Vector{Int}, cofactor = 5)
dapply_cols(dInfo, (v, _) -> asinh.(v ./ cofactor), columns)
end
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 939 | """
Som
Structure to hold all data of a trained SOM.
# Fields:
- `codes::Array{Float64,2}`: 2D-array of codebook vectors. One vector per row
- `xdim::Int`: number of neurons in x-direction
- `ydim::Int`: number of neurons in y-direction
- `numCodes::Int`: total number of neurons
- `grid::Array{Float64,2}`: 2D-array of coordinates of neurons on the map
(2 columns (x,y)] for rectangular and hexagonal maps
3 columns (x,y,z) for spherical maps)
"""
mutable struct Som
codes::Matrix{Float64}
xdim::Int
ydim::Int
numCodes::Int
grid::Matrix{Float64}
Som(;
codes::Matrix{Float64},
xdim::Int,
ydim::Int,
numCodes::Int = xdim * ydim,
grid::Matrix{Float64},
) = new(codes, xdim, ydim, numCodes, grid)
end
Base.copy(som::Som) = Som(
codes = som.codes,
xdim = som.xdim,
ydim = som.ydim,
numCodes = som.numCodes,
grid = som.grid,
)
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 4012 |
"""
linearRadius(initRadius::Float64, iteration::Int64, decay::String, epochs::Int64)
Return a neighbourhood radius. Use as the `radiusFun` parameter for `trainGigaSOM`.
# Arguments
- `initRadius`: Initial Radius
- `finalRadius`: Final Radius
- `iteration`: Training iteration
- `epochs`: Total number of epochs
"""
function linearRadius(
initRadius::Float64,
finalRadius::Float64,
iteration::Int64,
epochs::Int64,
)
scaledTime = scaleEpochTime(iteration, epochs)
return initRadius * (1 - scaledTime) + finalRadius * scaledTime
end
"""
expRadius(steepness::Float64)
Return a function to be used as a `radiusFun` of `trainGigaSOM`, which causes
exponencial decay with the selected steepness.
Use: `trainGigaSOM(..., radiusFun = expRadius(0.5))`
# Arguments
- `steepness`: Steepness of exponential descent. Good values range
from -100.0 (almost linear) to 100.0 (really quick decay).
"""
function expRadius(steepness::Float64 = 0.0)
return (initRadius::Float64, finalRadius::Float64, iteration::Int64, epochs::Int64) ->
begin
scaledTime = scaleEpochTime(iteration, epochs)
if steepness < -100.0
# prevent floating point underflows
error("Sanity check: steepness too low, use linearRadius instead.")
end
# steepness is simulated by moving both points closer to zero
adjust = finalRadius * (1 - 1.1^(-steepness))
if initRadius <= 0 || (initRadius - adjust) <= 0 || finalRadius <= 0
error(
"Radii must be positive. (Possible alternative cause: steepness is too high.)",
)
end
initRadius -= adjust
finalRadius -= adjust
return adjust + initRadius * ((finalRadius / initRadius)^scaledTime)
end
end
"""
gridRectangular(xdim, ydim)
Create coordinates of all neurons on a rectangular SOM.
The return-value is an array of size (Number-of-neurons, 2) with
x- and y- coordinates of the neurons in the first and second
column respectively.
The distance between neighbours is 1.0.
The point of origin is bottom-left.
The first neuron sits at (0,0).
# Arguments
- `xdim`: number of neurons in x-direction
- `ydim`: number of neurons in y-direction
"""
function gridRectangular(xdim, ydim)
grid = zeros(Float64, (xdim * ydim, 2))
for ix = 1:xdim
for iy = 1:ydim
grid[ix+(iy-1)*xdim, 1] = ix - 1
grid[ix+(iy-1)*xdim, 2] = iy - 1
end
end
return grid
end
"""
gaussianKernel(x, r::Float64)
Return the value of normal distribution PDF (σ=`r`, μ=0) at `x`
"""
function gaussianKernel(x, r::Float64)
return Distributions.pdf.(Distributions.Normal(0.0, r), x)
end
function bubbleKernelSqScalar(x::Float64, r::Float64)
if x >= r
return 0
else
return sqrt(1 - x / r)
end
end
"""
bubbleKernel(x, r::Float64)
Return a "bubble" (spherical) distribution kernel.
"""
function bubbleKernel(x, r::Float64)
return bubbleKernelSqScalar.(x .^ 2, r^2)
end
"""
thresholdKernel(x, r::Float64)
Simple FlowSOM-like hard-threshold kernel
"""
function thresholdKernel(x, r::Float64, maxRatio = 4 / 5, zero = 1e-6)
if r >= maxRatio * maximum(x) #prevent smoothing everything to a single point
r = maxRatio * maximum(x)
end
return zero .+ (x .<= r)
end
"""
distMatrix(metric=Chebyshev())
Return a function that uses the `metric` (compatible with metrics from package `Distances`) calculates distance matrixes from normal row-wise data matrices, using the `metric`.
Use as a parameter of `trainGigaSOM`.
"""
function distMatrix(metric = Chebyshev())
return (grid::Matrix{Float64}) -> begin
n = size(grid, 1)
dm = zeros(Float64, n, n)
for i = 1:n
for j = 1:n
dm[i, j] = metric(grid[i, :], grid[j, :])
end
end
return dm::Matrix{Float64}
end
end
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 8385 | """
loadFCSHeader(fn::String)::Tuple{Vector{Int}, Dict{String,String}}
Efficiently extract data offsets and keyword dictionary from an FCS file.
"""
function loadFCSHeader(fn::String)::Tuple{Vector{Int},Dict{String,String}}
open(fn) do io
offsets = FCSFiles.parse_header(io)
params = FCSFiles.parse_text(io, offsets[1], offsets[2])
FCSFiles.verify_text(params)
(offsets, params)
end
end
"""
getFCSSize(offsets, params)::Tuple{Int,Int}
Convert the offsets and keywords from an FCS file to cell and parameter count,
respectively.
"""
function getFCSSize(offsets, params)::Tuple{Int,Int}
nData = parse(Int, params["\$TOT"])
nParams = parse(Int, params["\$PAR"])
if params["\$DATATYPE"] != "F"
@error "Only float32 FCS files are currently supported"
error("Unsupported FCS format")
end
beginData = parse(Int, params["\$BEGINDATA"])
endData = parse(Int, params["\$ENDDATA"])
#check that the $TOT and $PAR look okay
if !(offsets[3] == 0 && offsets[4] == 0) && (
(
1 + offsets[4] - offsets[3] != nData * nParams * 4 &&
offsets[4] - offsets[3] != nData * nParams * 4
) ||
offsets[3] != beginData ||
offsets[4] != endData
)
@warn "Data size mismatch, FCS is likely broken."
end
return (nData, nParams)
end
"""
loadFCSSizes(fns::Vector{String})
Load cell counts in many FCS files at once. Useful as input for `slicesof`.
"""
function loadFCSSizes(fns::Vector{String})::Vector{Int}
[(
begin
o, s = loadFCSHeader(fn)
getFCSSize(o, s)[1]
end
) for fn in fns]
end
"""
loadFCS(fn::String; applyCompensation::Bool=true)::Tuple{Dict{String,String}, Matrix{Float64}}
Read a FCS file. Return a tuple that contains in order:
- dictionary of the keywords contained in the file
- raw column names
- prettified and annotated column names
- raw data matrix
If `applyCompensation` is set, the function parses and retrieves a spillover
matrix (if any valid keyword in the FCS is found that would contain it) and
applies it to compensate the data.
"""
function loadFCS(
fn::String;
applyCompensation::Bool = true,
)::Tuple{Dict{String,String},Matrix{Float64}}
fcs = FileIO.load(fn)
meta = getMetaData(fcs.params)
data = hcat(map(x -> Vector{Float64}(fcs.data[x]), meta[:, :N])...)
if applyCompensation
spill = getSpillover(fcs.params)
if spill != nothing
names, mtx = spill
cols = indexin(names, meta[:, :N])
if any(cols .== nothing)
@error "Unknown columns in compensation matrix" names cols
error("Invalid compensation matrix")
end
compensate!(data, mtx, Vector{Int}(cols))
end
end
return (fcs.params, data)
end
"""
loadFCSSet(name::Symbol, fns::Vector{String}, pids=workers(); applyCompensation=true, postLoad=(d,i)->d)::Dinfo
This runs the FCS loading machinery in a distributed way, so that the files
`fns` (with full path) are sliced into equal parts and saved as a distributed
variable `name` on workers specified by `pids`.
`applyCompensation` is passed to loadFCS function.
See `slicesof` for description of the slicing.
`postLoad` is applied to the loaded FCS file data (and the index) -- use this
function to e.g. filter out certain columns right on loading, using `selectFCSColumns`.
The loaded dataset can be manipulated by the distributed functions, e.g.
- `dselect` for removing columns
- `dscale` for normalization
- `dtransform_asinh` (and others) for transformation
- etc.
"""
function loadFCSSet(
name::Symbol,
fns::Vector{String},
pids = workers();
applyCompensation = true,
postLoad = (d, i) -> d,
)::Dinfo
slices = slicesof(loadFCSSizes(fns), length(pids))
dmap(
slices,
(slice) -> Base.eval(
Main,
:(
begin
$name = vcollectSlice(
(i) -> last(
$postLoad(
loadFCS($fns[i]; applyCompensation = $applyCompensation),
i,
),
),
$slice,
)
nothing
end
),
),
pids,
)
return Dinfo(name, pids)
end
"""
selectFCSColumns(selectColnames::Vector{String})
Return a function useful with `loadFCSSet`, which loads only the specified
(prettified) column names from the FCS files. Use `getMetaData`,
`getMarkerNames` and `cleanNames!` to retrieve the usable column names for a
FCS.
"""
function selectFCSColumns(selectColnames::Vector{String})
((metadata, data), idx) -> begin
_, names = getMarkerNames(getMetaData(metadata))
cleanNames!(names)
colIdxs = indexin(selectColnames, names)
if any(colIdxs .== nothing)
@error "Some columns were not found"
error("unknown column")
end
(metadata, data[:, colIdxs])
end
end
"""
distributeFCSFileVector(name::Symbol, fns::Vector{String}, pids=workers())::Dinfo
Distribute a vector of integers among the workers that describes which file
from `fns` the cell comes from. Useful for producing per-file statistics. The
vector is saved on workers specified by `pids` as a distributed variable
`name`.
"""
function distributeFCSFileVector(name::Symbol, fns::Vector{String}, pids = workers())::Dinfo
sizes = loadFCSSizes(fns)
slices = slicesof(sizes, length(pids))
return distributeFileVector(name, sizes, slices, pids)
end
"""
distributeFileVector(name::Symbol, sizes::Vector{Int}, slices::Vector{Tuple{Int,Int,Int,Int}}, pids=workers())::Dinfo
Generalized version of `distributeFCSFileVector` that produces the integer
vector from any `sizes` and `slices`.
"""
function distributeFileVector(
name::Symbol,
sizes::Vector{Int},
slices::Vector{Tuple{Int,Int,Int,Int}},
pids = workers(),
)::Dinfo
dmap(
slices,
(slice) ->
Base.eval(Main, :($name = collectSlice((i) -> fill(i, $sizes[i]), $slice))),
pids,
)
return Dinfo(name, pids)
end
"""
function getCSVSize(fn::String; args...)::Tuple{Int,Int}
Read the dimensions (number of rows and columns, respectively) from a CSV file
`fn`. `args` are passed to function `CSV.file`.
# Example
getCSVSize("test.csv", header=false)
"""
function getCSVSize(fn::String; args...)::Tuple{Int,Int}
n = 0
k = 0
# ideally, this will not try to load the whole CSV in the memory
for row in CSV.File(fn, type = Float64; args...)
n += 1
if length(row) > k
k = length(row)
end
end
return (n, k)
end
"""
function loadCSVSizes(fns::Vector{String}; args...)::Vector{Int}
Determine number of rows in a list of CSV files (passed as `fns`). Equivalent
to `loadFCSSizes`.
"""
function loadCSVSizes(fns::Vector{String}; args...)::Vector{Int}
[getCSVSize(fn, type = Float64; args...)[1] for fn in fns]
end
"""
function loadCSV(fn::String; args...)::Matrix{Float64}
CSV equivalent of `loadFCS`. The metadata (header, column names) are not
extracted. `args` are passed to `CSV.read`.
"""
function loadCSV(fn::String; args...)::Matrix{Float64}
CSV.read(fn, DataFrame, type = Float64; args...) |> Matrix{Float64}
end
"""
function loadCSVSet(
name::Symbol,
fns::Vector{String},
pids = workers();
postLoad = (d, i) -> d,
csvargs...,
)::Dinfo
CSV equivalent of `loadFCSSet`. `csvargs` are passed as keyword arguments to
CSV-loading functions.
"""
function loadCSVSet(
name::Symbol,
fns::Vector{String},
pids = workers();
postLoad = (d, i) -> d,
csvargs...,
)::Dinfo
slices = slicesof(loadCSVSizes(fns; csvargs...), length(pids))
dmap(
slices,
(slice) -> Base.eval(
Main,
:(
begin
$name = vcollectSlice(
(i) -> $postLoad(loadCSV($fns[i]; $csvargs...), i),
$slice,
)
nothing
end
),
),
pids,
)
return Dinfo(name, pids)
end
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 4402 | """
cleanNames!(mydata::Vector{String})
Replaces problematic characters in column names, avoids duplicate names, and
prefixes an '_' if the name starts with a number.
# Arguments:
- `mydata`: vector of names (gets modified)
"""
function cleanNames!(mydata::Vector{String})
# replace problematic characters,
# put "_" in front of colname in case it starts with a number
# avoid duplicate names (add suffixes _2, _3, ...)
usedNames = Set{String}()
for j in eachindex(mydata)
mydata[j] = replace(mydata[j], "-" => "_")
if isnumeric(first(mydata[j]))
mydata[j] = "_" * mydata[j]
end
# avoid duplicate names
if mydata[j] in usedNames
idx = 2
while "$(mydata[j])_$idx" in usedNames
idx += 1
end
mydata[j] *= "_$idx"
end
push!(usedNames, mydata[j])
end
end
"""
getMetaData(f)
Collect the meta data information in a more user friendly format.
# Arguments:
- `f`: input structure with `.params` and `.data` fields
"""
function getMetaData(meta::Dict{String,String})::DataFrame
# declarations and initializations
metaKeys = keys(meta)
channel_properties = []
defaultValue = ""
# determine the number of channels
pars = parse(Int, strip(join(meta["\$PAR"])))
# determine the available channel properties
for (key,) in meta
if length(key) >= 2 && key[1:2] == "\$P"
i = 3
while i <= length(key) && isdigit(key[i])
i += 1
end
if i <= length(key) && !in(key[i:end], channel_properties)
push!(channel_properties, key[i:end])
end
end
end
# create a data frame for the results
df = Matrix{String}(undef, pars, length(channel_properties))
df .= defaultValue
df = DataFrame(df, :auto)
rename!(df, Symbol.(channel_properties))
# collect the data from params
for ch = 1:pars
for p in channel_properties
if "\$P$ch$p" in metaKeys
df[ch, Symbol(p)] = meta["\$P$ch$p"]
end
end
end
return df
end
"""
getMarkerNames(meta::DataFrame)::Tuple{Vector{String}, Vector{String}}
Extract suitable raw names (useful for selecting columns) and pretty readable
names (useful for humans) from FCS file metadata.
"""
function getMarkerNames(meta::DataFrame)::Tuple{Vector{String},Vector{String}}
orig = Array{String}(meta[:, :N])
nice = copy(orig)
if hasproperty(meta, :S)
for i = 1:size(meta, 1)
if strip(meta[i, :S]) != ""
nice[i] = meta[i, :S]
end
end
end
return (orig, nice)
end
"""
compensate!(data::Matrix{Float64}, spillover::Matrix{Float64}, cols::Vector{Int})
Apply a compensation matrix in `spillover` (the individual columns of which
describe, in order, the spillover of `cols` in `data`) to the matrix `data`
in-place.
"""
function compensate!(data::Matrix{Float64}, spillover::Matrix{Float64}, cols::Vector{Int})
data[:, cols] = data[:, cols] * inv(spillover)
end
"""
parseSpillover(str::String)::Union{Tuple{Vector{String},Matrix{Float64}}, Nothing}
Parses the spillover matrix from the string from FCS parameter value.
"""
function parseSpillover(str::String)::Tuple{Vector{String},Matrix{Float64}}
fields = split(str, ',')
n = parse(Int, fields[1])
if length(fields) != 1 + n + n * n
@error "Spillover matrix of size $n expects $(1+n+n*n) fields, got $(length(fields)) instead."
error("Invalid spillover matrix")
end
names = fields[2:(1+n)]
spill = collect(transpose(reshape(parse.(Float64, fields[(2+n):length(fields)]), n, n)))
names, spill
end
"""
getSpillover(params::Dict{String, String})::Union{Tuple{Vector{String},Matrix{Float64}}, Nothing}
Get a spillover matrix from FCS `params`. Returns a pair with description of
columns to be applied, and with the actual spillover matrix. Returns `nothing`
in case spillover is not present.
"""
function getSpillover(
params::Dict{String,String},
)::Union{Tuple{Vector{String},Matrix{Float64}},Nothing}
spillNames = ["\$SPILL", "\$SPILLOVER", "SPILL", "SPILLOVER"]
for i in spillNames
if in(i, keys(params))
return parseSpillover(params[i])
end
end
return nothing
end
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 3721 | """
slicesof(lengths::Vector{Int}, slices::Int)::Vector{Tuple{Int,Int,Int,Int}}
Given a list of `lengths` of input arrays, compute a slicing into a specified
amount of equally-sized `slices`.
The output is a vector of 4-tuples where each specifies how to create one
slice. The i-th tuple field contains, in order:
- the index of input array at which the i-th slice begins
- first element of the i-th slice in that input array
- the index of input array with the last element of the i-th slice
- the index of the last element of the i-th slice in that array
"""
function slicesof(lengths::Vector{Int}, slices::Int)::Vector{Tuple{Int,Int,Int,Int}}
nfiles = length(lengths)
total = sum(lengths)
sliceLen = repeat([div(total, slices)], slices)
for i = 1:mod(total, slices)
sliceLen[i] += 1
end
result = repeat([(0, 0, 0, 0)], slices)
ifile = 1 # file in the window
off = 0 # cells already taken from that window
for i = 1:slices
startFile = ifile
startOff = off + 1
avail = lengths[ifile] - off
while avail < sliceLen[i]
ifile += 1
off = 0
avail += lengths[ifile]
end
rest = avail - sliceLen[i]
off = lengths[ifile] - rest
if startOff > lengths[startFile] && startFile < ifile
startOff = 1
startFile += 1
end
result[i] = (startFile, startOff, ifile, off)
end
result
end
"""
vcollectSlice(loadMtx, (startFile, startOff, finalFile, finalOff)::Tuple{Int,Int,Int,Int})::Matrix
Given a method to obtain matrix content (`loadMtx`), reconstruct a slice from
the information generated by `slicesof`.
This function is specialized for reconstructing matrices and arrays, where the
"element counts" split by `slicesof` are in fact matrix rows. The function is
therefore named _v_collect (the slicing and concatenation is _v_ertical).
The actual data content and loading method is abstracted out -- function
`loadMtx` gets the index of the input part that it is required to fetch (e.g.
index of one FCS file), and is expected to return that input part as a whole
matrix. `vcollectSlice` correctly calls this function as required and extracts
relevant portions of the matrices, so that at the end the whole slice can be
pasted together.
Example:
# get a list of files
filenames=["a.fcs", "b.fcs"]
# get descriptions of 5 equally sized parts of the data
slices = slicesof(loadFCSSizes(filenames), 5)
# reconstruct first 3 columns of the first slice
mySlice = vcollectSlice(
i -> last(loadFCS(slices[i]))[:,1:3],
slices[1])
# (note: function loadFCS returns 4 items, the matrix is the last one)
"""
function vcollectSlice(
loadMtx,
(startFile, startOff, finalFile, finalOff)::Tuple{Int,Int,Int,Int},
)::Matrix
vcat(
[
begin
m = loadMtx(i)
beginIdx = i == startFile ? startOff : 1
endIdx = i == finalFile ? finalOff : size(m, 1)
m[beginIdx:endIdx, :]
end for i = startFile:finalFile
]...,
)
end
"""
collectSlice(loadVec, (startFile, startOff, finalFile, finalOff)::Tuple{Int,Int,Int,Int})::Vector
Alternative of `vcollectSlice` for 1D vectors.
"""
function collectSlice(
loadVec,
(startFile, startOff, finalFile, finalOff)::Tuple{Int,Int,Int,Int},
)::Vector
vcat(
[
begin
v = loadVec(i)
beginIdx = i == startFile ? startOff : 1
endIdx = i == finalFile ? finalOff : length(v)
v[beginIdx:endIdx]
end for i = startFile:finalFile
]...,
)
end
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 857 | using GigaSOM, DataFrames, XLSX, CSV, Test, Random, Distributed, DistributedData
using FileIO, DataFrames, Distances
using JSON, SHA
import LinearAlgebra
owd = pwd()
"""
Check if the `pwd()` is the `/test` directory, and if not it changes to it.
"""
function checkDir()
files = readdir()
if !in("runtests.jl", files)
cd(dirname(dirname(pathof(GigaSOM))))
end
end
checkDir()
@testset "GigaSOM test suite" begin
include("testDataOps.jl")
include("testTrainutils.jl")
include("testSplitting.jl")
include("testInput.jl")
#this loads the PBMC dataset required for the batch/parallel tests
include("testLoadPBMC8.jl")
include("testBatch.jl")
include("testParallel.jl")
#misc tests that require some of the above data too
include("testInputCSV.jl")
include("testFileSplitting.jl")
end
cd(owd)
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 2167 |
@testset "Single-CPU batch processing" begin
som = initGigaSOM(pbmc8_data, 10, 10, seed = 1234)
#check whether the distributed version works the same
save_at(1, :test, pbmc8_data)
som2 = initGigaSOM(Dinfo(:test, [1]), 10, 10, seed = 1234)
@test som.codes == som2.codes
remove_from(1, :test)
@testset "Check SOM dimensions" begin
@test size(som.codes) == (100, 10)
@test som.xdim == 10
@test som.ydim == 10
@test som.numCodes == 100
end
som = trainGigaSOM(som, pbmc8_data, epochs = 1)
winners = mapToGigaSOM(som, pbmc8_data)
embed = embedGigaSOM(som, pbmc8_data, k = 10, smooth = 0.1, adjust = 2.3, m = 4.5)
@testset "Check results" begin
codes = som.codes
@test size(codes) == (100, 10)
dfCodes = DataFrame(codes, :auto)
rename!(dfCodes, Symbol.(antigens))
dfEmbed = DataFrame(embed, :auto)
CSV.write(genDataPath * "/batchDfCodes.csv", dfCodes)
CSV.write(genDataPath * "/batchWinners.csv", winners)
CSV.write(genDataPath * "/batchEmbedded.csv", dfEmbed)
#load the ref data
refBatchDfCodes = CSV.File(refDataPath * "/refBatchDfCodes.csv") |> DataFrame
refBatchWinners = CSV.File(refDataPath * "/refBatchWinners.csv") |> DataFrame
refBatchEmbedded = CSV.File(refDataPath * "/refBatchEmbedded.csv") |> DataFrame
#load the generated data
batchDfCodes = CSV.File(genDataPath * "/batchDfCodes.csv") |> DataFrame
batchDfCodesTest = first(batchDfCodes, 10)
batchWinners = CSV.File(genDataPath * "/batchWinners.csv") |> DataFrame
batchWinnersTest = first(batchWinners, 10)
batchEmbedded = CSV.File(genDataPath * "/batchEmbedded.csv") |> DataFrame
batchEmbeddedTest = first(batchEmbedded, 10)
# test the generated data against the reference data
@test refBatchWinners == batchWinnersTest
@test Matrix{Float64}(refBatchDfCodes) ≈ Matrix{Float64}(batchDfCodesTest) atol =
1e-4
@test Matrix{Float64}(refBatchEmbedded) ≈ Matrix{Float64}(batchEmbeddedTest) atol =
1e-4
end
end
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 734 | @testset "High-level operations on distributed data" begin
W = addprocs(2)
@everywhere using GigaSOM
Random.seed!(1)
dd = rand(11111, 5)
buckets = rand([1, 2, 3], 11111)
di1 = scatter_array(:test1, dd, W[1:1])
di2 = scatter_array(:test2, dd, W)
buckets1 = scatter_array(:buckets1, buckets, W[1:1])
buckets2 = scatter_array(:buckets2, buckets, W)
dc = gather_array(di1)
dc[:, 1:2] = asinh.(dc[:, 1:2] ./ 1.23)
dtransform_asinh(di1, [1, 2], 1.23)
dtransform_asinh(di2, [1, 2], 1.23)
@testset "dtransform_asinh" begin
@test isapprox(gather_array(di1), dc)
@test isapprox(gather_array(di2), dc)
end
unscatter(di1)
unscatter(di2)
rmprocs(W)
end
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 983 | @testset "File splitting" begin
W = addprocs(8)
@everywhere using GigaSOM
# re-use the PBMC8 data:
# try load it by parts of different size and scrutinize the parts
for splitSize = 1:8
di = loadFCSSet(:test, md[:, :file_name], W[1:splitSize])
dselect(di, fcsAntigens, antigens)
cols = Vector(1:length(antigens))
dtransform_asinh(di, cols, 5)
dscale(di, cols)
@test isapprox(pbmc8_data, gather_array(di), atol = 1e-4)
splits = dmapreduce(di, d -> size(d, 1), vcat)
@test sum(splits) == size(pbmc8_data, 1)
@test minimum(splits) + 1 >= maximum(splits)
sizes = loadFCSSizes(md[:, :file_name])
dis = distributeFCSFileVector(:testF, md[:, :file_name], W[1:splitSize])
@test dcount(length(sizes), dis) == sizes
@test dcount_buckets(length(sizes), dis, length(sizes), dis) ==
Matrix{Int}(LinearAlgebra.Diagonal(sizes))
end
rmprocs(W)
end
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 1356 |
checkDir()
@testset "File loading with compensation" begin
_, data = loadFCS("test-compensation.fcs")
@test isapprox(
data[:, 7:18],
[
3332.2309256243007 8088.362793640517 538.3720631079816 144.5766025806829 -5.026619216289584 656.7371177910801 34824.02845241197 1939.2085663518994 268.10446790549787 7164.229365371252 1487.6587206861805 -103.62798381469148
466.6162342252232 6100.635084662845 471.12011441761274 4270.515980761523 237.1142731684298 154.2816233797197 8063.704826604625 2363.291912539149 250.09636142954616 -5.275245824878045 546.3837818701431 7.180492945860638
4988.506790656656 5836.121341276924 305.25138438318146 -78.2911490240366 -130.7712323646924 256.75533709823753 -28.969688160222205 2463.006063022074 -107.24661567025781 212.81623260036247 50.45721112838109 946.1078887373078
2474.009284729641 3662.411462672774 499.30026183606464 217.49388411442334 273.06602846319055 102.19931337770262 195.20362476100473 2593.704979451791 1597.8609042177852 -99.00019479802567 326.5676563660152 2481.6467014782347
3737.3002300540215 92.63719998587527 103.7345736486239 34.18875829231229 -23.820984710851445 71.25989624438593 492.24250044483324 934.9753295720772 -32.31068183338777 114.67958090123807 239.36797617353315 23.052151803822486
],
)
end
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 810 |
@testset "CSV loading" begin
files = [refDataPath * "/refBatchDfCodes.csv", refDataPath * "/refParallelDfCodes.csv"]
rows, cols = getCSVSize(files[1], header = true)
@test rows == 10
@test cols == 10
data1 = loadCSV(files[1], header = true)
data2 = loadCSV(files[2], header = true)
@test typeof(data1) == Matrix{Float64}
@test size(data1) == (10, 10)
sizes = loadCSVSizes(files, header = true)
@test sizes == [10, 10]
W = addprocs(3)
@everywhere using GigaSOM
di = loadCSVSet(:csvTest, files, W, header = true)
@test gather_array(di) == vcat(data1, data2)
sizes = dmapreduce(di, size, vcat)
dims = map(last, sizes)
counts = map(first, sizes)
@test all(dims .== 10)
@test minimum(counts) + 1 >= maximum(counts)
rmprocs(W)
end
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 2374 |
# This loads the PBMC8 dataset that is used for later tests
checkDir()
#create genData and data folder and change dir to dataPath
cwd = pwd()
if occursin("jenkins", homedir()) || "TRAVIS" in keys(ENV)
genDataPath = mktempdir()
dataPath = mktempdir()
else
if !occursin("test", cwd)
cd("test")
cwd = pwd()
end
dataFolders = ["genData", "data"]
for dir in dataFolders
if !isdir(dir)
mkdir(dir)
end
end
genDataPath = cwd * "/genData"
dataPath = cwd * "/data"
end
refDataPath = cwd * "/refData"
cd(dataPath)
# fetch the required data for testing and download the zip archive and unzip it
dataFiles = ["PBMC8_metadata.xlsx", "PBMC8_panel.xlsx", "PBMC8_fcs_files.zip"]
for f in dataFiles
if !isfile(f)
download("http://imlspenticton.uzh.ch/robinson_lab/cytofWorkflow/" * f, f)
if occursin(".zip", f)
run(`unzip PBMC8_fcs_files.zip`)
end
else
end
end
# verify the data consistency using the stored checksums
fileNames = readdir()
csDict = Dict{String,Any}()
for f in fileNames
if f[end-3:end] == ".fcs" || f[end-4:end] == ".xlsx"
cs = bytes2hex(sha256(f))
csDict[f] = cs
end
end
csTest = JSON.parsefile(cwd * "/checkSums/csTest.json")
if csDict != csTest
@error "Downloaded dataset does not match expectations, perhaps it is corrupted?" csDict csTest
error("dataset checksum error")
end
md = DataFrame(XLSX.readtable("PBMC8_metadata.xlsx", "Sheet1", infer_eltypes = true)...)
panel = DataFrame(XLSX.readtable("PBMC8_panel.xlsx", "Sheet1", infer_eltypes = true)...)
antigens = panel[panel[:, :Lineage].==1, :Antigen]
_, fcsParams = loadFCSHeader(md[1, :file_name])
_, fcsAntigens = getMarkerNames(getMetaData(fcsParams))
cleanNames!(antigens)
cleanNames!(fcsAntigens)
di = loadFCSSet(:fcsData, md[:, :file_name], [myid()])
#prepare the data a bit
dselect(di, fcsAntigens, antigens)
cols = Vector(1:length(antigens))
dtransform_asinh(di, cols, 5)
dscale(di, cols)
pbmc8_data = gather_array(di)
unscatter(di)
@testset "load-time columns normalization" begin
di = loadFCSSet(
:fcsData,
md[:, :file_name],
[myid()],
postLoad = selectFCSColumns(antigens),
)
dtransform_asinh(di, cols, 5)
dscale(di, cols)
@test pbmc8_data == gather_array(di)
unscatter(di)
end
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 2050 |
@testset "Parallel processing" begin
W = addprocs(2)
@everywhere using GigaSOM
som = initGigaSOM(pbmc8_data, 10, 10, seed = 1234)
@testset "Check SOM dimensions" begin
@test size(som.codes) == (100, 10)
@test som.xdim == 10
@test som.ydim == 10
@test som.numCodes == 100
end
som = trainGigaSOM(som, pbmc8_data, epochs = 2, rStart = 6.0)
winners = mapToGigaSOM(som, pbmc8_data)
embed = embedGigaSOM(som, pbmc8_data)
@testset "Check results" begin
codes = som.codes
@test size(codes) == (100, 10)
dfCodes = DataFrame(codes, :auto)
rename!(dfCodes, Symbol.(antigens))
dfEmbed = DataFrame(embed, :auto)
CSV.write(genDataPath * "/parallelDfCodes.csv", dfCodes)
CSV.write(genDataPath * "/parallelWinners.csv", winners)
CSV.write(genDataPath * "/parallelEmbedded.csv", dfEmbed)
# load the ref data
refParallelDfCodes = CSV.File(refDataPath * "/refParallelDfCodes.csv") |> DataFrame
refParallelWinners = CSV.File(refDataPath * "/refParallelWinners.csv") |> DataFrame
refParallelEmbedded =
CSV.File(refDataPath * "/refParallelEmbedded.csv") |> DataFrame
# load the generated data
parallelDfCodes = CSV.File(genDataPath * "/parallelDfCodes.csv") |> DataFrame
parallelDfCodesTest = first(parallelDfCodes, 10)
parallelWinners = CSV.File(genDataPath * "/parallelWinners.csv") |> DataFrame
parallelWinnersTest = first(parallelWinners, 10)
parallelEmbedded = CSV.File(genDataPath * "/parallelEmbedded.csv") |> DataFrame
parallelEmbeddedTest = first(parallelEmbedded, 10)
# test the generated data against the reference data
@test refParallelWinners == parallelWinnersTest
@test Matrix{Float64}(refParallelDfCodes) ≈ Matrix{Float64}(parallelDfCodesTest)
@test Matrix{Float64}(refParallelEmbedded) ≈ Matrix{Float64}(parallelEmbeddedTest) atol =
1e-4
end
rmprocs(W)
end
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 1236 |
@testset "Dataset splitting helpers" begin
@testset "slice computation" begin
@test slicesof([11], 2) == [(1, 1, 1, 6), (1, 7, 1, 11)]
a = [30, 40, 50]
@test slicesof(a, 1) == [(1, 1, 3, 50)]
@test slicesof(a, 2) == [(1, 1, 2, 30), (2, 31, 3, 50)]
@test slicesof(a, 3) == [(1, 1, 2, 10), (2, 11, 3, 10), (3, 11, 3, 50)]
@test slicesof(a, 4) ==
[(1, 1, 1, 30), (2, 1, 2, 30), (2, 31, 3, 20), (3, 21, 3, 50)]
@test slicesof(a, 5) ==
[(1, 1, 1, 24), (1, 25, 2, 18), (2, 19, 3, 2), (3, 3, 3, 26), (3, 27, 3, 50)]
@test slicesof(a, 10) == [
(1, 1, 1, 12),
(1, 13, 1, 24),
(1, 25, 2, 6),
(2, 7, 2, 18),
(2, 19, 2, 30),
(2, 31, 3, 2),
(3, 3, 3, 14),
(3, 15, 3, 26),
(3, 27, 3, 38),
(3, 39, 3, 50),
]
end
@testset "slice collection" begin
s = slicesof([4, 4], 3)
@test vcollectSlice(i -> repeat([i], 4), s[1])[:, 1] == [1, 1, 1]
@test vcollectSlice(i -> repeat([i], 4), s[2])[:, 1] == [1, 2, 2]
@test vcollectSlice(i -> repeat([i], 4), s[3])[:, 1] == [2, 2]
end
end
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 1868 | @testset "SOM training helper functions" begin
@testset "gridRectangular" begin
grid = GigaSOM.gridRectangular(5, 5)
@test size(grid) == (25, 2)
end
@testset "Kernels" begin
@test isapprox(
gaussianKernel(Vector{Float64}(1:7), 2.0),
[0.1760326, 0.1209853, 0.0647587, 0.0269954, 0.0087641, 0.0022159, 0.0004363],
atol = 1e-4,
)
@test isapprox(
bubbleKernel(Vector{Float64}(1:6), 5.0),
[0.979796, 0.916515, 0.8, 0.6, 0, 0],
atol = 0.001,
)
@test isapprox(
thresholdKernel(Vector{Float64}(1:10), 5.0),
[1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
atol = 1e-3,
)
@test isapprox(
thresholdKernel(Vector{Float64}(1:10), 10.1),
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],
atol = 1e-3,
)
end
@testset "Radii-generating functions" begin
radii1 = expRadius().(5.0, 0.5, Vector(1:10), 10)
radii2 = expRadius(-10.0).(10.0, 0.1, Vector(1:20), 20)
radii3 = linearRadius.(50.0, 0.001, Vector(1:30), 30)
@test isapprox(radii1[1], 5.0)
@test isapprox(radii1[10], 0.5)
@test isapprox(radii2[1], 10.0)
@test isapprox(radii2[20], 0.1)
@test isapprox(radii3[1], 50.0)
@test isapprox(radii3[30], 0.001)
@test all(isapprox.(radii1[1:9] ./ radii1[2:10], radii1[1] / radii1[2]))
#note: radius2 is adjusted and thus not really exponential
@test all(isapprox.(radii3[1:29] .- radii3[2:30], radii3[1] - radii3[2]))
end
@testset "distMatrix" begin
g = GigaSOM.gridRectangular(2, 2)
dm = GigaSOM.distMatrix(Euclidean())(g)
@test size(dm) == (4, 4)
@test all([dm[i, i] == 0 for i = 1:4])
end
end
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | code | 362 |
using Coverage
cd(joinpath(@__DIR__, "..", "..")) do
processed = process_folder()
covered_lines, total_lines = get_summary(processed)
percentage = covered_lines / total_lines * 100
println("($(percentage)%) covered")
end
# submit the report to codecov.io
Codecov.submit_local(Codecov.process_folder(), pwd(), slug = "LCSB-BioCore/GigaSOM.jl")
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | docs | 6133 | ![GigaSOM.jl](https://webdav-r3lab.uni.lu/public/GigaSOM/img/logo-GigaSOM.jl.png?maxAge=0)
# GigaSOM.jl <br> Huge-scale, high-performance flow cytometry clustering
GigaSOM is a Julia toolkit for clustering and visualisation of really large cytometry data. Most generally, it can load FCS files, perform transformation and cleaning operations in their contents, run FlowSOM-style clustering, and visualize and export the results. GigaSOM is distributed and parallel in nature, which makes processing huge datasets a breeze -- a hundred of millions of cells with a few dozen parameters can be clustered and visualized in a few minutes.
| **Documentation** | **Test Coverage** | **CI** | **SciCrunch** |
|:-----------------:|:-----------------:|:-----------------------------------------------------:|:--------:|
| [![doc](https://img.shields.io/badge/doc-GigaSOM-blue)](http://git.io/GigaSOM.jl) | [![coverage status](http://codecov.io/github/LCSB-BioCore/GigaSOM.jl/coverage.svg?branch=master)](http://codecov.io/github/LCSB-BioCore/GigaSOM.jl?branch=master) | [![linux](https://github.com/LCSB-BioCore/GigaSOM.jl/workflows/CI/badge.svg?branch=master)](https://github.com/LCSB-BioCore/GigaSOM.jl/actions) | [![rrid](https://img.shields.io/badge/RRID-SCR__019020-72c02c)](https://scicrunch.org/resolver/RRID:SCR_019020) |
If you use GigaSOM.jl and want to refer to it in your work, use the following citation format (also available as BibTeX in [gigasom.bib](gigasom.bib)):
> Miroslav Kratochvíl, Oliver Hunewald, Laurent Heirendt, Vasco Verissimo, Jiří Vondrášek, Venkata P Satagopam, Reinhard Schneider, Christophe Trefois, Markus Ollert. *GigaSOM.jl: High-performance clustering and visualization of huge cytometry datasets.* GigaScience, Volume 9, Issue 11, November 2020, giaa127, https://doi.org/10.1093/gigascience/giaa127
# How to get started
## Prerequisites and requirements
- **Operating system**: Use Linux (Debian, Ubuntu or centOS), MacOS, or Windows 10 as your operating system. GigaSOM has been tested on these systems.
- **Julia language**: In order to use GigaSOM, you need to install Julia 1.0 or higher. You can find the download and installation instructions for Julia [here](https://julialang.org/downloads/).
- **Hardware requirements**: GigaSOM runs on any hardware that can run Julia, and can easily use resources from multiple computers interconnected by network. For processing large datasets, you require to ensure that the total amount of available RAM on all involved computers is larger than the data size.
:bulb: If you are new to Julia, it is adviseable to [familiarize youself with
the environment
first](https://docs.julialang.org/en/v1/manual/getting-started/). Use the full
Julia [documentation](https://docs.julialang.org) to solve various possible
language-related problems, and the [Julia package manager
docs](https://julialang.github.io/Pkg.jl/v1/getting-started/) to solve
installation-related difficulties.
## Installation
Using the Julia package manager to install GigaSOM is easy -- after starting Julia, type:
```julia
import Pkg; Pkg.add("GigaSOM");
```
> All these commands should be run from Julia at the `julia>` prompt.
Then you can load the GigaSOM package and start using it:
```julia
using GigaSOM
```
The first loading of the GigaSOM package may take several minutes to complete due to precompilation of the sources, especially on a fresh Julia install.
### Test the installation
If you run a non-standard platform (e.g. a customized operating systems), or if you added any modifications to GigaSOM source code, you may want to run the test suite to ensure that everything works as expected:
```julia
import Pkg; Pkg.test("GigaSOM");
```
For debugging, it is sometimes very useful to enable the `@debug` messages from the source, as such:
```julia
using Logging
global_logger(ConsoleLogger(stderr, Logging.Debug))
```
## How to use GigaSOM
A comprehensive documentation is [available online](https://lcsb-biocore.github.io/GigaSOM.jl/); several [introductory tutorials](https://lcsb-biocore.github.io/GigaSOM.jl/latest/tutorials/basicUsage/) of increasing complexity are also included.
A very basic dataset (Levine13 from [FR-FCM-ZZPH](https://flowrepository.org/id/FR-FCM-ZZPH)) can be loaded, clustered and visualized as such:
```julia
using GigaSOM
params, fcsmatrix = loadFCS("Levine_13dim.fcs") # load the FCS file
exprs = fcsmatrix[:,1:13] # extract only the data columns with expression values
som = initGigaSOM(exprs, 20, 20) # random initialization of the SOM codebook
som = trainGigaSOM(som, exprs) # SOM training
clusters = mapToGigaSOM(som, exprs) # extraction of per-cell cluster IDs
e = embedGigaSOM(som, exprs) # EmbedSOM projection to 2D
```
The example loads the data, runs the SOM training (as in FlowSOM) and computes a 2D projection of the dataset (using EmbedSOM); the total computation time (excluding the possible precompilation of the libraries) should be around 15 seconds.
The results can be visualized e.g. with [GigaScatter](https://github.com/LCSB-BioCore/GigaScatter.jl#usage-with-gigasomjl) which we developed for this purpose, or by exporting the data and plotting them with any other programming language. For example, to save an embedding with highlighted expression of CD4, you can install and use GigaScatter as such:
```julia
import Pkg; Pkg.add("GigaScatter")
using GigaScatter
savePNG("Levine13-CD4.png",
solidBackground(rasterize((500,500), # bitmap size
Matrix{Float64}(e'), # the embedding coordinates
expressionColors(
scaleNorm(Array{Float64}(exprs[:,5])), # 5th column contains CD4 expressions
expressionPalette(100, alpha=0.5))))) # colors for plotting (based on RdYlBu)
```
The output may look like this (blue is negative expresison, red is positive):
![Levine13 embedding with CD4 highlighted](docs/src/assets/Levine13-CD4.png "Levine13/CD4")
## Feedback, issues, questions
Please follow the [contributing guide](.github/CONTRIBUTING.md) when you have questions, want to raise issues, or just want to leave us some feedback!
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | docs | 3351 | # Contributor Covenant Code of Conduct
## Our Pledge
In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.
## Our Standards
Examples of behavior that contributes to creating a positive environment
include:
* Using welcoming and inclusive language
* Being respectful of differing viewpoints and experiences
* Gracefully accepting constructive criticism
* Focusing on what is best for the community
* Showing empathy towards other community members
Examples of unacceptable behavior by participants include:
* The use of sexualized language or imagery and unwelcome sexual attention or
advances
* Trolling, insulting/derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or electronic
address, without explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Our Responsibilities
Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.
Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.
## Scope
This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at lcsb-r3 .at. uni.lu. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.
Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project's leadership.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
[homepage]: https://www.contributor-covenant.org
For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | docs | 1726 | # Contributing to GigaSOM
:+1::tada: Thanks for taking the time to contribute to [GigaSOM.jl](https://github.com/LCSB-BioCore/GigaSOM.jl)! :tada::+1:
## How can I contribute?
A complete technical guide on how to get started contributing is given [here](https://lcsb-biocore.github.io/GigaSOM.jl/stable/howToContribute/).
## How to report a bug or suggest an enhancement
Please use the [GitHub issue tracker](https://github.com/LCSB-BioCore/GigaSOM.jl/issues) to report any problems with the software, and discuss any potential questions about GigaSOM use.
Before creating bug reports, please check [the open
issues](https://github.com/LCSB-BioCore/GigaSOM.jl/issues) as you might find
out that you don't need to create one. When you are creating a bug report,
please include as many details as possible. Fill out the required template, the
information it asks for helps us resolve issues faster.
> If you find a Closed issue that seems like it is the same thing that
you're experiencing, open a new issue and include a link to the original issue
in the body of your new one.
If reporting issues, please do not forget to include a description of conditions under which the issue occurs; preferably a code snippet that can be run separately (sometimes termed "minimal crashing example").
## How to submit a pull request (PR)?
Please follow these steps to have your contribution considered by the maintainers:
1. Follow all instructions in the template
2. Submit your pull request against the `develop` branch
3. After you submit your pull request, verify that all status checks are passing
After you submitted a pull request, a label might be assigned that allows us
to track and manage issues and pull requests. | GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | docs | 96 | # Description of the proposed change
*Please include a short description of enhancement here*
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | docs | 383 | ---
name: General issue (performance or bug)
about: Describe your issue related to performance or a bug
title: ''
labels: ''
assignees: ''
---
**Summary**
**Environment**
*Please provide all information on your environment here, including the
version of Julia*
**Steps to reproduce**
1.
2.
3.
**Expected behavior**
**Actual behavior**
**Additional information**
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | docs | 595 | ---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: ''
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | docs | 7315 | # Background
## Introduction
Flow cytometry clustering for several hundred million cells has long been hampered
by software limitations. Julia allows us to go beyond these limits.
Through the high-performance GigaSOM.jl package, we gear up for huge-scale
flow cytometry analysis, softening these limitations with an innovative approach
on the existing algorithm, by implementing parallel computing with stable and
robust mathematical models that would run with an HPC cluster, allowing us to
run cytometry datasets as big as 500 million cells.
## Multidimensional Data
Multidimensional data is a term used when combining four, five (or more)
characteristics simultaneously to create a data space where each measured cell parameter
becomes a dimension in the multidimensional space.\
The data generated by Flow Cytometry, Mass Cytometry or RNA-seq are good examples of
multidimensional datasets, as they combine all information from all characteristics to
create a multidimensional data space that preserves the integrity of the relationships
between each of the parameters.[[1]](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6092027/)
### Flow and Mass Cytometry
The use of flow cytometry has grown substantially in the past decade, mainly due to
the development of smaller, user-friendly and less expensive instruments,
but also to the increase of clinical applications, like cell counting, cell sorting,
detection of biomarkers or protein engineering.
Flow cytometry is an immunophenotyping technique used to identify and quantify the
cells of the immune system by analysing their physical and chemical characteristics
in a fluid. These cells are stained with specific, fluorescently labelled antibodies
and then analysed with a flow cytometer, where the fluorescence intensity is measured
using lasers and photodetectors. [[2]](http://clinchem.aaccjnls.org/content/46/8/1221)
More recently, a variation of flow cytometry called mass cytometry (CyTOF) was introduced,
in which antibodies are labelled with heavy metal ion tags rather than fluorochromes,
breaking the limit of multiplexing capability of FACS (fluorescence-activated cell sorting)
and allowing the simultaneous quantification of 40+ protein parameters within each single cell.
The ability of flow cytometry and mass cytometry to analyse individual cells at high-throughput
scales makes them ideal for multi-parameter cell analysis and high-speed sorting. [[3]](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860251/)
![MassCytometry](assets/masscytometry.png)\
*General workflow of cell analysis in a mass cytometer. The cells are introduced into the nebulizer via a narrow capillary. As the cells exit from the nebulizer they are converted to a fine spray of droplets, which are then carried into the plasma where they are completely atomized and ionized. The resulting ion cloud is filtered and selected for positive ions of mass range 80–200 and measured in a TOF chamber. The data are then converted to .fcs format and analyzed using traditional flow cytometry software.* [[4]](http://dmd.aspetjournals.org/content/43/2/227)
## Self-organising maps (SOMs)
Self-organising maps (also referred to as SOMs or *Kohonen* maps) are
artificial neural networks introduced by Teuvo Kohonen in the 1980s.
Despite of their age, SOMs are still widely used as an easy and robust
unsupervised learning technique for analysis and visualisation of high-dimensional data.
The SOM algorithm maps high-dimensional vectors into a lower-dimensional grid.
Most often the target grid is two-dimensional, resulting into intuitively interpretable maps.
After initializing a SOM grid of size n*n, each node is initialized with a random sample (row)
from the dataset (training data). For each input vector (row) in the training data the distance
to each node in the grid is calculated, using Chebyshev distance or Euclidean distance equations,
where the closest node is called BMU (best matching unit). The row is subsequently assigned to the
BMU making it move closer to the input data, influenced by the learning rate and neighborhood Gaussian
function, whilst the neighborhood nodes are also adjusted closer to the BMU. This training step is
repeated for each row in the complete dataset. After each iteration (epoch) the radius of the
neighborhood function is reduced. After n epochs, clusters of nodes should have formed and as a
final step, consensus cluster is used to reduce the data (SOM nodes) into m clusters. [[5]](https://ieeexplore.ieee.org/document/58325)
![SOMs](assets/soms.png)\
*Example of a self-organizing network with five cluster units, Yi, and seven input units, Xi. The five cluster units are arranged in a linear array.* [[6]](http://mnemstudio.org/neural-networks-kohonen-self-organizing-maps.htm)
## Implementation
The high-performance [GigaSOM.jl](https://github.com/LCSB-BioCore/GigaSOM.jl) package
enables the analysis and clustering of huge-scale flow cytometry data because it is HPC-ready
and written in Julia, prepared to handle very large datasets.
Also, the GigaSOM.jl package, provides training and visualization functions for
Kohonen's self-organizing maps for Julia.
Training functions are implemented in pure Julia, without depending on additional binary libraries.
The SOM algorithm maps high-dimensional vectors into a lower-dimensional grid.
Most often, the target grid is two-dimensional, resulting into intuitively interpretable maps.
The general idea is to receive huge-scale .fcs data files as an input, load and
transform them accordingly to enable the analysis and clustering of these data
and automatically determine the required number of cell populations,
and their sensitivity and specificity using parallel computing.
In order to achieve this, GigaSOM.jl implementes a batch SOM algorithm, in which
the weight vectors are only updated at the end of each epoch, and the BMU is calculated
using the weight vectors from the previous epoch. Since the weight updates are not recursive,
the order of the inputs does not affect the final result. In addition, there is no
learning rate coefficient, which reduces the data dependency. This means that,
compared to the original one, the batch algorithm has faster convergence, requires less computing,
and it is the only one suitable for parallel computing.
Parallel computing is the last step of our package implementation and two possible
approaches exist for this kind of computation: the Model Parallelism and the Data Parallelism.
In the Model Parallelism approach, the algorithm sends the same data to all the processes,
and then each process is responsible for estimating different parameters and exchange their
estimates with each other to come up with the right estimate for all the parameters.
In the Data Parallelism approach, the algorithm distributes the data between different processes,
and then each process independently tries to estimate the same parameters and then
exchange their estimates with each other to come up with the right estimate.
On this project, we use the Data Parallelism approaches because our nodes grid
is too small for the Model Parallelism approach.
![parallel](assets/parallel.png)\
*Data Parallelism vs Model Parallelism* [[7]](https://www.slideshare.net/JunyoungPark22/common-design-for-distributed-machine-learning)
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | docs | 398 | # Functions
## Data structures
```@autodocs
Modules = [GigaSOM]
Pages = ["structs.jl"]
```
## Data loading and preparation
```@autodocs
Modules = [GigaSOM]
Pages = ["input.jl", "process.jl", "splitting.jl", "dataops.jl"]
```
## SOM training
```@autodocs
Modules = [GigaSOM]
Pages = ["core.jl", "trainutils.jl"]
```
## Embedding
```@autodocs
Modules = [GigaSOM]
Pages = ["embedding.jl"]
```
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |
|
[
"Apache-2.0"
] | 0.7.0 | 19d26ff25ac886836456729a5e2837693b65569f | docs | 3383 | # How to contribute to/develop GigaSOM
If you want to contribute to the `GigaSOM` package, please fork the present
repository by following [these instructions](https://help.github.com/en/github/getting-started-with-github/fork-a-repo).
## Step 1: Retrieve a local version of GigaSOM
There are two ways that you can retrieve a local copy of the package: one is to
manually clone the forked repository, and the second one is to use the
intergrated Julia package manager.
### Option 1: Manually clone your fork
:warning: Please make sure you have _forked_ the repository, as described above.
You can do this as follows from the command line:
```bash
$ git clone git@github.com:yourUsername/GigaSOM.jl.git GigaSOM.jl
$ cd GigaSOM.jl
$ git checkout -b yourNewBranch origin/develop
```
where `yourUsername` is your Github username and `yourNewBranch` is the name of a new branch.
Then, in order to develop the package, you can install your cloned version as
follows (make sure you are in the `GigaSOM.jl` directory):
```julia
(v1.1) pkg> add .
```
(press `]` to get into the packaging environment)
This adds the `GigaSOM.jl` package and all its dependencies. You can verify
that the installation worked by typing:
```julia
(v1.1) pkg> status
```
If everything went smoothly, this should print something similar to:
```julia
(v1.1) pkg> status
Status `~/.julia/environments/v1.1/Project.toml`
[a03a9c34] GigaSOM v0.0.5 #yourNewBranch (.)
```
Now, you can readily start using the `GigaSOM` module:
```julia
julia> using GigaSOM
```
### Option 2: Use the Julia package manager
When you are used to using the Julia package manager for developing or
contributing to packages, you can type:
```julia
(v1.1) pkg> dev GigaSOM
```
This will install the `GigaSOM` package locally and check it out for
development. You can check the location of the package with:
```julia
(v1.1) pkg> status
Status `~/.julia/environments/v1.1/Project.toml`
[a03a9c34] GigaSOM v0.0.5 [`~/.julia/dev/GigaSOM`]
```
The default location of the package is `~/.julia/dev/GigaSOM`.
You can then set your remote by executing these commands in a regular shell:
```bash
$ cd ~/.julia/dev/GigaSOM
$ git remote rename origin upstream # renames the origin as upstream
$ git remote add origin git@github.com:yourUsername/GigaSOM.jl.git
$ git fetch origin
```
where `yourUsername` is your Github username.
:warning: Make sure that your fork exists under `github.com/yourUsername/GigaSOM.jl`.
Then, checkout a branch `yourNewBranch`:
```bash
$ cd ~/.julia/dev/GigaSOM
$ git checkout -b yourNewBranch origin/develop
```
Then, you can readily use the `GigaSOM` package:
```julia
julia> using GigaSOM
```
After making changes, precompile the package:
```julia
(v1.1) pkg> precompile
```
## Step 2: Activate GigaSOM
:warning: Please note that you cannot use the dependencies of GigaSOM directly,
unless they are installed separately or the environment has been activated:
```julia
(v1.1) pkg> activate .
(GigaSOM) pkg> instantiate
```
Now, the environment is activated (you can see it with the prompt change
`(GigaSOM) pkg>`). Now, you can use the dependency. For instance:
```julia
julia> using DataFrames
```
:warning: If you do not `activate` the environment before using any of the dependencies, you will see a red error messages prompting you to install the dependency explicity.
| GigaSOM | https://github.com/LCSB-BioCore/GigaSOM.jl.git |