haonan-li commited on
Commit
2aed5c5
1 Parent(s): e3de82f

Update aclue.py

Browse files
Files changed (1) hide show
  1. aclue.py +4 -9
aclue.py CHANGED
@@ -16,8 +16,7 @@ import os
16
  import datasets
17
  import pandas as pd
18
 
19
- _CITATION = """\
20
- """
21
 
22
  _DESCRIPTION = """\
23
  The Ancient Chinese Language Understanding Evaluation (ACLUE) is an evaluation benchmark focused on ancient Chinese language comprehension. It aims to assess the performance of large-scale language models on understanding ancient Chinese.
@@ -44,6 +43,7 @@ task_list = ['polysemy_resolution',
44
  class ACLUEConfig(datasets.BuilderConfig):
45
  def __init__(self, **kwargs):
46
  super().__init__(version=datasets.Version("1.0.0"), **kwargs)
 
47
  # V1.0.0 Init version
48
 
49
 
@@ -74,17 +74,12 @@ class ACLUE(datasets.GeneratorBasedBuilder):
74
  def _split_generators(self, dl_manager):
75
  data_dir = dl_manager.download_and_extract(_URL)
76
  task_name = self.config.name
 
77
  return [
78
  datasets.SplitGenerator(
79
  name=datasets.Split.TEST,
80
  gen_kwargs={
81
- "filepath": os.path.join(data_dir, f"test/{task_name}.csv"),
82
- },
83
- ),
84
- datasets.SplitGenerator(
85
- name=datasets.Split("dev"),
86
- gen_kwargs={
87
- "filepath": os.path.join(data_dir, f"dev/{task_name}.csv"),
88
  },
89
  ),
90
  ]
 
16
  import datasets
17
  import pandas as pd
18
 
19
+ _CITATION = "https://arxiv.org/abs/2310.09550"
 
20
 
21
  _DESCRIPTION = """\
22
  The Ancient Chinese Language Understanding Evaluation (ACLUE) is an evaluation benchmark focused on ancient Chinese language comprehension. It aims to assess the performance of large-scale language models on understanding ancient Chinese.
 
43
  class ACLUEConfig(datasets.BuilderConfig):
44
  def __init__(self, **kwargs):
45
  super().__init__(version=datasets.Version("1.0.0"), **kwargs)
46
+ self.subset = subset or "test"
47
  # V1.0.0 Init version
48
 
49
 
 
74
  def _split_generators(self, dl_manager):
75
  data_dir = dl_manager.download_and_extract(_URL)
76
  task_name = self.config.name
77
+ subset = self.config.subset
78
  return [
79
  datasets.SplitGenerator(
80
  name=datasets.Split.TEST,
81
  gen_kwargs={
82
+ "filepath": os.path.join(data_dir, f"{subset}/{task_name}.csv"),
 
 
 
 
 
 
83
  },
84
  ),
85
  ]