Search is not available for this dataset
text
string
meta
dict
data Unit : Set where unit : Unit P : Unit → Set P unit = Unit postulate Q : (u : Unit) → P u → Set variable u : Unit p : P u postulate q : P u → Q u p q' : (u : Unit) (p : P u) → P u → Q u p q' u p = q {u} {p}
{ "alphanum_fraction": 0.4933920705, "avg_line_length": 11.35, "ext": "agda", "hexsha": "50b8352825106b5e804d0de7128705ec9cf5af8b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3667.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3667.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3667.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 100, "size": 227 }
data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} infixl 6 _+_ infix 6 _∸_ _+_ : ℕ → ℕ → ℕ zero + n = n suc m + n = suc (m + n) _∸_ : ℕ → ℕ → ℕ m ∸ zero = m zero ∸ suc n = zero suc m ∸ suc n = m ∸ n should-be-rejected : ℕ should-be-rejected = 1 + 0 ∸ 1
{ "alphanum_fraction": 0.5052264808, "avg_line_length": 13.6666666667, "ext": "agda", "hexsha": "2d3a1a0678390e4f4439c6f2db502b93d1eea59f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Same-Precedence-Different-Associativity.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Same-Precedence-Different-Associativity.agda", "max_line_length": 30, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Same-Precedence-Different-Associativity.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 135, "size": 287 }
-- {-# OPTIONS -v term:20 #-} -- Andreas, 2011-04-19 (Agda list post by Leonard Rodriguez) module TerminationSubExpression where infixr 3 _⇨_ data Type : Set where int : Type _⇨_ : Type → Type → Type test : Type → Type test int = int test (φ ⇨ int) = test φ test (φ ⇨ (φ′ ⇨ φ″)) = test (φ′ ⇨ φ″) -- this should terminate since rec. call on subterm test' : Type → Type test' int = int test' (φ ⇨ int) = test' φ test' (φ ⇨ φ′) = test' φ′ ok : Type → Type ok int = int ok (φ ⇨ φ′) with φ′ ... | int = ok φ ... | (φ″ ⇨ φ‴) = ok (φ″ ⇨ φ‴)
{ "alphanum_fraction": 0.5732600733, "avg_line_length": 21, "ext": "agda", "hexsha": "16ac402e49e460fe5493694f922d365c118ec9ae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/TerminationSubExpression.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/TerminationSubExpression.agda", "max_line_length": 60, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/TerminationSubExpression.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 222, "size": 546 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Sets.EquivalenceRelations open import Setoids.Setoids open import Functions.Definition open import Groups.Definition open import Groups.Homomorphisms.Definition open import Groups.Subgroups.Definition open import Groups.Subgroups.Normal.Definition module Groups.Cosets {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} (G : Group S _+_) {c : _} {pred : A → Set c} (subgrp : Subgroup G pred) where open Equivalence (Setoid.eq S) open import Groups.Lemmas G open Group G open Subgroup subgrp cosetSetoid : Setoid A Setoid._∼_ cosetSetoid g h = pred ((Group.inverse G h) + g) Equivalence.reflexive (Setoid.eq cosetSetoid) = isSubset (symmetric (Group.invLeft G)) containsIdentity Equivalence.symmetric (Setoid.eq cosetSetoid) yx = isSubset (transitive invContravariant (+WellDefined reflexive invInv)) (closedUnderInverse yx) Equivalence.transitive (Setoid.eq cosetSetoid) yx zy = isSubset (transitive +Associative (+WellDefined (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invRight) identRight)) reflexive)) (closedUnderPlus zy yx) cosetGroup : normalSubgroup G subgrp → Group cosetSetoid _+_ Group.+WellDefined (cosetGroup norm) {m} {n} {x} {y} m=x n=y = ans where t : pred (inverse y + n) t = n=y u : pred (inverse x + m) u = m=x v : pred (m + inverse x) v = isSubset (+WellDefined reflexive (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invRight) identRight))) (norm u) ans' : pred ((inverse y) + ((inverse x + m) + inverse (inverse y))) ans' = norm u ans'' : pred ((inverse y) + ((inverse x + m) + y)) ans'' = isSubset (+WellDefined reflexive (+WellDefined reflexive (invTwice y))) ans' ans : pred (inverse (x + y) + (m + n)) ans = isSubset (transitive (transitive +Associative (transitive (+WellDefined (transitive (symmetric +Associative) (transitive (+WellDefined reflexive (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invRight) identRight))) +Associative)) reflexive) (symmetric +Associative))) (symmetric (+WellDefined invContravariant reflexive))) (closedUnderPlus ans'' t) Group.0G (cosetGroup norm) = 0G Group.inverse (cosetGroup norm) = inverse Group.+Associative (cosetGroup norm) {a} {b} {c} = isSubset (symmetric (transitive (+WellDefined (inverseWellDefined (symmetric +Associative)) reflexive) (invLeft {a + (b + c)}))) containsIdentity Group.identRight (cosetGroup norm) = isSubset (symmetric (transitive +Associative (transitive (+WellDefined invLeft reflexive) identRight))) containsIdentity Group.identLeft (cosetGroup norm) = isSubset (symmetric (transitive (+WellDefined reflexive identLeft) invLeft)) containsIdentity Group.invLeft (cosetGroup norm) = isSubset (symmetric (transitive (+WellDefined reflexive invLeft) invLeft)) containsIdentity Group.invRight (cosetGroup norm) = isSubset (symmetric (transitive (+WellDefined reflexive invRight) invLeft)) containsIdentity cosetGroupHom : (norm : normalSubgroup G subgrp) → GroupHom G (cosetGroup norm) id GroupHom.groupHom (cosetGroupHom norm) = isSubset (symmetric (transitive (+WellDefined invContravariant reflexive) (transitive +Associative (transitive (+WellDefined (transitive (symmetric +Associative) (+WellDefined reflexive invLeft)) reflexive) (transitive (+WellDefined identRight reflexive) invLeft))))) (Subgroup.containsIdentity subgrp) GroupHom.wellDefined (cosetGroupHom norm) {x} {y} x=y = isSubset (symmetric (transitive (+WellDefined reflexive x=y) invLeft)) (Subgroup.containsIdentity subgrp)
{ "alphanum_fraction": 0.7504862462, "avg_line_length": 71.98, "ext": "agda", "hexsha": "35ef2809f0226dba2c0f61791f45c712e9ea4aae", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Cosets.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Cosets.agda", "max_line_length": 385, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Cosets.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1027, "size": 3599 }
{-# BUILTIN NATURAL ℕ #-} module the-naturals where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) infixl 6 _+_ _∸_ infixl 7 _*_ -- the naturals data ℕ : Set where zero : ℕ suc : ℕ → ℕ -- addition _+_ : ℕ → ℕ → ℕ zero + n = n (suc m) + n = suc (m + n) -- multiplication _*_ : ℕ → ℕ → ℕ zero * n = zero (suc m) * n = n + (m * n) -- monus ( subtraction for the naturals ) _∸_ : ℕ → ℕ → ℕ m ∸ zero = m zero ∸ suc n = zero suc m ∸ suc n = m ∸ n
{ "alphanum_fraction": 0.5615942029, "avg_line_length": 16.7272727273, "ext": "agda", "hexsha": "a2ffecbed0a3b576537d1af7c6705da337243dee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9fd9fbf9f265bf526a2ec83e9442dedc7106b80c", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "seanwestfall/agda_explorations", "max_forks_repo_path": "src/the-naturals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9fd9fbf9f265bf526a2ec83e9442dedc7106b80c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "seanwestfall/agda_explorations", "max_issues_repo_path": "src/the-naturals.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "9fd9fbf9f265bf526a2ec83e9442dedc7106b80c", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "seanwestfall/agda_explorations", "max_stars_repo_path": "src/the-naturals.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 227, "size": 552 }
module Category.Functor.Arr where open import Agda.Primitive using (_⊔_) open import Category.Functor using (RawFunctor ; module RawFunctor ) open import Category.Applicative using (RawApplicative; module RawApplicative) open import Function using (_∘_) open import Category.Functor.Lawful open import Relation.Binary.PropositionalEquality using (refl) Arr : ∀ {l₁ l₂} → Set l₁ → Set l₂ → Set (l₁ ⊔ l₂) Arr A B = A → B arrFunctor : ∀ {l₁ l₂} {B : Set l₁} → RawFunctor (Arr {l₁} {l₂} B) arrFunctor = record { _<$>_ = λ z z₁ x → z (z₁ x) } -- auto-found arrLawfulFunctor : ∀ {l₁ l₂} {B : Set l₁} → LawfulFunctorImp (arrFunctor {l₁} {l₂} {B}) arrLawfulFunctor = record { <$>-identity = refl ; <$>-compose = refl } arrApplicative : ∀ {l₁} {B : Set l₁} → RawApplicative (Arr {l₁} {l₁} B) arrApplicative = record { pure = λ z x → z ; _⊛_ = λ z z₁ x → z x (z₁ x) } -- auto-found arrLawfulApplicative : ∀ {l₁} {B : Set l₁} → LawfulApplicativeImp (arrApplicative {l₁} {B}) arrLawfulApplicative = record { ⊛-identity = refl ; ⊛-homomorphism = refl ; ⊛-interchange = refl ; ⊛-composition = refl }
{ "alphanum_fraction": 0.6630920465, "avg_line_length": 34.96875, "ext": "agda", "hexsha": "7ff0c6ea8523b74f0c456754545987d742c83875", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crisoagf/agda-optics", "max_forks_repo_path": "src/Category/Functor/Arr.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crisoagf/agda-optics", "max_issues_repo_path": "src/Category/Functor/Arr.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crisoagf/agda-optics", "max_stars_repo_path": "src/Category/Functor/Arr.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 406, "size": 1119 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Universe levels ------------------------------------------------------------------------ module Level where -- Levels. open import Agda.Primitive public using (Level; _⊔_) renaming (lzero to zero; lsuc to suc) -- Lifting. record Lift {a ℓ} (A : Set a) : Set (a ⊔ ℓ) where constructor lift field lower : A open Lift public
{ "alphanum_fraction": 0.4496644295, "avg_line_length": 20.3181818182, "ext": "agda", "hexsha": "648bf49c05fcdfb23a6e1ee60f4ad322e7ec677d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Level.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Level.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Level.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 97, "size": 447 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.NConnected open import lib.types.Nat open import lib.types.TLevel open import lib.types.Empty open import lib.types.Group open import lib.types.Pi open import lib.types.Pointed open import lib.types.Paths open import lib.types.Sigma open import lib.types.Truncation open import lib.cubical.Square module lib.types.LoopSpace where module _ {i} where ⊙Ω : Ptd i → Ptd i ⊙Ω (A , a) = ⊙[ (a == a) , idp ] Ω : Ptd i → Type i Ω = fst ∘ ⊙Ω ⊙Ω^ : (n : ℕ) → Ptd i → Ptd i ⊙Ω^ O X = X ⊙Ω^ (S n) X = ⊙Ω (⊙Ω^ n X) Ω^ : (n : ℕ) → Ptd i → Type i Ω^ n X = fst (⊙Ω^ n X) idp^ : ∀ {i} (n : ℕ) {X : Ptd i} → Ω^ n X idp^ n {X} = snd (⊙Ω^ n X) {- for n ≥ 1, we have a group structure on the loop space -} module _ {i} where !^ : (n : ℕ) (t : n ≠ O) {X : Ptd i} → Ω^ n X → Ω^ n X !^ O t = ⊥-rec (t idp) !^ (S n) _ = ! conc^ : (n : ℕ) (t : n ≠ O) {X : Ptd i} → Ω^ n X → Ω^ n X → Ω^ n X conc^ O t = ⊥-rec (t idp) conc^ (S n) _ = _∙_ {- ap and ap2 for pointed functions -} private pt-lemma : ∀ {i} {A : Type i} {x y : A} (p : x == y) → ! p ∙ (idp ∙' p) == idp pt-lemma idp = idp ⊙ap : ∀ {i j} {X : Ptd i} {Y : Ptd j} → fst (X ⊙→ Y) → fst (⊙Ω X ⊙→ ⊙Ω Y) ⊙ap (f , fpt) = ((λ p → ! fpt ∙ ap f p ∙' fpt) , pt-lemma fpt) ⊙ap2 : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} → fst (X ⊙× Y ⊙→ Z) → fst (⊙Ω X ⊙× ⊙Ω Y ⊙→ ⊙Ω Z) ⊙ap2 (f , fpt) = ((λ {(p , q) → ! fpt ∙ ap2 (curry f) p q ∙' fpt}) , pt-lemma fpt) ⊙ap-∘ : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y)) → ⊙ap (g ⊙∘ f) == ⊙ap g ⊙∘ ⊙ap f ⊙ap-∘ (g , idp) (f , idp) = ⊙λ= (λ p → ap-∘ g f p) idp ⊙ap-idf : ∀ {i} {X : Ptd i} → ⊙ap (⊙idf X) == ⊙idf _ ⊙ap-idf = ⊙λ= ap-idf idp ⊙ap2-fst : ∀ {i j} {X : Ptd i} {Y : Ptd j} → ⊙ap2 {X = X} {Y = Y} ⊙fst == ⊙fst ⊙ap2-fst = ⊙λ= (uncurry ap2-fst) idp ⊙ap2-snd : ∀ {i j} {X : Ptd i} {Y : Ptd j} → ⊙ap2 {X = X} {Y = Y} ⊙snd == ⊙snd ⊙ap2-snd = ⊙λ= (uncurry ap2-snd) idp ⊙ap-ap2 : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (G : fst (Z ⊙→ W)) (F : fst (X ⊙× Y ⊙→ Z)) → ⊙ap G ⊙∘ ⊙ap2 F == ⊙ap2 (G ⊙∘ F) ⊙ap-ap2 (g , idp) (f , idp) = ⊙λ= (uncurry (ap-ap2 g (curry f))) idp ⊙ap2-ap : ∀ {i j k l m} {X : Ptd i} {Y : Ptd j} {U : Ptd k} {V : Ptd l} {Z : Ptd m} (G : fst ((U ⊙× V) ⊙→ Z)) (F₁ : fst (X ⊙→ U)) (F₂ : fst (Y ⊙→ V)) → ⊙ap2 G ⊙∘ pair⊙→ (⊙ap F₁) (⊙ap F₂) == ⊙ap2 (G ⊙∘ pair⊙→ F₁ F₂) ⊙ap2-ap (g , idp) (f₁ , idp) (f₂ , idp) = ⊙λ= (λ {(p , q) → ap2-ap-l (curry g) f₁ p (ap f₂ q) ∙ ap2-ap-r (λ x v → g (f₁ x , v)) f₂ p q}) idp ⊙ap2-diag : ∀ {i j} {X : Ptd i} {Y : Ptd j} (F : fst (X ⊙× X ⊙→ Y)) → ⊙ap2 F ⊙∘ ⊙diag == ⊙ap (F ⊙∘ ⊙diag) ⊙ap2-diag (f , idp) = ⊙λ= (ap2-diag (curry f)) idp {- ap and ap2 for higher loop spaces -} ap^ : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → fst (X ⊙→ Y) → fst (⊙Ω^ n X ⊙→ ⊙Ω^ n Y) ap^ O F = F ap^ (S n) F = ⊙ap (ap^ n F) ap2^ : ∀ {i j k} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k} → fst ((X ⊙× Y) ⊙→ Z) → fst ((⊙Ω^ n X ⊙× ⊙Ω^ n Y) ⊙→ ⊙Ω^ n Z) ap2^ O F = F ap2^ (S n) F = ⊙ap2 (ap2^ n F) ap^-idf : ∀ {i} (n : ℕ) {X : Ptd i} → ap^ n (⊙idf X) == ⊙idf _ ap^-idf O = idp ap^-idf (S n) = ap ⊙ap (ap^-idf n) ∙ ⊙ap-idf ap^-ap2^ : ∀ {i j k l} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (G : fst (Z ⊙→ W)) (F : fst ((X ⊙× Y) ⊙→ Z)) → ap^ n G ⊙∘ ap2^ n F == ap2^ n (G ⊙∘ F) ap^-ap2^ O G F = idp ap^-ap2^ (S n) G F = ⊙ap-ap2 (ap^ n G) (ap2^ n F) ∙ ap ⊙ap2 (ap^-ap2^ n G F) ap2^-fst : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → ap2^ n {X} {Y} ⊙fst == ⊙fst ap2^-fst O = idp ap2^-fst (S n) = ap ⊙ap2 (ap2^-fst n) ∙ ⊙ap2-fst ap2^-snd : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → ap2^ n {X} {Y} ⊙snd == ⊙snd ap2^-snd O = idp ap2^-snd (S n) = ap ⊙ap2 (ap2^-snd n) ∙ ⊙ap2-snd ap2^-ap^ : ∀ {i j k l m} (n : ℕ) {X : Ptd i} {Y : Ptd j} {U : Ptd k} {V : Ptd l} {Z : Ptd m} (G : fst ((U ⊙× V) ⊙→ Z)) (F₁ : fst (X ⊙→ U)) (F₂ : fst (Y ⊙→ V)) → ap2^ n G ⊙∘ pair⊙→ (ap^ n F₁) (ap^ n F₂) == ap2^ n (G ⊙∘ pair⊙→ F₁ F₂) ap2^-ap^ O G F₁ F₂ = idp ap2^-ap^ (S n) G F₁ F₂ = ⊙ap2-ap (ap2^ n G) (ap^ n F₁) (ap^ n F₂) ∙ ap ⊙ap2 (ap2^-ap^ n G F₁ F₂) ap2^-diag : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} (F : fst (X ⊙× X ⊙→ Y)) → ap2^ n F ⊙∘ ⊙diag == ap^ n (F ⊙∘ ⊙diag) ap2^-diag O F = idp ap2^-diag (S n) F = ⊙ap2-diag (ap2^ n F) ∙ ap ⊙ap (ap2^-diag n F) module _ {i} {X : Ptd i} where {- Prove these as lemmas now - so we don't have to deal with the n = O case later -} conc^-unit-l : (n : ℕ) (t : n ≠ O) (q : Ω^ n X) → (conc^ n t (idp^ n) q) == q conc^-unit-l O t _ = ⊥-rec (t idp) conc^-unit-l (S n) _ _ = idp conc^-unit-r : (n : ℕ) (t : n ≠ O) (q : Ω^ n X) → (conc^ n t q (idp^ n)) == q conc^-unit-r O t = ⊥-rec (t idp) conc^-unit-r (S n) _ = ∙-unit-r conc^-assoc : (n : ℕ) (t : n ≠ O) (p q r : Ω^ n X) → conc^ n t (conc^ n t p q) r == conc^ n t p (conc^ n t q r) conc^-assoc O t = ⊥-rec (t idp) conc^-assoc (S n) _ = ∙-assoc !^-inv-l : (n : ℕ) (t : n ≠ O) (p : Ω^ n X) → conc^ n t (!^ n t p) p == idp^ n !^-inv-l O t = ⊥-rec (t idp) !^-inv-l (S n) _ = !-inv-l !^-inv-r : (n : ℕ) (t : n ≠ O) (p : Ω^ n X) → conc^ n t p (!^ n t p) == idp^ n !^-inv-r O t = ⊥-rec (t idp) !^-inv-r (S n) _ = !-inv-r abstract ap^-conc^ : ∀ {i j} (n : ℕ) (t : n ≠ O) {X : Ptd i} {Y : Ptd j} (F : fst (X ⊙→ Y)) (p q : Ω^ n X) → fst (ap^ n F) (conc^ n t p q) == conc^ n t (fst (ap^ n F) p) (fst (ap^ n F) q) ap^-conc^ O t _ _ _ = ⊥-rec (t idp) ap^-conc^ (S n) _ {X = X} {Y = Y} F p q = ! gpt ∙ ap g (p ∙ q) ∙' gpt =⟨ ap-∙ g p q |in-ctx (λ w → ! gpt ∙ w ∙' gpt) ⟩ ! gpt ∙ (ap g p ∙ ap g q) ∙' gpt =⟨ lemma (ap g p) (ap g q) gpt ⟩ (! gpt ∙ ap g p ∙' gpt) ∙ (! gpt ∙ ap g q ∙' gpt) ∎ where g : Ω^ n X → Ω^ n Y g = fst (ap^ n F) gpt : g (idp^ n) == idp^ n gpt = snd (ap^ n F) lemma : ∀ {i} {A : Type i} {x y : A} → (p q : x == x) (r : x == y) → ! r ∙ (p ∙ q) ∙' r == (! r ∙ p ∙' r) ∙ (! r ∙ q ∙' r) lemma p q idp = idp {- ap^ preserves (pointed) equivalences -} module _ {i j} {X : Ptd i} {Y : Ptd j} where is-equiv-ap^ : (n : ℕ) (F : fst (X ⊙→ Y)) (e : is-equiv (fst F)) → is-equiv (fst (ap^ n F)) is-equiv-ap^ O F e = e is-equiv-ap^ (S n) F e = pre∙-is-equiv (! (snd (ap^ n F))) ∘ise post∙'-is-equiv (snd (ap^ n F)) ∘ise snd (equiv-ap (_ , is-equiv-ap^ n F e) _ _) equiv-ap^ : (n : ℕ) (F : fst (X ⊙→ Y)) (e : is-equiv (fst F)) → Ω^ n X ≃ Ω^ n Y equiv-ap^ n F e = (fst (ap^ n F) , is-equiv-ap^ n F e) Ω^-level-in : ∀ {i} (m : ℕ₋₂) (n : ℕ) (X : Ptd i) → (has-level ((n -2) +2+ m) (fst X) → has-level m (Ω^ n X)) Ω^-level-in m O X pX = pX Ω^-level-in m (S n) X pX = Ω^-level-in (S m) n X (transport (λ k → has-level k (fst X)) (! (+2+-βr (n -2) m)) pX) (idp^ n) (idp^ n) Ω^-conn-in : ∀ {i} (m : ℕ₋₂) (n : ℕ) (X : Ptd i) → (is-connected ((n -2) +2+ m) (fst X)) → is-connected m (Ω^ n X) Ω^-conn-in m O X pX = pX Ω^-conn-in m (S n) X pX = path-conn $ Ω^-conn-in (S m) n X $ transport (λ k → is-connected k (fst X)) (! (+2+-βr (n -2) m)) pX {- Eckmann-Hilton argument -} module _ {i} {X : Ptd i} where conc^2-comm : (α β : Ω^ 2 X) → conc^ 2 (ℕ-S≠O _) α β == conc^ 2 (ℕ-S≠O _) β α conc^2-comm α β = ! (⋆2=conc^ α β) ∙ ⋆2=⋆'2 α β ∙ ⋆'2=conc^ α β where ⋆2=conc^ : (α β : Ω^ 2 X) → α ⋆2 β == conc^ 2 (ℕ-S≠O _) α β ⋆2=conc^ α β = ap (λ π → π ∙ β) (∙-unit-r α) ⋆'2=conc^ : (α β : Ω^ 2 X) → α ⋆'2 β == conc^ 2 (ℕ-S≠O _) β α ⋆'2=conc^ α β = ap (λ π → β ∙ π) (∙-unit-r α) {- Pushing truncation through loop space -} module _ {i} where Trunc-Ω^ : (m : ℕ₋₂) (n : ℕ) (X : Ptd i) → ⊙Trunc m (⊙Ω^ n X) == ⊙Ω^ n (⊙Trunc ((n -2) +2+ m) X) Trunc-Ω^ m O X = idp Trunc-Ω^ m (S n) X = ⊙Trunc m (⊙Ω^ (S n) X) =⟨ ! (pair= (Trunc=-path [ _ ] [ _ ]) (↓-idf-ua-in _ idp)) ⟩ ⊙Ω (⊙Trunc (S m) (⊙Ω^ n X)) =⟨ ap ⊙Ω (Trunc-Ω^ (S m) n X) ⟩ ⊙Ω^ (S n) (⊙Trunc ((n -2) +2+ S m) X) =⟨ +2+-βr (n -2) m |in-ctx (λ k → ⊙Ω^ (S n) (⊙Trunc k X)) ⟩ ⊙Ω^ (S n) (⊙Trunc (S (n -2) +2+ m) X) ∎ Ω-Trunc-equiv : (m : ℕ₋₂) (X : Ptd i) → Ω (⊙Trunc (S m) X) ≃ Trunc m (Ω X) Ω-Trunc-equiv m X = Trunc=-equiv [ snd X ] [ snd X ] {- A loop space is a pregroup, and a group if it has the right level -} module _ {i} (n : ℕ) (t : n ≠ O) (X : Ptd i) where Ω^-group-structure : GroupStructure (Ω^ n X) Ω^-group-structure = record { ident = idp^ n; inv = !^ n t; comp = conc^ n t; unitl = conc^-unit-l n t; unitr = conc^-unit-r n t; assoc = conc^-assoc n t; invr = !^-inv-r n t; invl = !^-inv-l n t } Ω^-Group : has-level ⟨ n ⟩ (fst X) → Group i Ω^-Group pX = group (Ω^ n X) (Ω^-level-in ⟨0⟩ n X $ transport (λ t → has-level t (fst X)) (+2+-comm ⟨0⟩ (n -2)) pX) Ω^-group-structure {- Our definition of Ω^ builds up loops on the outside, - but this is equivalent to building up on the inside -} module _ {i} where ⊙Ω^-inner-path : (n : ℕ) (X : Ptd i) → ⊙Ω^ (S n) X == ⊙Ω^ n (⊙Ω X) ⊙Ω^-inner-path O X = idp ⊙Ω^-inner-path (S n) X = ap ⊙Ω (⊙Ω^-inner-path n X) ⊙Ω^-inner-out : (n : ℕ) (X : Ptd i) → fst (⊙Ω^ (S n) X ⊙→ ⊙Ω^ n (⊙Ω X)) ⊙Ω^-inner-out O _ = (idf _ , idp) ⊙Ω^-inner-out (S n) X = ap^ 1 (⊙Ω^-inner-out n X) Ω^-inner-out : (n : ℕ) (X : Ptd i) → (Ω^ (S n) X → Ω^ n (⊙Ω X)) Ω^-inner-out n X = fst (⊙Ω^-inner-out n X) Ω^-inner-out-conc^ : (n : ℕ) (t : n ≠ O) (X : Ptd i) (p q : Ω^ (S n) X) → Ω^-inner-out n X (conc^ (S n) (ℕ-S≠O _) p q) == conc^ n t (Ω^-inner-out n X p) (Ω^-inner-out n X q) Ω^-inner-out-conc^ O t X _ _ = ⊥-rec (t idp) Ω^-inner-out-conc^ (S n) t X p q = ap^-conc^ 1 (ℕ-S≠O _) (⊙Ω^-inner-out n X) p q Ω^-inner-is-equiv : (n : ℕ) (X : Ptd i) → is-equiv (fst (⊙Ω^-inner-out n X)) Ω^-inner-is-equiv O X = is-eq (idf _) (idf _) (λ _ → idp) (λ _ → idp) Ω^-inner-is-equiv (S n) X = is-equiv-ap^ 1 (⊙Ω^-inner-out n X) (Ω^-inner-is-equiv n X) Ω^-inner-equiv : (n : ℕ) (X : Ptd i) → Ω^ (S n) X ≃ Ω^ n (⊙Ω X) Ω^-inner-equiv n X = _ , Ω^-inner-is-equiv n X
{ "alphanum_fraction": 0.4476686996, "avg_line_length": 32.3757961783, "ext": "agda", "hexsha": "135baf1abc80410eaa9fe7bc837f992e105a6d8c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danbornside/HoTT-Agda", "max_forks_repo_path": "lib/types/LoopSpace.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danbornside/HoTT-Agda", "max_issues_repo_path": "lib/types/LoopSpace.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danbornside/HoTT-Agda", "max_stars_repo_path": "lib/types/LoopSpace.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5386, "size": 10166 }
open import Prelude module Implicits.Syntax.Term where open import Implicits.Syntax.Type infixl 9 _[_] _·_ data Term (ν n : ℕ) : Set where var : (x : Fin n) → Term ν n Λ : Term (suc ν) n → Term ν n λ' : Type ν → Term ν (suc n) → Term ν n _[_] : Term ν n → Type ν → Term ν n _·_ : Term ν n → Term ν n → Term ν n -- rule abstraction and application ρ : Type ν → Term ν (suc n) → Term ν n _with'_ : Term ν n → Term ν n → Term ν n -- implicit rule application _⟨⟩ : Term ν n → Term ν n ClosedTerm : Set ClosedTerm = Term 0 0 ----------------------------------------------------------------------------- -- syntactic sugar let'_∶_in'_ : ∀ {ν n} → Term ν n → Type ν → Term ν (suc n) → Term ν n let' e₁ ∶ r in' e₂ = (λ' r e₂) · e₁ implicit_∶_in'_ : ∀ {ν n} → Term ν n → Type ν → Term ν (suc n) → Term ν n implicit e₁ ∶ r in' e₂ = (ρ r e₂) with' e₁ ¿_ : ∀ {ν n} → Type ν → Term ν n ¿ r = (ρ r (var zero)) ⟨⟩
{ "alphanum_fraction": 0.5217853348, "avg_line_length": 26.1388888889, "ext": "agda", "hexsha": "73e46aef827433ba0ae3a8552403b7f29d13ac88", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Syntax/Term.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Syntax/Term.agda", "max_line_length": 77, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Syntax/Term.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 355, "size": 941 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Library where module Literals where open import Light.Literals public module Data where module Empty where open import Light.Library.Data.Empty public module Either where open import Light.Library.Data.Either public module Natural where open import Light.Library.Data.Natural public module Unit where open import Light.Library.Data.Unit public module Integer where open import Light.Library.Data.Integer public module Boolean where open import Light.Library.Data.Boolean public module Both where open import Light.Library.Data.Both public module Product where open import Light.Library.Data.Product public module These where open import Light.Library.Data.These public module Relation where module Binary where open import Light.Library.Relation.Binary public module Equality where open import Light.Library.Relation.Binary.Equality public module Decidable where open import Light.Library.Relation.Binary.Equality.Decidable public module Decidable where open import Light.Library.Relation.Binary.Decidable public open import Light.Library.Relation public module Decidable where open import Light.Library.Relation.Decidable public module Action where open import Light.Library.Action public module Arithmetic where open import Light.Library.Arithmetic public module Level where open import Light.Level public module Subtyping where open import Light.Subtyping public module Variable where module Levels where open import Light.Variable.Levels public module Sets where open import Light.Variable.Sets public module Other {ℓ} (𝕒 : Set ℓ) where open import Light.Variable.Other 𝕒 public module Package where open import Light.Package public open Package using (Package) hiding (module Package) public -- module Indexed where open import Light.Indexed
{ "alphanum_fraction": 0.7677772253, "avg_line_length": 46.7674418605, "ext": "agda", "hexsha": "853888e8dbdf22e87333e815fb286ecf8b9434fb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light/Library.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light/Library.agda", "max_line_length": 108, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light/Library.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 372, "size": 2011 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Instances.Polynomials where open import Cubical.Foundations.Prelude open import Cubical.Algebra.CommRing open import Cubical.Algebra.Polynomials private variable ℓ : Level Poly : (CommRing ℓ) → CommRing ℓ Poly R = (PolyMod.Poly R) , str where open CommRingStr --(snd R) str : CommRingStr (PolyMod.Poly R) 0r str = PolyMod.0P R 1r str = PolyMod.1P R _+_ str = PolyMod._Poly+_ R _·_ str = PolyMod._Poly*_ R - str = PolyMod.Poly- R isCommRing str = makeIsCommRing (PolyMod.isSetPoly R) (PolyMod.Poly+Assoc R) (PolyMod.Poly+Rid R) (PolyMod.Poly+Inverses R) (PolyMod.Poly+Comm R) (PolyMod.Poly*Associative R) (PolyMod.Poly*Rid R) (PolyMod.Poly*LDistrPoly+ R) (PolyMod.Poly*Commutative R)
{ "alphanum_fraction": 0.5036166365, "avg_line_length": 33.5151515152, "ext": "agda", "hexsha": "a359a454a95bb376620ac769e25c791da32ef222", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "038bcaff93d278c627ccdcec34a4f6df2b56ad5a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AkermanRydbeck/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/Instances/Polynomials.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "038bcaff93d278c627ccdcec34a4f6df2b56ad5a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AkermanRydbeck/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/Instances/Polynomials.agda", "max_line_length": 66, "max_stars_count": null, "max_stars_repo_head_hexsha": "038bcaff93d278c627ccdcec34a4f6df2b56ad5a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AkermanRydbeck/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/Instances/Polynomials.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 282, "size": 1106 }
module empty where open import level ---------------------------------------------------------------------- -- datatypes ---------------------------------------------------------------------- data ⊥ {ℓ : Level} : Set ℓ where ---------------------------------------------------------------------- -- syntax ---------------------------------------------------------------------- ---------------------------------------------------------------------- -- theorems ---------------------------------------------------------------------- ⊥-elim : ∀{ℓ} → ⊥ {ℓ} → ∀{ℓ'}{P : Set ℓ'} → P ⊥-elim ()
{ "alphanum_fraction": 0.1517706577, "avg_line_length": 28.2380952381, "ext": "agda", "hexsha": "fd2cb85734e977f589c421f3bb3bd74135151bf0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "empty.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "empty.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 83, "size": 593 }
-- Andreas, 2015-08-11, issue reported by G.Allais -- The `a` record field of `Pack` is identified as a function -- (coloured blue, put in a \AgdaFunction in the LaTeX backend) -- when it should be coloured pink. -- The problem does not show up when dropping the second record -- type or removing the module declaration. record Pack (A : Set) : Set where field a : A record Packed {A : Set} (p : Pack A) : Set where module PP = Pack p module Synchronised {A : Set} {p : Pack A} (rel : Packed p) where module M = Packed rel
{ "alphanum_fraction": 0.687150838, "avg_line_length": 29.8333333333, "ext": "agda", "hexsha": "ef714adf1ad14bc1901ef64e28438600eec7fd80", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue1619.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue1619.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue1619.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 158, "size": 537 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Nat.GCD where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Induction.WellFounded open import Cubical.Data.Fin open import Cubical.Data.Sigma as Σ open import Cubical.Data.NatPlusOne open import Cubical.HITs.PropositionalTruncation as PropTrunc open import Cubical.Data.Nat.Base open import Cubical.Data.Nat.Properties open import Cubical.Data.Nat.Order open import Cubical.Data.Nat.Divisibility private variable m n d : ℕ -- common divisors isCD : ℕ → ℕ → ℕ → Type₀ isCD m n d = (d ∣ m) × (d ∣ n) isPropIsCD : isProp (isCD m n d) isPropIsCD = isProp× isProp∣ isProp∣ symCD : isCD m n d → isCD n m d symCD (d∣m , d∣n) = (d∣n , d∣m) -- greatest common divisors isGCD : ℕ → ℕ → ℕ → Type₀ isGCD m n d = (isCD m n d) × (∀ d' → isCD m n d' → d' ∣ d) GCD : ℕ → ℕ → Type₀ GCD m n = Σ ℕ (isGCD m n) isPropIsGCD : isProp (isGCD m n d) isPropIsGCD = isProp× isPropIsCD (isPropΠ2 (λ _ _ → isProp∣)) isPropGCD : isProp (GCD m n) isPropGCD (d , dCD , gr) (d' , d'CD , gr') = Σ≡Prop (λ _ → isPropIsGCD) (antisym∣ (gr' d dCD) (gr d' d'CD)) symGCD : isGCD m n d → isGCD n m d symGCD (dCD , gr) = symCD dCD , λ { d' d'CD → gr d' (symCD d'CD) } divsGCD : m ∣ n → isGCD m n m divsGCD p = (∣-refl refl , p) , λ { d (d∣m , _) → d∣m } oneGCD : ∀ m → isGCD m 1 1 oneGCD m = symGCD (divsGCD (∣-oneˡ m)) -- The base case of the Euclidean algorithm zeroGCD : ∀ m → isGCD m 0 m zeroGCD m = divsGCD (∣-zeroʳ m) private lem₁ : prediv d (suc n) → prediv d (m % suc n) → prediv d m lem₁ {d} {n} {m} (c₁ , p₁) (c₂ , p₂) = (q · c₁ + c₂) , p where r = m % suc n; q = n%k≡n[modk] m (suc n) .fst p = (q · c₁ + c₂) · d ≡⟨ sym (·-distribʳ (q · c₁) c₂ d) ⟩ (q · c₁) · d + c₂ · d ≡⟨ cong (_+ c₂ · d) (sym (·-assoc q c₁ d)) ⟩ q · (c₁ · d) + c₂ · d ≡[ i ]⟨ q · (p₁ i) + (p₂ i) ⟩ q · (suc n) + r ≡⟨ n%k≡n[modk] m (suc n) .snd ⟩ m ∎ lem₂ : prediv d (suc n) → prediv d m → prediv d (m % suc n) lem₂ {d} {n} {m} (c₁ , p₁) (c₂ , p₂) = c₂ ∸ q · c₁ , p where r = m % suc n; q = n%k≡n[modk] m (suc n) .fst p = (c₂ ∸ q · c₁) · d ≡⟨ ∸-distribʳ c₂ (q · c₁) d ⟩ c₂ · d ∸ (q · c₁) · d ≡⟨ cong (c₂ · d ∸_) (sym (·-assoc q c₁ d)) ⟩ c₂ · d ∸ q · (c₁ · d) ≡[ i ]⟨ p₂ i ∸ q · (p₁ i) ⟩ m ∸ q · (suc n) ≡⟨ cong (_∸ q · (suc n)) (sym (n%k≡n[modk] m (suc n) .snd)) ⟩ (q · (suc n) + r) ∸ q · (suc n) ≡⟨ cong (_∸ q · (suc n)) (+-comm (q · (suc n)) r) ⟩ (r + q · (suc n)) ∸ q · (suc n) ≡⟨ ∸-cancelʳ r zero (q · (suc n)) ⟩ r ∎ -- The inductive step of the Euclidean algorithm stepGCD : isGCD (suc n) (m % suc n) d → isGCD m (suc n) d fst (stepGCD ((d∣n , d∣m%n) , gr)) = PropTrunc.map2 lem₁ d∣n d∣m%n , d∣n snd (stepGCD ((d∣n , d∣m%n) , gr)) d' (d'∣m , d'∣n) = gr d' (d'∣n , PropTrunc.map2 lem₂ d'∣n d'∣m) -- putting it all together using well-founded induction euclid< : ∀ m n → n < m → GCD m n euclid< = WFI.induction <-wellfounded λ { m rec zero p → m , zeroGCD m ; m rec (suc n) p → let d , dGCD = rec (suc n) p (m % suc n) (n%sk<sk m n) in d , stepGCD dGCD } euclid : ∀ m n → GCD m n euclid m n with n ≟ m ... | lt p = euclid< m n p ... | gt p = Σ.map-snd symGCD (euclid< n m p) ... | eq p = m , divsGCD (∣-refl (sym p)) isContrGCD : ∀ m n → isContr (GCD m n) isContrGCD m n = euclid m n , isPropGCD _ -- the gcd operator on ℕ gcd : ℕ → ℕ → ℕ gcd m n = euclid m n .fst gcdIsGCD : ∀ m n → isGCD m n (gcd m n) gcdIsGCD m n = euclid m n .snd isGCD→gcd≡ : isGCD m n d → gcd m n ≡ d isGCD→gcd≡ dGCD = cong fst (isContrGCD _ _ .snd (_ , dGCD)) gcd≡→isGCD : gcd m n ≡ d → isGCD m n d gcd≡→isGCD p = subst (isGCD _ _) p (gcdIsGCD _ _) -- multiplicative properties of the gcd isCD-cancelʳ : ∀ k → isCD (m · suc k) (n · suc k) (d · suc k) → isCD m n d isCD-cancelʳ k (dk∣mk , dk∣nk) = (∣-cancelʳ k dk∣mk , ∣-cancelʳ k dk∣nk) isCD-multʳ : ∀ k → isCD m n d → isCD (m · k) (n · k) (d · k) isCD-multʳ k (d∣m , d∣n) = (∣-multʳ k d∣m , ∣-multʳ k d∣n) isGCD-cancelʳ : ∀ k → isGCD (m · suc k) (n · suc k) (d · suc k) → isGCD m n d isGCD-cancelʳ {m} {n} {d} k (dCD , gr) = isCD-cancelʳ k dCD , λ d' d'CD → ∣-cancelʳ k (gr (d' · suc k) (isCD-multʳ (suc k) d'CD)) gcd-factorʳ : ∀ m n k → gcd (m · k) (n · k) ≡ gcd m n · k gcd-factorʳ m n zero = (λ i → gcd (0≡m·0 m (~ i)) (0≡m·0 n (~ i))) ∙ 0≡m·0 (gcd m n) gcd-factorʳ m n (suc k) = sym p ∙ cong (_· suc k) (sym q) where k∣gcd : suc k ∣ gcd (m · suc k) (n · suc k) k∣gcd = gcdIsGCD (m · suc k) (n · suc k) .snd (suc k) (∣-right m , ∣-right n) d' = ∣-untrunc k∣gcd .fst p : d' · suc k ≡ gcd (m · suc k) (n · suc k) p = ∣-untrunc k∣gcd .snd d'GCD : isGCD m n d' d'GCD = isGCD-cancelʳ _ (subst (isGCD _ _) (sym p) (gcdIsGCD (m · suc k) (n · suc k))) q : gcd m n ≡ d' q = isGCD→gcd≡ d'GCD -- Q: Can this be proved directly? (i.e. without a transport) isGCD-multʳ : ∀ k → isGCD m n d → isGCD (m · k) (n · k) (d · k) isGCD-multʳ {m} {n} {d} k dGCD = gcd≡→isGCD (gcd-factorʳ m n k ∙ cong (_· k) r) where r : gcd m n ≡ d r = isGCD→gcd≡ dGCD
{ "alphanum_fraction": 0.5252161383, "avg_line_length": 34.2716049383, "ext": "agda", "hexsha": "c5196cf0abe5ed14028d89c715014059ac863565", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Nat/GCD.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Nat/GCD.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Nat/GCD.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2517, "size": 5552 }
{-# OPTIONS --prop --without-K --rewriting #-} module Calf.Types.Bool where open import Calf.Prelude open import Calf.Metalanguage open import Data.Bool public using (Bool; true; false; if_then_else_) bool : tp pos bool = U (meta Bool)
{ "alphanum_fraction": 0.7333333333, "avg_line_length": 20, "ext": "agda", "hexsha": "581307995d4d9804de484679a277db7a1105c718", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Calf/Types/Bool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Calf/Types/Bool.agda", "max_line_length": 69, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Calf/Types/Bool.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 63, "size": 240 }
{-# OPTIONS --safe #-} module MissingDefinition where T : Set -> Set
{ "alphanum_fraction": 0.6571428571, "avg_line_length": 14, "ext": "agda", "hexsha": "0ce46b49d9be468775377e9d5a159066a54ecb17", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/MissingDefinition.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/MissingDefinition.agda", "max_line_length": 30, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/MissingDefinition.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 16, "size": 70 }
{- Cubical Agda with K This file demonstrates the incompatibility of the --cubical and --with-K flags, relying on the well-known incosistency of K with univalence. The --safe flag can be used to prevent accidentally mixing such incompatible flags. -} {-# OPTIONS --with-K #-} module Cubical.WithK where open import Cubical.Data.Equality open import Cubical.Data.Bool open import Cubical.Data.Empty private variable ℓ : Level A : Type ℓ x y : A uip : (prf : x ≡ x) → Path _ prf refl uip refl i = refl transport-uip : (prf : A ≡ A) → Path _ (transportPath (eqToPath prf) x) x transport-uip {x = x} prf = compPath (congPath (λ p → transportPath (eqToPath p) x) (uip prf)) (transportRefl x) transport-not : Path _ (transportPath (eqToPath (pathToEq notEq)) true) false transport-not = congPath (λ a → transportPath a true) (eqToPath-pathToEq notEq) false-true : Path _ false true false-true = compPath (symPath transport-not) (transport-uip (pathToEq notEq)) absurd : (X : Type) → X absurd X = transportPath (congPath sel false-true) true where sel : Bool → Type sel false = Bool sel true = X inconsistency : ⊥ inconsistency = absurd ⊥
{ "alphanum_fraction": 0.709760274, "avg_line_length": 24.3333333333, "ext": "agda", "hexsha": "8adf2905a9a593b453a4ded9500a2babf2a44836", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/WithK.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/WithK.agda", "max_line_length": 86, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/WithK.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 364, "size": 1168 }
module WrongNamedArgument2 where postulate f : {A : Set₁} → A test : Set test = f {B = Set} -- Unsolved meta. -- It is not an error since A could be instantiated to a function type -- accepting hidden argument with name B.
{ "alphanum_fraction": 0.701754386, "avg_line_length": 19, "ext": "agda", "hexsha": "8ff2c85ca3b4b3a6299af02bf9683c17863d1b53", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/WrongNamedArgument2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/WrongNamedArgument2.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/WrongNamedArgument2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 63, "size": 228 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Argument information used in the reflection machinery ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Reflection.Argument.Information where open import Data.Product open import Relation.Nullary import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Product using (_×-dec_) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Reflection.Argument.Relevance as Relevance using (Relevance) open import Reflection.Argument.Visibility as Visibility using (Visibility) ------------------------------------------------------------------------ -- Re-exporting the builtins publically open import Agda.Builtin.Reflection public using (ArgInfo) open ArgInfo public ------------------------------------------------------------------------ -- Operations visibility : ArgInfo → Visibility visibility (arg-info v _) = v relevance : ArgInfo → Relevance relevance (arg-info _ r) = r ------------------------------------------------------------------------ -- Decidable equality arg-info-injective₁ : ∀ {v r v′ r′} → arg-info v r ≡ arg-info v′ r′ → v ≡ v′ arg-info-injective₁ refl = refl arg-info-injective₂ : ∀ {v r v′ r′} → arg-info v r ≡ arg-info v′ r′ → r ≡ r′ arg-info-injective₂ refl = refl arg-info-injective : ∀ {v r v′ r′} → arg-info v r ≡ arg-info v′ r′ → v ≡ v′ × r ≡ r′ arg-info-injective = < arg-info-injective₁ , arg-info-injective₂ > _≟_ : DecidableEquality ArgInfo arg-info v r ≟ arg-info v′ r′ = Dec.map′ (uncurry (cong₂ arg-info)) arg-info-injective (v Visibility.≟ v′ ×-dec r Relevance.≟ r′)
{ "alphanum_fraction": 0.5673678226, "avg_line_length": 33.1886792453, "ext": "agda", "hexsha": "22a0e92ae2a0de22e8cc2d134d9ed93cf56c4127", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Reflection/Argument/Information.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Reflection/Argument/Information.agda", "max_line_length": 84, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Reflection/Argument/Information.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 395, "size": 1759 }
{-# OPTIONS --rewriting #-} module FFI.Data.Vector where open import Agda.Builtin.Equality using (_≡_) open import Agda.Builtin.Equality.Rewrite using () open import Agda.Builtin.Int using (Int; pos; negsuc) open import Agda.Builtin.Nat using (Nat) open import Agda.Builtin.Bool using (Bool; false; true) open import FFI.Data.HaskellInt using (HaskellInt; haskellIntToInt; intToHaskellInt) open import FFI.Data.Maybe using (Maybe; just; nothing) open import Properties.Equality using (_≢_) {-# FOREIGN GHC import qualified Data.Vector #-} postulate Vector : Set → Set {-# POLARITY Vector ++ #-} {-# COMPILE GHC Vector = type Data.Vector.Vector #-} postulate empty : ∀ {A} → (Vector A) null : ∀ {A} → (Vector A) → Bool unsafeHead : ∀ {A} → (Vector A) → A unsafeTail : ∀ {A} → (Vector A) → (Vector A) length : ∀ {A} → (Vector A) → Nat lookup : ∀ {A} → (Vector A) → Nat → (Maybe A) snoc : ∀ {A} → (Vector A) → A → (Vector A) {-# COMPILE GHC empty = \_ -> Data.Vector.empty #-} {-# COMPILE GHC null = \_ -> Data.Vector.null #-} {-# COMPILE GHC unsafeHead = \_ -> Data.Vector.unsafeHead #-} {-# COMPILE GHC unsafeTail = \_ -> Data.Vector.unsafeTail #-} {-# COMPILE GHC length = \_ -> (fromIntegral . Data.Vector.length) #-} {-# COMPILE GHC lookup = \_ v -> ((v Data.Vector.!?) . fromIntegral) #-} {-# COMPILE GHC snoc = \_ -> Data.Vector.snoc #-} postulate length-empty : ∀ {A} → (length (empty {A}) ≡ 0) postulate lookup-empty : ∀ {A} n → (lookup (empty {A}) n ≡ nothing) postulate lookup-snoc : ∀ {A} (x : A) (v : Vector A) → (lookup (snoc v x) (length v) ≡ just x) postulate lookup-length : ∀ {A} (v : Vector A) → (lookup v (length v) ≡ nothing) postulate lookup-snoc-empty : ∀ {A} (x : A) → (lookup (snoc empty x) 0 ≡ just x) postulate lookup-snoc-not : ∀ {A n} (x : A) (v : Vector A) → (n ≢ length v) → (lookup v n ≡ lookup (snoc v x) n) {-# REWRITE length-empty lookup-snoc lookup-length lookup-snoc-empty lookup-empty #-} head : ∀ {A} → (Vector A) → (Maybe A) head vec with null vec head vec | false = just (unsafeHead vec) head vec | true = nothing tail : ∀ {A} → (Vector A) → Vector A tail vec with null vec tail vec | false = unsafeTail vec tail vec | true = empty
{ "alphanum_fraction": 0.6420428637, "avg_line_length": 40.6111111111, "ext": "agda", "hexsha": "08761edf850acead13e94ec0267acfdd5676b3fa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/FFI/Data/Vector.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/FFI/Data/Vector.agda", "max_line_length": 112, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/FFI/Data/Vector.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 682, "size": 2193 }
open import Function using (_∘_) open import Category.Functor open import Category.Monad open import Data.Empty using (⊥; ⊥-elim) open import Data.Fin as Fin using (Fin; zero; suc) open import Data.Fin.Props as FinProps using () open import Data.Maybe as Maybe using (Maybe; maybe; just; nothing) open import Data.Nat using (ℕ; zero; suc) open import Data.Product using (Σ; ∃; _,_; proj₁; proj₂) renaming (_×_ to _∧_) open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_]) open import Data.Vec as Vec using (Vec; []; _∷_; head; tail) open import Data.Vec.Equality as VecEq open import Relation.Nullary using (Dec; yes; no; ¬_) open import Relation.Binary open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; sym; trans; cong; cong₂; inspect; Reveal_is_; [_]) module Unification.Correctness (Symbol : ℕ -> Set) (decEqSym : ∀ {k} (f g : Symbol k) → Dec (f ≡ g)) where open import Unification Symbol decEqSym open RawFunctor {{...}} open DecSetoid {{...}} using (_≟_) private maybeFunctor = Maybe.functor private finDecSetoid : ∀ {n} → DecSetoid _ _ finDecSetoid {n} = FinProps.decSetoid n -- * proving correctness of replacement function mutual -- | proof that var is the identity of replace replace-thm₁ : ∀ {n} (t : Term n) → replace var t ≡ t replace-thm₁ (var x) = refl replace-thm₁ (con s ts) = cong (con s) (replaceChildren-thm₁ ts) -- | proof that var is the identity of replaceChildren replaceChildren-thm₁ : ∀ {n k} (ts : Vec (Term n) k) → replaceChildren var ts ≡ ts replaceChildren-thm₁ [] = refl replaceChildren-thm₁ (t ∷ ts) rewrite replace-thm₁ t = cong (_∷_ _) (replaceChildren-thm₁ ts) -- * proving correctness of substitution/replacement composition -- | proof that `var ∘ _` is the identity of ◇ compose-thm₁ : ∀ {m n l} (f : Fin m → Term n) (r : Fin l → Fin m) (t : Term l) → f ◇ (var ∘ r) ≡ f ∘ r compose-thm₁ f r t = refl mutual -- | proof that _◇_ behaves as composition of replacements compose-thm₂ : ∀ {m n l} (f : Fin m → Term n) (g : Fin l → Term m) (t : Term l) → replace (f ◇ g) t ≡ replace f (replace g t) compose-thm₂ f g (var x) = refl compose-thm₂ f g (con s ts) = cong (con s) (composeChildren-thm₂ f g ts) -- | proof that _◇_ behaves as composition of replacements composeChildren-thm₂ : ∀ {m n l k} (f : Fin m → Term n) (g : Fin l → Term m) (ts : Vec (Term l) k) → replaceChildren (f ◇ g) ts ≡ replaceChildren f (replaceChildren g ts) composeChildren-thm₂ f g [] = refl composeChildren-thm₂ f g (t ∷ ts) rewrite compose-thm₂ f g t = cong (_∷_ _) (composeChildren-thm₂ f g ts) -- * proving correctness of thick and thin -- | predecessor function over finite numbers pred : ∀ {n} → Fin (suc (suc n)) → Fin (suc n) pred zero = zero pred (suc x) = x -- | proof of injectivity of thin thin-injective : ∀ {n} (x : Fin (suc n)) (y z : Fin n) → thin x y ≡ thin x z → y ≡ z thin-injective {zero} zero () _ _ thin-injective {zero} (suc _) () _ _ thin-injective {suc _} zero zero zero refl = refl thin-injective {suc _} zero zero (suc _) () thin-injective {suc _} zero (suc _) zero () thin-injective {suc _} zero (suc y) (suc .y) refl = refl thin-injective {suc _} (suc _) zero zero refl = refl thin-injective {suc _} (suc _) zero (suc _) () thin-injective {suc _} (suc _) (suc _) zero () thin-injective {suc n} (suc x) (suc y) (suc z) p = cong suc (thin-injective x y z (cong pred p)) -- | proof that thin x will never map anything to x thinxy≢x : ∀ {n} (x : Fin (suc n)) (y : Fin n) → thin x y ≢ x thinxy≢x zero zero () thinxy≢x zero (suc _) () thinxy≢x (suc _) zero () thinxy≢x (suc x) (suc y) p = thinxy≢x x y (cong pred p) -- | proof that `thin x` reaches all y where x ≢ y x≢y→thinxz≡y : ∀ {n} (x y : Fin (suc n)) → x ≢ y → ∃ (λ z → thin x z ≡ y) x≢y→thinxz≡y zero zero 0≢0 with 0≢0 refl x≢y→thinxz≡y zero zero 0≢0 | () x≢y→thinxz≡y {zero} (suc ()) _ _ x≢y→thinxz≡y {zero} zero (suc ()) _ x≢y→thinxz≡y {suc _} zero (suc y) _ = y , refl x≢y→thinxz≡y {suc _} (suc x) zero _ = zero , refl x≢y→thinxz≡y {suc _} (suc x) (suc y) sx≢sy = (suc (proj₁ prf)) , (lem x y (proj₁ prf) (proj₂ prf)) where x≢y = sx≢sy ∘ cong suc prf = x≢y→thinxz≡y x y x≢y lem : ∀ {n} (x y : Fin (suc n)) (z : Fin n) → thin x z ≡ y → thin (suc x) (suc z) ≡ suc y lem zero zero _ () lem zero (suc .z) z refl = refl lem (suc _) zero zero refl = refl lem (suc _) zero (suc _) () lem (suc _) (suc _) zero () lem (suc x) (suc .(thin x z)) (suc z) refl = refl -- | proof that thick x composed with thin x is the identity thickx∘thinx≡yes : ∀ {n} (x : Fin (suc n)) (y : Fin n) → thick x (thin x y) ≡ just y thickx∘thinx≡yes zero zero = refl thickx∘thinx≡yes zero (suc _) = refl thickx∘thinx≡yes (suc _) zero = refl thickx∘thinx≡yes (suc x) (suc y) = cong (_<$>_ suc) (thickx∘thinx≡yes x y) -- | proof that `thin` is a partial inverse of `thick` thin≡thick⁻¹ : ∀ {n} (x : Fin (suc n)) (y : Fin n) (z : Fin (suc n)) → thin x y ≡ z → thick x z ≡ just y thin≡thick⁻¹ x y z p with p thin≡thick⁻¹ x y .(thin x y) _ | refl = thickx∘thinx≡yes x y -- | proof that `thick x x` returns nothing thickxx≡no : ∀ {n} (x : Fin (suc n)) → thick x x ≡ nothing thickxx≡no zero = refl thickxx≡no {zero} (suc ()) thickxx≡no {suc n} (suc x) = cong (maybe (λ x → just (suc x)) nothing) (thickxx≡no x) -- | proof that `thick x y` returns something when x ≢ y x≢y→thickxy≡yes : ∀ {n} (x y : Fin (suc n)) → x ≢ y → ∃ (λ z → thick x y ≡ just z) x≢y→thickxy≡yes zero zero 0≢0 with 0≢0 refl x≢y→thickxy≡yes zero zero 0≢0 | () x≢y→thickxy≡yes zero (suc y) p = y , refl x≢y→thickxy≡yes {zero} (suc ()) _ _ x≢y→thickxy≡yes {suc n} (suc x) zero _ = zero , refl x≢y→thickxy≡yes {suc n} (suc x) (suc y) sx≢sy = (suc (proj₁ prf)) , (cong (_<$>_ suc) (proj₂ prf)) where x≢y = sx≢sy ∘ cong suc prf = x≢y→thickxy≡yes {n} x y x≢y -- | proof that `thick` is the partial inverse of `thin` thick≡thin⁻¹ : ∀ {n} (x y : Fin (suc n)) (r : Maybe (Fin n)) → thick x y ≡ r → x ≡ y ∧ r ≡ nothing ⊎ ∃ (λ z → thin x z ≡ y ∧ r ≡ just z) thick≡thin⁻¹ x y _ thickxy≡r with x ≟ y | thickxy≡r thick≡thin⁻¹ x .x .(thick x x) _ | yes refl | refl = inj₁ (refl , thickxx≡no x) thick≡thin⁻¹ x y .(thick x y) _ | no x≢y | refl = inj₂ (proj₁ prf₁ , (proj₂ prf₁) , prf₂) where prf₁ = x≢y→thinxz≡y x y x≢y prf₂ = thin≡thick⁻¹ x (proj₁ prf₁) y (proj₂ prf₁) -- | proof that if check returns nothing, checkChildren will too check≡no→checkChildren≡no : ∀ {n} (x : Fin (suc n)) (s : Symbol (suc n)) (ts : Vec (Term (suc n)) (suc n)) → check x (con s ts) ≡ nothing → checkChildren x ts ≡ nothing check≡no→checkChildren≡no x s ts p with checkChildren x ts check≡no→checkChildren≡no x s ts p | nothing = refl check≡no→checkChildren≡no x s ts () | just _ -- | proof that if check returns something, checkChildren will too check≡yes→checkChildren≡yes : ∀ {n} (x : Fin (suc n)) (s : Symbol (suc n)) (ts : Vec (Term (suc n)) (suc n)) (ts' : Vec (Term n) (suc n)) → check x (con s ts) ≡ just (con s ts') → checkChildren x ts ≡ just ts' check≡yes→checkChildren≡yes x s ts ts' p with checkChildren x ts check≡yes→checkChildren≡yes x s ts ts' refl | just .ts' = refl check≡yes→checkChildren≡yes x s ts ts' () | nothing -- | occurs predicate that is only inhabited if x occurs in t mutual data Occurs {n : ℕ} (x : Fin n) : Term n → Set where Here : Occurs x (var x) Further : ∀ {k ts} {s : Symbol k} → OccursChildren x {k} ts → Occurs x (con s ts) data OccursChildren {n : ℕ} (x : Fin n) : {k : ℕ} → Vec (Term n) k → Set where Here : ∀ {k t ts} → Occurs x t → OccursChildren x {suc k} (t ∷ ts) Further : ∀ {k t ts} → OccursChildren x {k} ts → OccursChildren x {suc k} (t ∷ ts) -- | proof of decidability for the occurs predicate mutual occurs? : ∀ {n} (x : Fin n) (t : Term n) → Dec (Occurs x t) occurs? x₁ (var x₂) with x₁ ≟ x₂ occurs? .x₂ (var x₂) | yes refl = yes Here occurs? x₁ (var x₂) | no x₁≢x₂ = no (x₁≢x₂ ∘ lem x₁ x₂) where lem : ∀ {n} (x y : Fin n) → Occurs x (var y) → x ≡ y lem zero zero _ = refl lem zero (suc _) () lem (suc x) zero () lem (suc x) (suc .x) Here = refl occurs? x₁ (con s ts) with occursChildren? x₁ ts occurs? x₁ (con s ts) | yes x₁∈ts = yes (Further x₁∈ts) occurs? x₁ (con s ts) | no x₁∉ts = no (x₁∉ts ∘ lem x₁) where lem : ∀ {n s ts} (x : Fin n) → Occurs x (con s ts) → OccursChildren x ts lem x (Further x₂) = x₂ occursChildren? : ∀ {n k} (x : Fin n) (ts : Vec (Term n) k) → Dec (OccursChildren x ts) occursChildren? x₁ [] = no (λ ()) occursChildren? x₁ (t ∷ ts) with occurs? x₁ t occursChildren? x₁ (t ∷ ts) | yes h = yes (Here h) occursChildren? x₁ (t ∷ ts) | no ¬h with occursChildren? x₁ ts occursChildren? x₁ (t ∷ ts) | no ¬h | yes f = yes (Further f) occursChildren? x₁ (t ∷ ts) | no ¬h | no ¬f = no lem where lem : OccursChildren x₁ (t ∷ ts) → ⊥ lem (Here p) = ¬h p lem (Further p) = ¬f p -- * proving correctness of check mutual -- | proving that if x occurs in t, check returns nothing occurs→check≡no : ∀ {n} (x : Fin (suc n)) (t : Term (suc n)) → Occurs x t → check x t ≡ nothing occurs→check≡no x .(Unification.var x) Here rewrite thickxx≡no x = refl occurs→check≡no x .(Unification.con s ts) (Further {k} {ts} {s} p) rewrite occursChildren→checkChildren≡no x ts p = refl -- | proving that if x occurs in ts, checkChildren returns nothing occursChildren→checkChildren≡no : ∀ {n k} (x : Fin (suc n)) (ts : Vec (Term (suc n)) k) → OccursChildren x ts → checkChildren x ts ≡ nothing occursChildren→checkChildren≡no x .(t ∷ ts) (Here {k} {t} {ts} p) rewrite occurs→check≡no x t p = refl occursChildren→checkChildren≡no x .(t ∷ ts) (Further {k} {t} {ts} p) with check x t ... | just _ rewrite occursChildren→checkChildren≡no x ts p = refl ... | nothing rewrite occursChildren→checkChildren≡no x ts p = refl mutual -- | proof that if check x t returns nothing, x occurs in t check≡no→occurs : ∀ {n} (x : Fin (suc n)) (t : Term (suc n)) → check x t ≡ nothing → Occurs x t check≡no→occurs x₁ (var x₂) p with x₁ ≟ x₂ check≡no→occurs .x₂ (var x₂) p | yes refl = Here check≡no→occurs x₁ (var x₂) p | no x₁≢x₂ = ⊥-elim (lem₂ p) where lem₁ : ∃ (λ z → thick x₁ x₂ ≡ just z) lem₁ = x≢y→thickxy≡yes x₁ x₂ x₁≢x₂ lem₂ : var <$> thick x₁ x₂ ≡ nothing → ⊥ lem₂ rewrite proj₂ lem₁ = λ () check≡no→occurs {n} x₁ (con s ts) p = Further (checkChildren≡no→occursChildren x₁ ts (lem p)) where lem : con s <$> checkChildren x₁ ts ≡ nothing → checkChildren x₁ ts ≡ nothing lem p with checkChildren x₁ ts | inspect (checkChildren x₁) ts lem () | just _ | [ eq ] lem p | nothing | [ eq ] = refl -- | proof that if checkChildren x ts returns nothing, x occurs in ts checkChildren≡no→occursChildren : ∀ {n k} (x : Fin (suc n)) (ts : Vec (Term (suc n)) k) → checkChildren x ts ≡ nothing → OccursChildren x ts checkChildren≡no→occursChildren x [] () checkChildren≡no→occursChildren x (t ∷ ts) p with check x t | inspect (check x) t ... | nothing | [ e₁ ] = Here (check≡no→occurs x t e₁) ... | just _ | [ e₁ ] with checkChildren x ts | inspect (checkChildren x) ts ... | nothing | [ e₂ ] = Further (checkChildren≡no→occursChildren x ts e₂) checkChildren≡no→occursChildren x (t ∷ ts) () | just _ | [ e₁ ] | just _ | [ e₂ ] -- | proof that if check returns just, x does not occur in t check≡yes→¬occurs : ∀ {n} (x : Fin (suc n)) (t : Term (suc n)) (t' : Term n) → check x t ≡ just t' → ¬ (Occurs x t) check≡yes→¬occurs x t t' p₁ x∈t with occurs→check≡no x t x∈t check≡yes→¬occurs x t t' p₁ _ | p₂ with check x t check≡yes→¬occurs x t t' p₁ _ | () | just _ check≡yes→¬occurs x t t' () _ | p₂ | nothing -- | proof that x does not occur in t, check returns just ¬occurs→check≡yes : ∀ {n} (x : Fin (suc n)) (t : Term (suc n)) → ¬ (Occurs x t) → ∃ (λ t' → check x t ≡ just t') ¬occurs→check≡yes x t x∉t with check x t | inspect (check x) t ¬occurs→check≡yes x t x∉t | nothing | [ eq ] with x∉t (check≡no→occurs x t eq) ¬occurs→check≡yes x t x∉t | nothing | [ eq ] | () ¬occurs→check≡yes x t x∉t | just t' | [ eq ] = t' , refl -- * proving correctness of _for_ -- | proof that if there is nothing to unify, _for_ is the identity for-thm₁ : ∀ {n} (t : Term n) (x : Fin (suc n)) (y : Fin n) → (t for x) (thin x y) ≡ var y for-thm₁ t x y rewrite thickx∘thinx≡yes x y = refl mutual -- | proof that if there is something to unify, _for_ unifies for-thm₂ : ∀ {n} (x : Fin (suc n)) (t : Term (suc n)) (t' : Term n) → check x t ≡ just t' → replace (t' for x) t ≡ (t' for x) x for-thm₂ x (var y) _ _ with x ≟ y for-thm₂ .y (var y) _ _ | yes refl = refl for-thm₂ x (var y) _ _ | no x≢y with thick x y | x≢y→thickxy≡yes x y x≢y | thick x x | thickxx≡no x for-thm₂ x (var y) .(var z) refl | no _ | .(just z) | z , refl | .nothing | refl = refl for-thm₂ x (con s ts) _ _ with checkChildren x ts | inspect (checkChildren x) ts for-thm₂ x (con s ts) _ () | nothing | _ for-thm₂ x (con s ts) .(con s ts') refl | just ts' | [ checkChildren≡yes ] rewrite thickxx≡no x = cong (con s) (forChildren-thm₂ x s ts ts' checkChildren≡yes) forChildren-thm₂ : ∀ {n k} -> (x : Fin (suc n)) (s : Symbol k) (ts : Vec (Term (suc n)) k) (ts' : Vec (Term n) k) -> checkChildren x ts ≡ just ts' -> replaceChildren (con s ts' for x) ts ≡ ts' forChildren-thm₂ x s [] [] eq rewrite thickxx≡no x = refl forChildren-thm₂ x s (t1 ∷ ts) (t2 ∷ ts') eq with check x t1 | inspect (check x) t1 | checkChildren x ts | inspect (checkChildren x) ts forChildren-thm₂ x s (t1 ∷ ts) (t2 ∷ ts') refl | just .t2 | [ eq1 ] | just .ts' | [ eq2 ] = cong₂ _∷_ {!!} {!!} where lemma₁ = for-thm₂ x t1 t2 eq1 forChildren-thm₂ x s (t1 ∷ ts) (t2 ∷ ts') () | just x₁ | _ | nothing | _ forChildren-thm₂ x s (t1 ∷ ts) (t2 ∷ ts') () | nothing | _ | cs | _ -- * proving correctness of apply, concat and compose ++-thm₁ : ∀ {m n} (s : Subst m n) → nil ++ s ≡ s ++-thm₁ nil = refl ++-thm₁ (snoc s t x) = cong (λ s → snoc s t x) (++-thm₁ s) mutual replace-var-id : ∀ {m} (t : Term m) -> replace var t ≡ t replace-var-id (Unification.var x) = refl replace-var-id (Unification.con s ts) = cong (con s) (replaceChildren-var-id ts) replaceChildren-var-id : ∀ {m n} -> (ts : Vec (Term m) n) -> replaceChildren var ts ≡ ts replaceChildren-var-id [] = refl replaceChildren-var-id (x ∷ ts) = cong₂ _∷_ (replace-var-id x) (replaceChildren-var-id ts) mutual replace-var-id' : ∀ {n m} (f : Fin n -> Term m) (t : Term n) -> replace (\x -> replace var (f x)) t ≡ replace f t replace-var-id' f (Unification.var x) = replace-var-id (f x) replace-var-id' f (Unification.con s ts) = cong (con s) (replaceChildren-var-id' f ts) replaceChildren-var-id' : ∀ {m n k} -> (f : Fin m -> Term k) (ts : Vec (Term m) n) -> replaceChildren (\x -> replace var (f x)) ts ‌≡ replaceChildren f ts replaceChildren-var-id' f [] = refl replaceChildren-var-id' f (x ∷ ts) = cong₂ _∷_ (replace-var-id' f x) (replaceChildren-var-id' f ts) ++-lem₁ : ∀ {m n} (s : Subst m n) (t : Term (suc m)) (t' : Term m) (x : Fin (suc m)) -> replace (apply s) (replace (t' for x) t) ≡ replace (\x' -> replace (apply s) (_for_ t' x x')) t ++-lem₁ Unification.nil t t' x rewrite replace-var-id (replace (t' for x) t) | replace-var-id' (t' for x) t = refl ++-lem₁ (Unification.snoc s t x) t₁ t' x₁ = {!!} ++-lem₂ : ∀ {l m n} (s₁ : Subst m n) (s₂ : Subst l m) (t : Term l) → replace (apply (s₁ ++ s₂)) t ≡ replace (apply s₁) (replace (apply s₂) t) ++-lem₂ s₁ nil t rewrite replace-thm₁ t = refl ++-lem₂ {.(suc k)} {m} {n} s₁ (snoc {k} s₂ t₂ x) t = {!!} where lem = ++-lem₂ s₁ s₂ (replace (t₂ for x) t) ++-thm₂ : ∀ {l m n} (s₁ : Subst m n) (s₂ : Subst l m) (x : Fin l) → apply (s₁ ++ s₂) x ≡ (apply s₁ ◇ apply s₂) x ++-thm₂ s₁ nil x = refl ++-thm₂ s₁ (snoc s₂ t y) x with thick y x ++-thm₂ s₁ (snoc s₂ t y) x | just t' = ++-thm₂ s₁ s₂ t' ++-thm₂ s₁ (snoc s₂ t y) x | nothing = ++-lem₂ s₁ s₂ t
{ "alphanum_fraction": 0.5723645724, "avg_line_length": 42.6284289277, "ext": "agda", "hexsha": "878f11eae9166ecb4d9601d9c99ab02eb58e8674", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5fc229e7eb6925dd3ea8e5d8e8bfbff4500c5614", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "wenkokke/FirstOrderUnificationInAgda", "max_forks_repo_path": "Unification/Correctness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5fc229e7eb6925dd3ea8e5d8e8bfbff4500c5614", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "wenkokke/FirstOrderUnificationInAgda", "max_issues_repo_path": "Unification/Correctness.agda", "max_line_length": 133, "max_stars_count": 3, "max_stars_repo_head_hexsha": "5fc229e7eb6925dd3ea8e5d8e8bfbff4500c5614", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/FirstOrderUnificationInAgda", "max_stars_repo_path": "Unification/Correctness.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-06T21:58:31.000Z", "max_stars_repo_stars_event_min_datetime": "2017-07-27T22:15:32.000Z", "num_tokens": 6675, "size": 17094 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.RingStructure.GradedCommutativity where open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Transport open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Pointed open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Foundations.GroupoidLaws hiding (assoc) open import Cubical.Foundations.Path open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Nat open import Cubical.Data.Int renaming (_+_ to _ℤ+_ ; _·_ to _ℤ∙_ ; +Comm to +ℤ-comm ; ·Comm to ∙-comm ; +Assoc to ℤ+-assoc ; -_ to -ℤ_) hiding (_+'_ ; +'≡+) open import Cubical.Data.Sigma open import Cubical.Data.Sum open import Cubical.HITs.SetTruncation as ST open import Cubical.HITs.Truncation as T open import Cubical.HITs.S1 hiding (_·_) open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.Homotopy.Loopspace open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.RingStructure.CupProduct open import Cubical.ZCohomology.RingStructure.RingLaws open import Cubical.ZCohomology.Properties private variable ℓ : Level open PlusBis natTranspLem : ∀ {ℓ} {A B : ℕ → Type ℓ} {n m : ℕ} (a : A n) (f : (n : ℕ) → (a : A n) → B n) (p : n ≡ m) → f m (subst A p a) ≡ subst B p (f n a) natTranspLem {A = A} {B = B} a f p = sym (substCommSlice A B f p a) transp0₁ : (n : ℕ) → subst coHomK (+'-comm 1 (suc n)) (0ₖ _) ≡ 0ₖ _ transp0₁ zero = refl transp0₁ (suc n) = refl transp0₂ : (n m : ℕ) → subst coHomK (+'-comm (suc (suc n)) (suc m)) (0ₖ _) ≡ 0ₖ _ transp0₂ n zero = refl transp0₂ n (suc m) = refl -- Recurring expressions private ΩKn+1→Ω²Kn+2 : {k : ℕ} → typ (Ω (coHomK-ptd k)) → typ ((Ω^ 2) (coHomK-ptd (suc k))) ΩKn+1→Ω²Kn+2 x = sym (Kn→ΩKn+10ₖ _) ∙∙ cong (Kn→ΩKn+1 _) x ∙∙ Kn→ΩKn+10ₖ _ ΩKn+1→Ω²Kn+2' : {k : ℕ} → Kn→ΩKn+1 k (0ₖ k) ≡ Kn→ΩKn+1 k (0ₖ k) → typ ((Ω^ 2) (coHomK-ptd (suc k))) ΩKn+1→Ω²Kn+2' p = sym (Kn→ΩKn+10ₖ _) ∙∙ p ∙∙ Kn→ΩKn+10ₖ _ Kn→Ω²Kn+2 : {k : ℕ} → coHomK k → typ ((Ω^ 2) (coHomK-ptd (2 + k))) Kn→Ω²Kn+2 x = ΩKn+1→Ω²Kn+2 (Kn→ΩKn+1 _ x) -- Definition of of -ₖ'ⁿ̇*ᵐ -- This definition is introduced to facilite the proofs -ₖ'-helper : {k : ℕ} (n m : ℕ) → isEvenT n ⊎ isOddT n → isEvenT m ⊎ isOddT m → coHomKType k → coHomKType k -ₖ'-helper {k = zero} n m (inl x₁) q x = x -ₖ'-helper {k = zero} n m (inr x₁) (inl x₂) x = x -ₖ'-helper {k = zero} n m (inr x₁) (inr x₂) x = 0 - x -ₖ'-helper {k = suc zero} n m p q base = base -ₖ'-helper {k = suc zero} n m (inl x) q (loop i) = loop i -ₖ'-helper {k = suc zero} n m (inr x) (inl x₁) (loop i) = loop i -ₖ'-helper {k = suc zero} n m (inr x) (inr x₁) (loop i) = loop (~ i) -ₖ'-helper {k = suc (suc k)} n m p q north = north -ₖ'-helper {k = suc (suc k)} n m p q south = north -ₖ'-helper {k = suc (suc k)} n m (inl x) q (merid a i) = (merid a ∙ sym (merid (ptSn (suc k)))) i -ₖ'-helper {k = suc (suc k)} n m (inr x) (inl x₁) (merid a i) = (merid a ∙ sym (merid (ptSn (suc k)))) i -ₖ'-helper {k = suc (suc k)} n m (inr x) (inr x₁) (merid a i) = (merid a ∙ sym (merid (ptSn (suc k)))) (~ i) -ₖ'-gen : {k : ℕ} (n m : ℕ) (p : isEvenT n ⊎ isOddT n) (q : isEvenT m ⊎ isOddT m) → coHomK k → coHomK k -ₖ'-gen {k = zero} = -ₖ'-helper {k = zero} -ₖ'-gen {k = suc k} n m p q = T.map (-ₖ'-helper {k = suc k} n m p q) -- -ₖ'ⁿ̇*ᵐ -ₖ'^_·_ : {k : ℕ} (n m : ℕ) → coHomK k → coHomK k -ₖ'^_·_ {k = k} n m = -ₖ'-gen n m (evenOrOdd n) (evenOrOdd m) -- cohomology version -ₕ'^_·_ : {k : ℕ} {A : Type ℓ} (n m : ℕ) → coHom k A → coHom k A -ₕ'^_·_ n m = ST.map λ f x → (-ₖ'^ n · m) (f x) -- -ₖ'ⁿ̇*ᵐ = -ₖ' for n m odd -ₖ'-gen-inr≡-ₖ' : {k : ℕ} (n m : ℕ) (p : _) (q : _) (x : coHomK k) → -ₖ'-gen n m (inr p) (inr q) x ≡ (-ₖ x) -ₖ'-gen-inr≡-ₖ' {k = zero} n m p q _ = refl -ₖ'-gen-inr≡-ₖ' {k = suc zero} n m p q = T.elim ((λ _ → isOfHLevelTruncPath)) λ { base → refl ; (loop i) → refl} -ₖ'-gen-inr≡-ₖ' {k = suc (suc k)} n m p q = T.elim ((λ _ → isOfHLevelTruncPath)) λ { north → refl ; south → refl ; (merid a i) k → ∣ symDistr (merid (ptSn _)) (sym (merid a)) (~ k) (~ i) ∣ₕ} -- -ₖ'ⁿ̇*ᵐ x = x for n even -ₖ'-gen-inl-left : {k : ℕ} (n m : ℕ) (p : _) (q : _) (x : coHomK k) → -ₖ'-gen n m (inl p) q x ≡ x -ₖ'-gen-inl-left {k = zero} n m p q x = refl -ₖ'-gen-inl-left {k = suc zero} n m p q = T.elim (λ _ → isOfHLevelTruncPath) λ { base → refl ; (loop i) → refl} -ₖ'-gen-inl-left {k = suc (suc k)} n m p q = T.elim (λ _ → isOfHLevelPath (4 + k) (isOfHLevelTrunc (4 + k)) _ _) λ { north → refl ; south → cong ∣_∣ₕ (merid (ptSn _)) ; (merid a i) k → ∣ compPath-filler (merid a) (sym (merid (ptSn _))) (~ k) i ∣ₕ} -- -ₖ'ⁿ̇*ᵐ x = x for m even -ₖ'-gen-inl-right : {k : ℕ} (n m : ℕ) (p : _) (q : _) (x : coHomK k) → -ₖ'-gen n m p (inl q) x ≡ x -ₖ'-gen-inl-right {k = zero} n m (inl x₁) q x = refl -ₖ'-gen-inl-right {k = zero} n m (inr x₁) q x = refl -ₖ'-gen-inl-right {k = suc zero} n m (inl x₁) q = T.elim (λ _ → isOfHLevelTruncPath) λ { base → refl ; (loop i) → refl} -ₖ'-gen-inl-right {k = suc zero} n m (inr x₁) q = T.elim (λ _ → isOfHLevelTruncPath) λ { base → refl ; (loop i) → refl} -ₖ'-gen-inl-right {k = suc (suc k)} n m (inl x₁) q = T.elim (λ _ → isOfHLevelTruncPath) λ { north → refl ; south → cong ∣_∣ₕ (merid (ptSn _)) ; (merid a i) k → ∣ compPath-filler (merid a) (sym (merid (ptSn _))) (~ k) i ∣ₕ} -ₖ'-gen-inl-right {k = suc (suc k)} n m (inr x₁) q = T.elim (λ _ → isOfHLevelTruncPath) λ { north → refl ; south → cong ∣_∣ₕ (merid (ptSn _)) ; (merid a i) k → ∣ compPath-filler (merid a) (sym (merid (ptSn _))) (~ k) i ∣ₕ} -ₖ'-gen² : {k : ℕ} (n m : ℕ) (p : isEvenT n ⊎ isOddT n) (q : isEvenT m ⊎ isOddT m) → (x : coHomK k) → -ₖ'-gen n m p q (-ₖ'-gen n m p q x) ≡ x -ₖ'-gen² {k = zero} n m (inl x₁) q x = refl -ₖ'-gen² {k = zero} n m (inr x₁) (inl x₂) x = refl -ₖ'-gen² {k = zero} n m (inr x₁) (inr x₂) x = cong (pos 0 -_) (-AntiComm (pos 0) x) ∙∙ -AntiComm (pos 0) (-ℤ (x - pos 0)) ∙∙ h x where h : (x : _) → -ℤ (-ℤ (x - pos 0) - pos 0) ≡ x h (pos zero) = refl h (pos (suc n)) = refl h (negsuc n) = refl -ₖ'-gen² {k = suc k} n m (inl x₁) q x i = -ₖ'-gen-inl-left n m x₁ q (-ₖ'-gen-inl-left n m x₁ q x i) i -ₖ'-gen² {k = suc k} n m (inr x₁) (inl x₂) x i = -ₖ'-gen-inl-right n m (inr x₁) x₂ (-ₖ'-gen-inl-right n m (inr x₁) x₂ x i) i -ₖ'-gen² {k = suc k} n m (inr x₁) (inr x₂) x = (λ i → -ₖ'-gen-inr≡-ₖ' n m x₁ x₂ (-ₖ'-gen-inr≡-ₖ' n m x₁ x₂ x i) i) ∙ -ₖ^2 x -ₖ'-genIso : {k : ℕ} (n m : ℕ) (p : isEvenT n ⊎ isOddT n) (q : isEvenT m ⊎ isOddT m) → Iso (coHomK k) (coHomK k) Iso.fun (-ₖ'-genIso {k = k} n m p q) = -ₖ'-gen n m p q Iso.inv (-ₖ'-genIso {k = k} n m p q) = -ₖ'-gen n m p q Iso.rightInv (-ₖ'-genIso {k = k} n m p q) = -ₖ'-gen² n m p q Iso.leftInv (-ₖ'-genIso {k = k} n m p q) = -ₖ'-gen² n m p q -- action of cong on -ₖ'ⁿ̇*ᵐ cong-ₖ'-gen-inr : {k : ℕ} (n m : ℕ) (p : _) (q : _) (P : Path (coHomK (2 + k)) (0ₖ _) (0ₖ _)) → cong (-ₖ'-gen n m (inr p) (inr q)) P ≡ sym P cong-ₖ'-gen-inr {k = k} n m p q P = code≡sym (0ₖ _) P where code : (x : coHomK (2 + k)) → 0ₖ _ ≡ x → x ≡ 0ₖ _ code = T.elim (λ _ → isOfHLevelΠ (4 + k) λ _ → isOfHLevelTruncPath) λ { north → cong (-ₖ'-gen n m (inr p) (inr q)) ; south P → cong ∣_∣ₕ (sym (merid (ptSn _))) ∙ (cong (-ₖ'-gen n m (inr p) (inr q)) P) ; (merid a i) → t a i} where t : (a : S₊ (suc k)) → PathP (λ i → 0ₖ (2 + k) ≡ ∣ merid a i ∣ₕ → ∣ merid a i ∣ₕ ≡ 0ₖ (2 + k)) (cong (-ₖ'-gen n m (inr p) (inr q))) (λ P → cong ∣_∣ₕ (sym (merid (ptSn _))) ∙ (cong (-ₖ'-gen n m (inr p) (inr q)) P)) t a = toPathP (funExt λ P → cong (transport (λ i → ∣ merid a i ∣ ≡ 0ₖ (suc (suc k)))) (cong (cong (-ₖ'-gen n m (inr p) (inr q))) (λ i → (transp (λ j → 0ₖ (suc (suc k)) ≡ ∣ merid a (~ j ∧ ~ i) ∣) i (compPath-filler P (λ j → ∣ merid a (~ j) ∣ₕ) i)))) ∙∙ cong (transport (λ i → ∣ merid a i ∣ ≡ 0ₖ (suc (suc k)))) (congFunct (-ₖ'-gen n m (inr p) (inr q)) P (sym (cong ∣_∣ₕ (merid a)))) ∙∙ (λ j → transp (λ i → ∣ merid a (i ∨ j) ∣ ≡ 0ₖ (suc (suc k))) j (compPath-filler' (cong ∣_∣ₕ (sym (merid a))) (cong (-ₖ'-gen n m (inr p) (inr q)) P ∙ cong (-ₖ'-gen n m (inr p) (inr q)) (sym (cong ∣_∣ₕ (merid a)))) j)) ∙∙ (λ i → sym (cong ∣_∣ₕ (merid a)) ∙ isCommΩK (2 + k) (cong (-ₖ'-gen n m (inr p) (inr q)) P) (cong (-ₖ'-gen n m (inr p) (inr q)) (sym (cong ∣_∣ₕ (merid a)))) i) ∙∙ (λ j → (λ i → ∣ merid a (~ i ∨ j) ∣) ∙ (cong ∣_∣ₕ (compPath-filler' (merid a) (sym (merid (ptSn _))) (~ j)) ∙ (λ i → -ₖ'-gen n m (inr p) (inr q) (P i)))) ∙ sym (lUnit _)) code≡sym : (x : coHomK (2 + k)) → (p : 0ₖ _ ≡ x) → code x p ≡ sym p code≡sym x = J (λ x p → code x p ≡ sym p) refl cong-cong-ₖ'-gen-inr : {k : ℕ} (n m : ℕ) (p : _) (q : _) (P : Square (refl {x = 0ₖ (suc (suc k))}) refl refl refl) → cong (cong (-ₖ'-gen n m (inr p) (inr q))) P ≡ sym P cong-cong-ₖ'-gen-inr n m p q P = rUnit _ ∙∙ (λ k → (λ i → cong-ₖ'-gen-inr n m p q refl (i ∧ k)) ∙∙ (λ i → cong-ₖ'-gen-inr n m p q (P i) k) ∙∙ λ i → cong-ₖ'-gen-inr n m p q refl (~ i ∧ k)) ∙∙ (λ k → transportRefl refl k ∙∙ cong sym P ∙∙ transportRefl refl k) ∙∙ sym (rUnit (cong sym P)) ∙∙ sym (sym≡cong-sym P) Kn→ΩKn+1-ₖ'' : {k : ℕ} (n m : ℕ) (p : _) (q : _) (x : coHomK k) → Kn→ΩKn+1 k (-ₖ'-gen n m (inr p) (inr q) x) ≡ sym (Kn→ΩKn+1 k x) Kn→ΩKn+1-ₖ'' n m p q x = cong (Kn→ΩKn+1 _) (-ₖ'-gen-inr≡-ₖ' n m p q x) ∙ Kn→ΩKn+1-ₖ _ x transpΩ² : {n m : ℕ} (p q : n ≡ m) → (P : _) → transport (λ i → refl {x = 0ₖ (p i)} ≡ refl {x = 0ₖ (p i)}) P ≡ transport (λ i → refl {x = 0ₖ (q i)} ≡ refl {x = 0ₖ (q i)}) P transpΩ² p q P k = subst (λ n → refl {x = 0ₖ n} ≡ refl {x = 0ₖ n}) (isSetℕ _ _ p q k) P -- Some technical lemmas about Kn→Ω²Kn+2 and its interaction with -ₖ'ⁿ̇*ᵐ and transports -- TODO : Check if this can be cleaned up more by having more general lemmas private lem₁ : (n : ℕ) (a : _) → (cong (cong (subst coHomK (+'-comm (suc zero) (suc (suc n))))) (Kn→Ω²Kn+2 ∣ a ∣ₕ)) ≡ ΩKn+1→Ω²Kn+2 (sym (transp0₁ n) ∙∙ cong (subst coHomK (+'-comm (suc zero) (suc n))) (Kn→ΩKn+1 (suc n) ∣ a ∣ₕ) ∙∙ transp0₁ n) lem₁ zero a = (λ k i j → transportRefl (Kn→Ω²Kn+2 ∣ a ∣ₕ i j) k) ∙ cong ΩKn+1→Ω²Kn+2 λ k → rUnit (λ i → transportRefl (Kn→ΩKn+1 1 ∣ a ∣ i) (~ k)) k lem₁ (suc n) a = (λ k → transp (λ i → refl {x = 0ₖ (+'-comm 1 (suc (suc (suc n))) (i ∨ ~ k))} ≡ refl {x = 0ₖ (+'-comm 1 (suc (suc (suc n))) (i ∨ ~ k))}) (~ k) (λ i j → transp (λ i → coHomK (+'-comm 1 (suc (suc (suc n))) (i ∧ ~ k))) k (Kn→Ω²Kn+2 ∣ a ∣ₕ i j))) ∙∙ transpΩ² (+'-comm 1 (suc (suc (suc n)))) (cong suc (+'-comm (suc zero) (suc (suc n)))) (Kn→Ω²Kn+2 ∣ a ∣ₕ) ∙∙ sym (natTranspLem {A = λ n → 0ₖ n ≡ 0ₖ n} (Kn→ΩKn+1 (suc (suc n)) ∣ a ∣) (λ _ → ΩKn+1→Ω²Kn+2) (+'-comm 1 (suc (suc n)))) ∙∙ cong ΩKn+1→Ω²Kn+2 (λ k → transp (λ i → 0ₖ (+'-comm (suc zero) (suc (suc n)) (i ∨ k)) ≡ 0ₖ (+'-comm (suc zero) (suc (suc n)) (i ∨ k))) k (λ i → transp (λ i → coHomK (+'-comm (suc zero) (suc (suc n)) (i ∧ k))) (~ k) (Kn→ΩKn+1 _ ∣ a ∣ₕ i))) ∙∙ cong ΩKn+1→Ω²Kn+2 (rUnit (cong (subst coHomK (+'-comm (suc zero) (suc (suc n)))) (Kn→ΩKn+1 (suc (suc n)) ∣ a ∣ₕ))) lem₂ : (n : ℕ) (a : _) (p : _) (q : _) → (cong (cong (-ₖ'-gen (suc (suc n)) (suc zero) p q ∘ (subst coHomK (+'-comm 1 (suc (suc n)))))) (Kn→Ω²Kn+2 (∣ a ∣ₕ))) ≡ ΩKn+1→Ω²Kn+2 (sym (transp0₁ n) ∙∙ cong (subst coHomK (+'-comm (suc zero) (suc n))) (cong (-ₖ'-gen (suc (suc n)) (suc zero) p q) (Kn→ΩKn+1 (suc n) ∣ a ∣ₕ)) ∙∙ transp0₁ n) lem₂ n a (inl x) (inr y) = (λ k i j → (-ₖ'-gen-inl-left (suc (suc n)) 1 x (inr y) ( subst coHomK (+'-comm 1 (suc (suc n))) (Kn→Ω²Kn+2 ∣ a ∣ₕ i j))) k) ∙∙ lem₁ n a ∙∙ cong ΩKn+1→Ω²Kn+2 (cong (sym (transp0₁ n) ∙∙_∙∙ transp0₁ n) λ k i → subst coHomK (+'-comm 1 (suc n)) (-ₖ'-gen-inl-left (suc (suc n)) 1 x (inr y) (Kn→ΩKn+1 (suc n) ∣ a ∣ i) (~ k))) lem₂ n a (inr x) (inr y) = cong-cong-ₖ'-gen-inr (suc (suc n)) 1 x y (cong (cong (subst coHomK (+'-comm 1 (suc (suc n))))) (Kn→Ω²Kn+2 ∣ a ∣ₕ)) ∙∙ cong sym (lem₁ n a) ∙∙ λ k → ΩKn+1→Ω²Kn+2 (sym (transp0₁ n) ∙∙ cong (subst coHomK (+'-comm 1 (suc n))) (cong-ₖ'-gen-inr (suc (suc n)) 1 x y (Kn→ΩKn+1 (suc n) ∣ a ∣) (~ k)) ∙∙ transp0₁ n) lem₃ : (n m : ℕ) (q : _) (p : isEvenT (suc (suc n)) ⊎ isOddT (suc (suc n))) (x : _) → (((sym (cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n)) ∙∙ (λ j → -ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q (subst coHomK (+'-comm (suc (suc m)) (suc n)) (Kn→ΩKn+1 _ x j))) ∙∙ cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n)))) ≡ (Kn→ΩKn+1 _ (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q (subst coHomK (cong suc (+-comm (suc m) n)) x))) lem₃ n m q p x = sym (cong-∙∙ (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (sym (transp0₂ m n)) (λ j → subst coHomK (+'-comm (suc (suc m)) (suc n)) (Kn→ΩKn+1 _ x j)) (transp0₂ m n)) ∙ h n m p q x where help : (n m : ℕ) (x : _) → ((sym (transp0₂ m n)) ∙∙ (λ j → subst coHomK (+'-comm (suc (suc m)) (suc n)) (Kn→ΩKn+1 (suc (suc (m + n))) x j)) ∙∙ transp0₂ m n) ≡ Kn→ΩKn+1 (suc (n + suc m)) (subst coHomK (cong suc (+-comm (suc m) n)) x) help zero m x = sym (rUnit _) ∙∙ (λ k i → transp (λ i → coHomK (+'-comm (suc (suc m)) 1 (i ∨ k))) k (Kn→ΩKn+1 _ (transp (λ i → coHomK (predℕ (+'-comm (suc (suc m)) 1 (i ∧ k)))) (~ k) x) i)) ∙∙ cong (Kn→ΩKn+1 _) λ k → subst coHomK (isSetℕ _ _ (cong predℕ (+'-comm (suc (suc m)) 1)) (cong suc (+-comm (suc m) zero)) k) x help (suc n) m x = sym (rUnit _) ∙∙ ((λ k i → transp (λ i → coHomK (+'-comm (suc (suc m)) (suc (suc n)) (i ∨ k))) k (Kn→ΩKn+1 _ (transp (λ i → coHomK (predℕ (+'-comm (suc (suc m)) (suc (suc n)) (i ∧ k)))) (~ k) x) i))) ∙∙ cong (Kn→ΩKn+1 _) (λ k → subst coHomK (isSetℕ _ _ (cong predℕ (+'-comm (suc (suc m)) (suc (suc n)))) (cong suc (+-comm (suc m) (suc n))) k) x) h : (n m : ℕ) (p : isEvenT (suc (suc n)) ⊎ isOddT (suc (suc n))) (q : _) (x : _) → cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (sym (transp0₂ m n) ∙∙ (λ j → subst coHomK (+'-comm (suc (suc m)) (suc n)) (Kn→ΩKn+1 (suc (suc (m + n))) x j)) ∙∙ transp0₂ m n) ≡ Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q (subst coHomK (cong suc (+-comm (suc m) n)) x)) h n m (inl p) (inl q) x = (λ k → cong (-ₖ'-gen (suc n) (suc (suc m)) (isPropEvenOrOdd (suc n) (evenOrOdd (suc n)) (inr p) k) (inl q)) (help n m x k)) ∙∙ ((λ k i → -ₖ'-gen-inl-right (suc n) (suc (suc m)) (inr p) q (help n m x i1 i) k)) ∙∙ λ i → Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen-inl-right (suc n) (suc (suc m)) (isPropEvenOrOdd (suc n) (inr p) (evenOrOdd (suc n)) i) q (subst coHomK (cong suc (+-comm (suc m) n)) x) (~ i)) h n m (inl p) (inr q) x = (λ k → cong (-ₖ'-gen (suc n) (suc (suc m)) (isPropEvenOrOdd (suc n) (evenOrOdd (suc n)) (inr p) k) (inr q)) (help n m x k)) ∙∙ cong-ₖ'-gen-inr (suc n) (suc (suc m)) p q (help n m x i1) ∙∙ sym (Kn→ΩKn+1-ₖ'' (suc n) (suc (suc m)) p q (subst coHomK (λ i → suc (+-comm (suc m) n i)) x)) ∙ λ k → Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen (suc n) (suc (suc m)) (isPropEvenOrOdd (suc n) (inr p) (evenOrOdd (suc n)) k) (inr q) (subst coHomK (cong suc (+-comm (suc m) n)) x)) h n m (inr p) (inl q) x = (λ k → cong (-ₖ'-gen (suc n) (suc (suc m)) (isPropEvenOrOdd (suc n) (evenOrOdd (suc n)) (inl p) k) (inl q)) (help n m x k)) ∙∙ (λ k i → -ₖ'-gen-inl-left (suc n) (suc (suc m)) p (inl q) (help n m x i1 i) k) ∙∙ λ k → Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen-inl-right (suc n) (suc (suc m)) (evenOrOdd (suc n)) q (subst coHomK (cong suc (+-comm (suc m) n)) x) (~ k)) h n m (inr p) (inr q) x = (λ k → cong (-ₖ'-gen (suc n) (suc (suc m)) (isPropEvenOrOdd (suc n) (evenOrOdd (suc n)) (inl p) k) (inr q)) (help n m x k)) ∙∙ (λ k i → -ₖ'-gen-inl-left (suc n) (suc (suc m)) p (inr q) (help n m x i1 i) k) ∙∙ cong (Kn→ΩKn+1 (suc (n + suc m))) (sym (-ₖ'-gen-inl-left (suc n) (suc (suc m)) p (inr q) (subst coHomK (λ i → suc (+-comm (suc m) n i)) x))) ∙ λ k → Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen (suc n) (suc (suc m)) (isPropEvenOrOdd (suc n) (inl p) (evenOrOdd (suc n)) k) (inr q) (subst coHomK (cong suc (+-comm (suc m) n)) x)) lem₄ : (n m : ℕ) (q : _) (p : isEvenT (suc (suc n)) ⊎ isOddT (suc (suc n))) (a : _) (b : _) → cong (Kn→ΩKn+1 _) (((sym (cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n)) ∙∙ (λ j → -ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q (subst coHomK (+'-comm (suc (suc m)) (suc n)) (_⌣ₖ_ {n = suc (suc m)} {m = (suc n)} ∣ merid b j ∣ₕ ∣ a ∣))) ∙∙ cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n)))) ≡ cong (Kn→ΩKn+1 _) (Kn→ΩKn+1 _ (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q (subst coHomK (cong suc (+-comm (suc m) n)) (_⌣ₖ_ {n = suc m} {m = (suc n)} ∣ b ∣ₕ ∣ a ∣)))) lem₄ n m q p a b = cong (cong (Kn→ΩKn+1 _)) (lem₃ n m q p (_⌣ₖ_ {n = suc m} {m = (suc n)} ∣ b ∣ₕ ∣ a ∣)) lem₅ : (n m : ℕ) (p : _) (q : _) (a : _) (b : _) → cong (cong (-ₖ'-gen (suc (suc n)) (suc (suc m)) p q ∘ (subst coHomK (+'-comm (suc (suc m)) (suc (suc n)))))) (ΩKn+1→Ω²Kn+2 (sym (cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (transp0₂ n m)) ∙∙ (λ i → -ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (subst coHomK (+'-comm (suc (suc n)) (suc m)) (_⌣ₖ_ {n = suc (suc n)} {m = suc m} ∣ merid a i ∣ₕ ∣ b ∣ₕ))) ∙∙ cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (transp0₂ n m))) ≡ Kn→Ω²Kn+2 (-ₖ'-gen (suc (suc n)) (suc (suc m)) p q (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (subst coHomK (cong suc (sym (+-suc n m))) (_⌣ₖ_ {n = suc n} {m = suc m} ∣ a ∣ₕ ∣ b ∣ₕ)))) lem₅ n m p q a b = cong (cong (cong (-ₖ'-gen (suc (suc n)) (suc (suc m)) p q ∘ (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))))))) (cong (sym (Kn→ΩKn+10ₖ _) ∙∙_∙∙ Kn→ΩKn+10ₖ _) (lem₄ m n p q b a)) ∙ help p q (_⌣ₖ_ {n = suc n} {m = suc m} ∣ a ∣ ∣ b ∣) where annoying : (x : _) → cong (cong (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))))) (Kn→Ω²Kn+2 (subst coHomK (cong suc (+-comm (suc n) m)) x)) ≡ Kn→Ω²Kn+2 (subst coHomK (cong suc (sym (+-suc n m))) x) annoying x = ((λ k → transp (λ i → refl {x = 0ₖ ((+'-comm (suc (suc m)) (suc (suc n))) (i ∨ ~ k))} ≡ refl {x = 0ₖ ((+'-comm (suc (suc m)) (suc (suc n))) (i ∨ ~ k))}) (~ k) λ i j → transp (λ i → coHomK (+'-comm (suc (suc m)) (suc (suc n)) (i ∧ ~ k))) k (Kn→Ω²Kn+2 (subst coHomK (cong suc (+-comm (suc n) m)) x) i j))) ∙∙ cong (transport (λ i → refl {x = 0ₖ ((+'-comm (suc (suc m)) (suc (suc n))) i)} ≡ refl {x = 0ₖ ((+'-comm (suc (suc m)) (suc (suc n))) i)})) (natTranspLem {A = coHomK} x (λ _ → Kn→Ω²Kn+2) (cong suc (+-comm (suc n) m))) ∙∙ sym (substComposite (λ n → refl {x = 0ₖ n} ≡ refl {x = 0ₖ n}) (cong (suc ∘ suc ∘ suc) (+-comm (suc n) m)) (+'-comm (suc (suc m)) (suc (suc n))) (Kn→Ω²Kn+2 x)) ∙∙ (λ k → subst (λ n → refl {x = 0ₖ n} ≡ refl {x = 0ₖ n}) (isSetℕ _ _ (cong (suc ∘ suc ∘ suc) (+-comm (suc n) m) ∙ (+'-comm (suc (suc m)) (suc (suc n)))) (cong (suc ∘ suc ∘ suc) (sym (+-suc n m))) k) (Kn→Ω²Kn+2 x)) ∙∙ sym (natTranspLem {A = coHomK} x (λ _ → Kn→Ω²Kn+2) (cong suc (sym (+-suc n m)))) help : (p : _) (q : _) (x : _) → cong (cong (-ₖ'-gen (suc (suc n)) (suc (suc m)) p q ∘ subst coHomK (+'-comm (suc (suc m)) (suc (suc n))))) (Kn→Ω²Kn+2 (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (subst coHomK (cong suc (+-comm (suc n) m)) x))) ≡ Kn→Ω²Kn+2 (-ₖ'-gen (suc (suc n)) (suc (suc m)) p q (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (subst coHomK (cong suc (sym (+-suc n m))) x))) help (inl x) (inl y) z = (λ k i j → -ₖ'-gen-inl-right (suc (suc n)) (suc (suc m)) (inl x) y (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))) ((ΩKn+1→Ω²Kn+2 (Kn→ΩKn+1 _ (-ₖ'-gen-inl-right (suc m) (suc (suc n)) (evenOrOdd (suc m)) x (subst coHomK (cong suc (+-comm (suc n) m)) z) k))) i j)) k) ∙∙ annoying z ∙∙ cong Kn→Ω²Kn+2 λ k → (-ₖ'-gen-inl-right (suc (suc n)) (suc (suc m)) (inl x) y (-ₖ'-gen-inl-right (suc m) (suc (suc n)) (evenOrOdd (suc m)) x (subst coHomK (cong suc (sym (+-suc n m))) z) (~ k)) (~ k)) help (inl x) (inr y) z = (λ k i j → -ₖ'-gen-inl-left (suc (suc n)) (suc (suc m)) x (inr y) (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))) (Kn→Ω²Kn+2 (-ₖ'-gen-inl-right (suc m) (suc (suc n)) (evenOrOdd (suc m)) x (subst coHomK (cong suc (+-comm (suc n) m)) z) k) i j)) k) ∙∙ annoying z ∙∙ cong Kn→Ω²Kn+2 (λ k → (-ₖ'-gen-inl-left (suc (suc n)) (suc (suc m)) x (inr y) (-ₖ'-gen-inl-right (suc m) (suc (suc n)) (evenOrOdd (suc m)) x (subst coHomK (cong suc (sym (+-suc n m))) z) (~ k)) (~ k))) help (inr x) (inl y) z = (λ k i j → -ₖ'-gen-inl-right (suc (suc n)) (suc (suc m)) (inr x) y (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))) (Kn→Ω²Kn+2 (-ₖ'-gen (suc m) (suc (suc n)) (isPropEvenOrOdd (suc m) (evenOrOdd (suc m)) (inr y) k) (inr x) (subst coHomK (cong suc (+-comm (suc n) m)) z)) i j)) k) ∙∙ cong (cong (cong (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))))) ∘ ΩKn+1→Ω²Kn+2) (Kn→ΩKn+1-ₖ'' (suc m) (suc (suc n)) y x (subst coHomK (cong suc (+-comm (suc n) m)) z)) ∙∙ cong sym (annoying z) ∙∙ cong ΩKn+1→Ω²Kn+2 (sym (Kn→ΩKn+1-ₖ'' (suc m) (suc (suc n)) y x (subst coHomK (cong suc (sym (+-suc n m))) z))) ∙∙ cong Kn→Ω²Kn+2 λ k → (-ₖ'-gen-inl-right (suc (suc n)) (suc (suc m)) (inr x) y (-ₖ'-gen (suc m) (suc (suc n)) (isPropEvenOrOdd (suc m) (evenOrOdd (suc m)) (inr y) (~ k)) (inr x) (subst coHomK (cong suc (sym (+-suc n m))) z)) (~ k)) help (inr x) (inr y) z = (λ k → cong-cong-ₖ'-gen-inr (suc (suc n)) (suc (suc m)) x y (λ i j → subst coHomK (+'-comm (suc (suc m)) (suc (suc n))) (Kn→Ω²Kn+2 (-ₖ'-gen (suc m) (suc (suc n)) (isPropEvenOrOdd (suc m) (evenOrOdd (suc m)) (inl y) k) (inr x) (subst coHomK (cong suc (+-comm (suc n) m)) z)) i j)) k) ∙∙ cong (sym ∘ cong (cong (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))))) ∘ Kn→Ω²Kn+2) (-ₖ'-gen-inl-left (suc m) (suc (suc n)) y (inr x) (subst coHomK (cong suc (+-comm (suc n) m)) z)) ∙∙ cong sym (annoying z) ∙∙ cong (sym ∘ Kn→Ω²Kn+2) (sym (-ₖ'-gen-inl-left (suc m) (suc (suc n)) y (inr x) (subst coHomK (cong suc (sym (+-suc n m))) z))) ∙∙ cong ΩKn+1→Ω²Kn+2 λ k → (Kn→ΩKn+1-ₖ'' (suc (suc n)) (suc (suc m)) x y (-ₖ'-gen (suc m) (suc (suc n)) ( isPropEvenOrOdd (suc m) (evenOrOdd (suc m)) (inl y) (~ k)) (inr x) (subst coHomK (cong suc (sym (+-suc n m))) z))) (~ k) lem₆ : (n m : ℕ) (p : _) (q : _) (a : _) (b : _) → flipSquare (Kn→Ω²Kn+2 (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q (subst coHomK (cong suc (+-comm (suc m) n)) (_⌣ₖ_ {n = suc m} {m = (suc n)} ∣ b ∣ₕ ∣ a ∣)))) ≡ Kn→Ω²Kn+2 (-ₖ'-gen (suc (suc n)) (suc (suc m)) p q (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (subst coHomK (cong suc (sym (+-suc n m))) (-ₖ'-gen (suc n) (suc m) (evenOrOdd (suc n)) (evenOrOdd (suc m)) (subst coHomK (+'-comm (suc m) (suc n)) (∣ b ∣ₕ ⌣ₖ ∣ a ∣ₕ)))))) lem₆ n m p q a b = sym (sym≡flipSquare (Kn→Ω²Kn+2 (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q (subst coHomK (cong suc (+-comm (suc m) n)) (_⌣ₖ_ {n = suc m} {m = (suc n)} ∣ b ∣ₕ ∣ a ∣))))) ∙ cong ΩKn+1→Ω²Kn+2 (help₁ (subst coHomK (cong suc (+-comm (suc m) n)) (_⌣ₖ_ {n = suc m} {m = (suc n)} ∣ b ∣ ∣ a ∣)) p q ∙ cong (Kn→ΩKn+1 _) (sym (help₂ (∣ b ∣ ⌣ₖ ∣ a ∣)))) where help₁ : (x : _) (p : _) (q : _) → sym (Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q x)) ≡ Kn→ΩKn+1 (suc (n + suc m)) ((-ₖ'-gen (suc (suc n)) (suc (suc m)) p q (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (-ₖ'-gen (suc n) (suc m) (evenOrOdd (suc n)) (evenOrOdd (suc m)) x)))) help₁ z (inl x) (inl y) = cong (λ x → sym (Kn→ΩKn+1 (suc (n + suc m)) x)) (-ₖ'-gen-inl-right (suc n) (suc (suc m)) (evenOrOdd (suc n)) y z) ∙∙ sym (Kn→ΩKn+1-ₖ'' (suc n) (suc m) x y z) ∙∙ λ k → Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen-inl-right (suc (suc n)) (suc (suc m)) (inl x) y (-ₖ'-gen-inl-right (suc m) (suc (suc n)) (evenOrOdd (suc m)) x (-ₖ'-gen (suc n) (suc m) (isPropEvenOrOdd (suc n) (inr x) (evenOrOdd (suc n)) k) (isPropEvenOrOdd (suc m) (inr y) (evenOrOdd (suc m)) k) z) (~ k)) (~ k)) help₁ z (inl x) (inr y) = (λ k → sym (Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen (suc n) (suc (suc m)) (isPropEvenOrOdd (suc n) (evenOrOdd (suc n)) (inr x) k) (inr y) z))) ∙∙ cong sym (Kn→ΩKn+1-ₖ'' (suc n) (suc (suc m)) x y z) ∙∙ cong (Kn→ΩKn+1 (suc (n + suc m))) (sym (-ₖ'-gen-inl-right (suc n) (suc m) (inr x) y z)) ∙ λ k → Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen-inl-left (suc (suc n)) (suc (suc m)) x (inr y) (-ₖ'-gen-inl-right (suc m) (suc (suc n)) (evenOrOdd (suc m)) x (-ₖ'-gen (suc n) (suc m) (isPropEvenOrOdd (suc n) (inr x) (evenOrOdd (suc n)) k) (isPropEvenOrOdd (suc m) (inl y) (evenOrOdd (suc m)) k) z) (~ k)) (~ k)) help₁ z (inr x) (inl y) = cong (λ x → sym (Kn→ΩKn+1 (suc (n + suc m)) x)) (-ₖ'-gen-inl-right (suc n) (suc (suc m)) (evenOrOdd (suc n)) y z) ∙∙ (λ k → Kn→ΩKn+1-ₖ'' (suc m) (suc (suc n)) y x (-ₖ'-gen-inl-left (suc n) (suc m) x (inr y) z (~ k)) (~ k)) ∙∙ λ k → Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen-inl-right (suc (suc n)) (suc (suc m)) (inr x) y (-ₖ'-gen (suc m) (suc (suc n)) (isPropEvenOrOdd (suc m) (inr y) (evenOrOdd (suc m)) k) (inr x) (-ₖ'-gen (suc n) (suc m) (isPropEvenOrOdd (suc n) (inl x) (evenOrOdd (suc n)) k) (isPropEvenOrOdd (suc m) (inr y) (evenOrOdd (suc m)) k) z)) (~ k)) help₁ z (inr x) (inr y) = ((λ k → sym (Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen (suc n) (suc (suc m)) (isPropEvenOrOdd (suc n) (evenOrOdd (suc n)) (inl x) k) (inr y) z)))) ∙∙ cong sym (cong (Kn→ΩKn+1 (suc (n + suc m))) (-ₖ'-gen-inl-left (suc n) (suc (suc m)) x (inr y) z)) ∙∙ (λ k → sym (Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen-inl-left (suc m) (suc (suc n)) y (inr x) (-ₖ'-gen-inl-right (suc n) (suc m) (inl x) y z (~ k)) (~ k)))) ∙ λ k → Kn→ΩKn+1-ₖ'' (suc (suc n)) (suc (suc m)) x y (-ₖ'-gen (suc m) (suc (suc n)) (isPropEvenOrOdd (suc m) (inl y) (evenOrOdd (suc m)) k) (inr x) (-ₖ'-gen (suc n) (suc m) (isPropEvenOrOdd (suc n) (inl x) (evenOrOdd (suc n)) k) (isPropEvenOrOdd (suc m) (inl y) (evenOrOdd (suc m)) k) z)) (~ k) help₂ : (x : _) → (-ₖ'-gen (suc (suc n)) (suc (suc m)) p q (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (subst coHomK (cong suc (sym (+-suc n m))) (-ₖ'-gen (suc n) (suc m) (evenOrOdd (suc n)) (evenOrOdd (suc m)) (subst coHomK (+'-comm (suc m) (suc n)) x))))) ≡ -ₖ'-gen (suc (suc n)) (suc (suc m)) p q (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (-ₖ'-gen (suc n) (suc m) (evenOrOdd (suc n)) (evenOrOdd (suc m)) (subst coHomK (cong suc (+-comm (suc m) n)) x))) help₂ x = (λ k → -ₖ'-gen (suc (suc n)) (suc (suc m)) p q (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (transp (λ i → coHomK ((cong suc (sym (+-suc n m))) (i ∨ k))) k (-ₖ'-gen (suc n) (suc m) (evenOrOdd (suc n)) (evenOrOdd (suc m)) (transp (λ i → coHomK ((cong suc (sym (+-suc n m))) (i ∧ k))) (~ k) (subst coHomK (+'-comm (suc m) (suc n)) x)))))) ∙ cong (-ₖ'-gen (suc (suc n)) (suc (suc m)) p q ∘ -ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p ∘ -ₖ'-gen (suc n) (suc m) (evenOrOdd (suc n)) (evenOrOdd (suc m))) (sym (substComposite coHomK (+'-comm (suc m) (suc n)) ((cong suc (sym (+-suc n m)))) x) ∙ λ k → subst coHomK (isSetℕ _ _ (+'-comm (suc m) (suc n) ∙ cong suc (sym (+-suc n m))) ((cong suc (+-comm (suc m) n))) k) x) lem₇ : (n : ℕ) (a : _) (p : _) (q : _) → ((λ i → Kn→ΩKn+1 _ (-ₖ'-gen (suc n) (suc zero) (evenOrOdd (suc n)) (inr tt) (transp0₁ n (~ i)))) ∙∙ (λ i j → Kn→ΩKn+1 _ (-ₖ'-gen (suc n) (suc zero) (evenOrOdd (suc n)) (inr tt) (subst coHomK (+'-comm (suc zero) (suc n)) (Kn→ΩKn+1 (suc n) ∣ a ∣ₕ i))) j) ∙∙ (λ i → Kn→ΩKn+1 _ (-ₖ'-gen (suc n) (suc zero) (evenOrOdd (suc n)) (inr tt) (transp0₁ n i)))) ≡ (cong (Kn→ΩKn+1 (suc (suc (n + zero)))) (sym (transp0₁ n) ∙∙ sym (cong (subst coHomK (+'-comm (suc zero) (suc n))) (cong (-ₖ'-gen (suc (suc n)) (suc zero) p q) (Kn→ΩKn+1 (suc n) ∣ a ∣ₕ))) ∙∙ transp0₁ n)) lem₇ zero a (inl x) (inr tt) = (λ k → rUnit ((cong (Kn→ΩKn+1 _) (cong-ₖ'-gen-inr (suc zero) (suc zero) tt tt (λ i → (subst coHomK (+'-comm (suc zero) (suc zero)) (Kn→ΩKn+1 (suc zero) ∣ a ∣ₕ i))) k))) (~ k)) ∙ λ k → ((cong (Kn→ΩKn+1 (suc (suc zero))) (rUnit (λ i → subst coHomK (+'-comm (suc zero) (suc zero)) (-ₖ'-gen-inl-left (suc (suc zero)) (suc zero) tt (inr tt) (Kn→ΩKn+1 (suc zero) ∣ a ∣ₕ (~ i)) (~ k))) k))) lem₇ (suc n) a (inl x) (inr tt) = ((λ k → rUnit (cong (Kn→ΩKn+1 _) (λ i → -ₖ'-gen (suc (suc n)) (suc zero) (isPropEvenOrOdd n (evenOrOdd (suc (suc n))) (inr x) k) (inr tt) (subst coHomK (+'-comm (suc zero) (suc (suc n))) (Kn→ΩKn+1 (suc (suc n)) ∣ a ∣ₕ i)))) (~ k))) ∙∙ (((λ k → ((cong (Kn→ΩKn+1 _) (cong-ₖ'-gen-inr (suc (suc n)) (suc zero) x tt (λ i → (subst coHomK (+'-comm (suc zero) (suc (suc n))) (Kn→ΩKn+1 (suc (suc n)) ∣ a ∣ₕ i))) k)))))) ∙∙ λ k → ((cong (Kn→ΩKn+1 (suc (suc (suc n + zero)))) (rUnit (λ i → subst coHomK (+'-comm (suc zero) (suc (suc n))) (-ₖ'-gen-inl-left (suc (suc (suc n))) (suc zero) x (inr tt) (Kn→ΩKn+1 (suc (suc n)) ∣ a ∣ₕ (~ i)) (~ k))) k))) lem₇ (suc n) a (inr x) (inr tt) = (λ k → rUnit (λ i j → Kn→ΩKn+1 _ (-ₖ'-gen (suc (suc n)) (suc zero) (isPropEvenOrOdd (suc (suc n)) (evenOrOdd (suc (suc n))) (inl x) k) (inr tt) (subst coHomK (+'-comm (suc zero) (suc (suc n))) (Kn→ΩKn+1 (suc (suc n)) ∣ a ∣ₕ i))) j) (~ k)) ∙∙ (λ k i j → Kn→ΩKn+1 _ (-ₖ'-gen-inl-left (suc (suc n)) (suc zero) x (inr tt) (subst coHomK (+'-comm (suc zero) (suc (suc n))) (Kn→ΩKn+1 (suc (suc n)) ∣ a ∣ₕ i)) k) j) ∙∙ λ k → cong (Kn→ΩKn+1 _) (rUnit (sym (cong (subst coHomK (+'-comm (suc zero) (suc (suc n)))) (cong-ₖ'-gen-inr (suc (suc (suc n))) (suc zero) x tt (Kn→ΩKn+1 (suc (suc n)) ∣ a ∣ₕ) (~ k)))) k) -- ∣ a ∣ ⌣ₖ ∣ b ∣ ≡ -ₖ'ⁿ*ᵐ (∣ b ∣ ⌣ₖ ∣ a ∣) for n ≥ 1, m = 1 gradedComm'-elimCase-left : (n : ℕ) (p : _) (q : _) (a : S₊ (suc n)) (b : S¹) → (_⌣ₖ_ {n = suc n} {m = (suc zero)} ∣ a ∣ₕ ∣ b ∣ₕ) ≡ (-ₖ'-gen (suc n) (suc zero) p q) (subst coHomK (+'-comm (suc zero) (suc n)) (_⌣ₖ_ {n = suc zero} {m = suc n} ∣ b ∣ₕ ∣ a ∣ₕ)) gradedComm'-elimCase-left zero (inr tt) (inr tt) a b = proof a b ∙ cong (-ₖ'-gen 1 1 (inr tt) (inr tt)) (sym (transportRefl ((_⌣ₖ_ {n = suc zero} {m = suc zero} ∣ b ∣ ∣ a ∣)))) where help : flipSquare (ΩKn+1→Ω²Kn+2' (λ j i → _⌣ₖ_ {n = suc zero} {m = suc zero} ∣ loop i ∣ₕ ∣ loop j ∣ₕ)) ≡ cong (cong (-ₖ'-gen 1 1 (inr tt) (inr tt))) (ΩKn+1→Ω²Kn+2' (λ i j → _⌣ₖ_ {n = suc zero} {m = suc zero} ∣ loop j ∣ₕ ∣ loop i ∣ₕ)) help = sym (sym≡flipSquare _) ∙ sym (cong-cong-ₖ'-gen-inr 1 1 tt tt (ΩKn+1→Ω²Kn+2' (λ i j → _⌣ₖ_ {n = suc zero} {m = suc zero} ∣ loop j ∣ ∣ loop i ∣))) proof : (a b : S¹) → _⌣ₖ_ {n = suc zero} {m = suc zero} ∣ a ∣ₕ ∣ b ∣ₕ ≡ -ₖ'-gen 1 1 (inr tt) (inr tt) (_⌣ₖ_ {n = suc zero} {m = suc zero} ∣ b ∣ ∣ a ∣) proof base base = refl proof base (loop i) k = -ₖ'-gen 1 1 (inr tt) (inr tt) (Kn→ΩKn+10ₖ _ (~ k) i) proof (loop i) base k = Kn→ΩKn+10ₖ _ k i proof (loop i) (loop j) k = hcomp (λ r → λ { (i = i0) → -ₖ'-gen 1 1 (inr tt) (inr tt) (Kn→ΩKn+10ₖ _ (~ k ∨ ~ r) j) ; (i = i1) → -ₖ'-gen 1 1 (inr tt) (inr tt) (Kn→ΩKn+10ₖ _ (~ k ∨ ~ r) j) ; (j = i0) → Kn→ΩKn+10ₖ _ (k ∨ ~ r) i ; (j = i1) → Kn→ΩKn+10ₖ _ (k ∨ ~ r) i ; (k = i0) → doubleCompPath-filler (sym (Kn→ΩKn+10ₖ _)) (λ j i → _⌣ₖ_ {n = suc zero} {m = suc zero} ∣ loop i ∣ₕ ∣ loop j ∣ₕ) (Kn→ΩKn+10ₖ _) (~ r) j i ; (k = i1) → (-ₖ'-gen 1 1 (inr tt) (inr tt) (doubleCompPath-filler (sym (Kn→ΩKn+10ₖ _)) (λ i j → _⌣ₖ_ {n = suc zero} {m = suc zero} ∣ loop j ∣ₕ ∣ loop i ∣ₕ) (Kn→ΩKn+10ₖ _) (~ r) i j))}) (help k i j) gradedComm'-elimCase-left (suc n) p q north b = cong (-ₖ'-gen (suc (suc n)) 1 p q ∘ (subst coHomK (+'-comm 1 (suc (suc n))))) (sym (⌣ₖ-0ₖ _ (suc (suc n)) ∣ b ∣ₕ)) gradedComm'-elimCase-left (suc n) p q south b = cong (-ₖ'-gen (suc (suc n)) 1 p q ∘ (subst coHomK (+'-comm 1 (suc (suc n))))) ((sym (⌣ₖ-0ₖ _ (suc (suc n)) ∣ b ∣ₕ)) ∙ λ i → ∣ b ∣ ⌣ₖ ∣ merid (ptSn (suc n)) i ∣ₕ) gradedComm'-elimCase-left (suc n) p q (merid a i) base k = hcomp (λ j → λ {(i = i0) → (-ₖ'-gen (suc (suc n)) 1 p q ∘ (subst coHomK (+'-comm 1 (suc (suc n))))) (0ₖ _) ; (i = i1) → (-ₖ'-gen (suc (suc n)) 1 p q ∘ (subst coHomK (+'-comm 1 (suc (suc n))))) (compPath-filler (sym (⌣ₖ-0ₖ _ (suc (suc n)) ∣ base ∣ₕ)) (λ i → ∣ base ∣ ⌣ₖ ∣ merid a i ∣ₕ) j k) ; (k = i0) → _⌣ₖ_ {n = suc (suc n)} {m = suc zero} ∣ merid a i ∣ₕ ∣ base ∣ₕ ; (k = i1) → -ₖ'-gen (suc (suc n)) 1 p q (subst coHomK (+'-comm 1 (suc (suc n))) (∣ base ∣ₕ ⌣ₖ ∣ merid a i ∣ₕ))}) (hcomp (λ j → λ {(i = i0) → ∣ north ∣ ; (i = i1) → ∣ north ∣ ; (k = i0) → (sym (Kn→ΩKn+10ₖ _) ∙ (λ j → Kn→ΩKn+1 _ (sym (gradedComm'-elimCase-left n (evenOrOdd (suc n)) (inr tt) a base ∙ cong (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt)) (transp0₁ n)) j))) j i ; (k = i1) → ∣ north ∣}) ∣ north ∣) gradedComm'-elimCase-left (suc n) p q (merid a i) (loop j) k = hcomp (λ r → λ { (i = i0) → (-ₖ'-gen (suc (suc n)) 1 p q ∘ (subst coHomK (+'-comm 1 (suc (suc n))))) (sym (⌣ₖ-0ₖ _ (suc (suc n)) ∣ (loop j) ∣ₕ) k) ; (i = i1) → (-ₖ'-gen (suc (suc n)) 1 p q ∘ (subst coHomK (+'-comm 1 (suc (suc n))))) (compPath-filler (sym (⌣ₖ-0ₖ _ (suc (suc n)) ∣ (loop j) ∣ₕ)) (λ i → ∣ loop j ∣ ⌣ₖ ∣ merid (ptSn (suc n)) i ∣ₕ) r k) ; (k = i0) → _⌣ₖ_ {n = suc (suc n)} {m = suc zero} ∣ merid a i ∣ₕ ∣ loop j ∣ₕ ; (k = i1) → -ₖ'-gen (suc (suc n)) 1 p q (subst coHomK (+'-comm 1 (suc (suc n))) (_⌣ₖ_ {n = suc zero} {m = suc (suc n)} ∣ loop j ∣ₕ ∣ compPath-filler (merid a) (sym (merid (ptSn (suc n)))) (~ r) i ∣ₕ))}) (hcomp (λ r → λ { (i = i0) → (-ₖ'-gen (suc (suc n)) 1 p q ∘ (subst coHomK (+'-comm 1 (suc (suc n))))) ∣ rCancel (merid (ptSn (suc (suc n)))) (~ k ∧ r) j ∣ ; (i = i1) → (-ₖ'-gen (suc (suc n)) 1 p q ∘ (subst coHomK (+'-comm 1 (suc (suc n))))) ∣ rCancel (merid (ptSn (suc (suc n)))) (~ k ∧ r) j ∣ ; (k = i0) → help₂ r i j ; (k = i1) → -ₖ'-gen (suc (suc n)) 1 p q (subst coHomK (+'-comm 1 (suc (suc n))) (_⌣ₖ_ {n = suc zero} {m = suc (suc n)} ∣ loop j ∣ₕ (Kn→ΩKn+1 _ ∣ a ∣ₕ i)))}) (-ₖ'-gen (suc (suc n)) 1 p q (subst coHomK (+'-comm 1 (suc (suc n))) (_⌣ₖ_ {n = suc zero} {m = suc (suc n)} ∣ loop j ∣ₕ (Kn→ΩKn+1 _ ∣ a ∣ₕ i))))) where P : Path _ (Kn→ΩKn+1 (suc (suc (n + 0))) (0ₖ _)) (Kn→ΩKn+1 (suc (suc (n + 0))) (_⌣ₖ_ {n = (suc n)} {m = suc zero} ∣ a ∣ ∣ base ∣)) P i = Kn→ΩKn+1 (suc (suc (n + 0))) ((sym (gradedComm'-elimCase-left n (evenOrOdd (suc n)) (inr tt) a base ∙ cong (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt)) (transp0₁ n)) i)) help₁ : (P ∙∙ ((λ i j → _⌣ₖ_ {n = suc (suc n)} {m = suc zero} ∣ merid a j ∣ₕ ∣ loop i ∣ₕ)) ∙∙ sym P) ≡ ((λ i → Kn→ΩKn+1 _ (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt) (transp0₁ n (~ i)))) ∙∙ (λ i j → Kn→ΩKn+1 _ (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt) (subst coHomK (+'-comm 1 (suc n)) (∣ loop i ∣ₕ ⌣ₖ ∣ a ∣ₕ))) j) ∙∙ (λ i → Kn→ΩKn+1 _ (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt) (transp0₁ n i)))) help₁ k i j = ((λ i → (Kn→ΩKn+1 (suc (suc (n + 0)))) (compPath-filler' ((gradedComm'-elimCase-left n (evenOrOdd (suc n)) (inr tt) a base)) (cong (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt)) (transp0₁ n)) (~ k) (~ i))) ∙∙ (λ i j → (Kn→ΩKn+1 _ (gradedComm'-elimCase-left n (evenOrOdd (suc n)) (inr tt) a (loop i) k) j)) ∙∙ λ i → (Kn→ΩKn+1 (suc (suc (n + 0)))) (compPath-filler' ((gradedComm'-elimCase-left n (evenOrOdd (suc n)) (inr tt) a base)) (cong (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt)) (transp0₁ n)) (~ k) i)) i j help₂ : I → I → I → coHomK _ help₂ r i j = hcomp (λ k → λ { (i = i0) → (-ₖ'-gen (suc (suc n)) 1 p q ∘ subst coHomK (+'-comm 1 (suc (suc n)))) ∣ rCancel (merid (ptSn (suc (suc n)))) (~ k ∨ r) j ∣ ; (i = i1) → (-ₖ'-gen (suc (suc n)) 1 p q ∘ subst coHomK (+'-comm 1 (suc (suc n)))) ∣ rCancel (merid (ptSn (suc (suc n)))) (~ k ∨ r) j ∣ ; (j = i0) → compPath-filler (sym (Kn→ΩKn+10ₖ (suc (suc (n + 0))))) P k r i ; (j = i1) → compPath-filler (sym (Kn→ΩKn+10ₖ (suc (suc (n + 0))))) P k r i ; (r = i0) → -ₖ'-gen (suc (suc n)) 1 p q (subst coHomK (+'-comm 1 (suc (suc n))) (doubleCompPath-filler (sym (Kn→ΩKn+10ₖ _)) (λ i j → _⌣ₖ_ {n = suc zero} {m = suc (suc n)} ∣ loop j ∣ₕ (Kn→ΩKn+1 (suc n) ∣ a ∣ₕ i)) (Kn→ΩKn+10ₖ _) (~ k) i j)) ; (r = i1) → doubleCompPath-filler P (λ i j → _⌣ₖ_ {n = suc (suc n)} {m = suc zero} ∣ merid a j ∣ₕ ∣ loop i ∣ₕ) (sym P) (~ k) j i}) (hcomp (λ k → λ { (i = i0) → ∣ north ∣ ; (i = i1) → ∣ north ∣ ; (j = i0) → (Kn→ΩKn+10ₖ (suc (suc (n + 0)))) (~ r) i ; (j = i1) → (Kn→ΩKn+10ₖ (suc (suc (n + 0)))) (~ r) i ; (r = i0) → lem₂ n a p q (~ k) i j ; (r = i1) → help₁ (~ k) j i}) (hcomp (λ k → λ { (i = i0) → ∣ north ∣ ; (i = i1) → ∣ north ∣ ; (j = i0) → Kn→ΩKn+10ₖ (suc (suc (n + 0))) (~ r) i ; (j = i1) → Kn→ΩKn+10ₖ (suc (suc (n + 0))) (~ r) i ; (r = i0) → flipSquare≡cong-sym (flipSquare (ΩKn+1→Ω²Kn+2 (sym (transp0₁ n) ∙∙ cong (subst coHomK (+'-comm 1 (suc n))) (cong (-ₖ'-gen (suc (suc n)) 1 p q) (Kn→ΩKn+1 (suc n) ∣ a ∣ₕ)) ∙∙ transp0₁ n))) (~ k) i j ; (r = i1) → ((λ i → Kn→ΩKn+1 _ (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt) (transp0₁ n (~ i)))) ∙∙ (λ i j → Kn→ΩKn+1 _ (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt) (subst coHomK (+'-comm 1 (suc n)) (Kn→ΩKn+1 (suc n) ∣ a ∣ₕ i))) j) ∙∙ (λ i → Kn→ΩKn+1 _ (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt) (transp0₁ n i)))) j i}) (hcomp (λ k → λ { (i = i0) → ∣ north ∣ ; (i = i1) → ∣ north ∣ ; (j = i0) → Kn→ΩKn+10ₖ (suc (suc (n + 0))) (~ r ∧ k) i ; (j = i1) → Kn→ΩKn+10ₖ (suc (suc (n + 0))) (~ r ∧ k) i ; (r = i0) → doubleCompPath-filler (sym (Kn→ΩKn+10ₖ _)) (cong (Kn→ΩKn+1 (suc (suc (n + 0)))) (sym (transp0₁ n) ∙∙ sym (cong (subst coHomK (+'-comm 1 (suc n))) (cong (-ₖ'-gen (suc (suc n)) 1 p q) (Kn→ΩKn+1 (suc n) ∣ a ∣ₕ))) ∙∙ transp0₁ n)) (Kn→ΩKn+10ₖ _) k j i ; (r = i1) → lem₇ n a p q (~ k) j i}) (lem₇ n a p q i1 j i)))) -- ∣ a ∣ ⌣ₖ ∣ b ∣ ≡ -ₖ'ⁿ*ᵐ (∣ b ∣ ⌣ₖ ∣ a ∣) for all n, m ≥ 1 gradedComm'-elimCase : (k n m : ℕ) (term : n + m ≡ k) (p : _) (q : _) (a : _) (b : _) → (_⌣ₖ_ {n = suc n} {m = (suc m)} ∣ a ∣ₕ ∣ b ∣ₕ) ≡ (-ₖ'-gen (suc n) (suc m) p q) (subst coHomK (+'-comm (suc m) (suc n)) (_⌣ₖ_ {n = suc m} {m = suc n} ∣ b ∣ₕ ∣ a ∣ₕ)) gradedComm'-elimCase k zero zero term p q a b = gradedComm'-elimCase-left zero p q a b gradedComm'-elimCase k zero (suc m) term (inr tt) q a b = help q ∙ sym (cong (-ₖ'-gen 1 (suc (suc m)) (inr tt) q ∘ (subst coHomK (+'-comm (suc (suc m)) 1))) (gradedComm'-elimCase-left (suc m) q (inr tt) b a)) where help : (q : _) → ∣ a ∣ₕ ⌣ₖ ∣ b ∣ₕ ≡ -ₖ'-gen 1 (suc (suc m)) (inr tt) q (subst coHomK (+'-comm (suc (suc m)) 1) (-ₖ'-gen (suc (suc m)) 1 q (inr tt) (subst coHomK (+'-comm 1 (suc (suc m))) (∣ a ∣ₕ ⌣ₖ ∣ b ∣ₕ)))) help (inl x) = (sym (transportRefl _) ∙ (λ i → subst coHomK (isSetℕ _ _ refl (+'-comm 1 (suc (suc m)) ∙ +'-comm (suc (suc m)) 1) i) (∣ a ∣ₕ ⌣ₖ ∣ b ∣ₕ))) ∙∙ substComposite coHomK (+'-comm 1 (suc (suc m))) (+'-comm (suc (suc m)) 1) ((∣ a ∣ₕ ⌣ₖ ∣ b ∣ₕ)) ∙∙ λ i → -ₖ'-gen-inl-right (suc zero) (suc (suc m)) (inr tt) x ((subst coHomK (+'-comm (suc (suc m)) 1) (-ₖ'-gen-inl-left (suc (suc m)) 1 x (inr tt) (subst coHomK (+'-comm 1 (suc (suc m))) (∣ a ∣ₕ ⌣ₖ ∣ b ∣ₕ)) (~ i)))) (~ i) help (inr x) = (sym (transportRefl _) ∙∙ (λ k → subst coHomK (isSetℕ _ _ refl (+'-comm 1 (suc (suc m)) ∙ +'-comm (suc (suc m)) 1) k) (∣ a ∣ₕ ⌣ₖ ∣ b ∣ₕ)) ∙∙ sym (-ₖ^2 (subst coHomK (+'-comm 1 (suc (suc m)) ∙ +'-comm (suc (suc m)) 1) (∣ a ∣ₕ ⌣ₖ ∣ b ∣ₕ)))) ∙∙ (λ i → -ₖ'-gen-inr≡-ₖ' 1 (suc (suc m)) tt x (-ₖ'-gen-inr≡-ₖ' (suc (suc m)) 1 x tt (substComposite coHomK (+'-comm 1 (suc (suc m))) (+'-comm (suc (suc m)) 1) (∣ a ∣ₕ ⌣ₖ ∣ b ∣ₕ) i) (~ i)) (~ i)) ∙∙ λ i → (-ₖ'-gen 1 (suc (suc m)) (inr tt) (inr x) (transp (λ j → coHomK ((+'-comm (suc (suc m)) 1) (j ∨ ~ i))) (~ i) (-ₖ'-gen (suc (suc m)) 1 (inr x) (inr tt) (transp (λ j → coHomK ((+'-comm (suc (suc m)) 1) (j ∧ ~ i))) i ((subst coHomK (+'-comm 1 (suc (suc m))) (∣ a ∣ₕ ⌣ₖ ∣ b ∣ₕ))))))) gradedComm'-elimCase k (suc n) zero term p q a b = gradedComm'-elimCase-left (suc n) p q a b gradedComm'-elimCase zero (suc n) (suc m) term p q a b = ⊥.rec (snotz (sym (+-suc n m) ∙ cong predℕ term)) gradedComm'-elimCase (suc zero) (suc n) (suc m) term p q a b = ⊥.rec (snotz (sym (+-suc n m) ∙ cong predℕ term)) gradedComm'-elimCase (suc (suc k)) (suc n) (suc m) term p q north north = refl gradedComm'-elimCase (suc (suc k)) (suc n) (suc m) term p q north south = refl gradedComm'-elimCase (suc (suc k)) (suc n) (suc m) term p q north (merid a i) r = -ₖ'-gen (suc (suc n)) (suc (suc m)) p q ( (subst coHomK (+'-comm (suc (suc m)) (suc (suc n)))) ((sym (Kn→ΩKn+10ₖ _) ∙ cong (Kn→ΩKn+1 _) (cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (sym (transp0₂ n m)) ∙ sym (gradedComm'-elimCase (suc k) m (suc n) (+-suc m n ∙ +-comm (suc m) n ∙ cong predℕ term) (evenOrOdd (suc m)) p a north))) r i)) gradedComm'-elimCase (suc (suc k)) (suc n) (suc m) term p q south north = refl gradedComm'-elimCase (suc (suc k)) (suc n) (suc m) term p q south south = refl gradedComm'-elimCase (suc (suc k)) (suc n) (suc m) term p q south (merid a i) r = -ₖ'-gen (suc (suc n)) (suc (suc m)) p q ( (subst coHomK (+'-comm (suc (suc m)) (suc (suc n)))) ((sym (Kn→ΩKn+10ₖ _) ∙ cong (Kn→ΩKn+1 _) (cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (sym (transp0₂ n m)) ∙ sym (gradedComm'-elimCase (suc k) m (suc n) (+-suc m n ∙ +-comm (suc m) n ∙ cong predℕ term) (evenOrOdd (suc m)) p a south))) r i)) gradedComm'-elimCase (suc (suc k)) (suc n) (suc m) term p q (merid a i) north r = (cong (Kn→ΩKn+1 (suc (suc (n + suc m)))) (gradedComm'-elimCase (suc k) n (suc m) (cong predℕ term) (evenOrOdd (suc n)) q a north ∙ cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n)) ∙' Kn→ΩKn+10ₖ _) r i gradedComm'-elimCase (suc (suc k)) (suc n) (suc m) term p q (merid a i) south r = (cong (Kn→ΩKn+1 (suc (suc (n + suc m)))) (gradedComm'-elimCase (suc k) n (suc m) (cong predℕ term) (evenOrOdd (suc n)) q a south ∙ cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n)) ∙' Kn→ΩKn+10ₖ _) r i gradedComm'-elimCase (suc (suc k)) (suc n) (suc m) term p q (merid a i) (merid b j) r = hcomp (λ l → λ { (i = i0) → -ₖ'-gen (suc (suc n)) (suc (suc m)) p q ( (subst coHomK (+'-comm (suc (suc m)) (suc (suc n)))) ((compPath-filler (sym (Kn→ΩKn+10ₖ _)) (cong (Kn→ΩKn+1 _) (cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (sym (transp0₂ n m)) ∙ sym (gradedComm'-elimCase (suc k) m (suc n) (+-suc m n ∙ +-comm (suc m) n ∙ cong predℕ term) (evenOrOdd (suc m)) p b north))) l r j))) ; (i = i1) → -ₖ'-gen (suc (suc n)) (suc (suc m)) p q ( (subst coHomK (+'-comm (suc (suc m)) (suc (suc n)))) ((compPath-filler (sym (Kn→ΩKn+10ₖ _)) (cong (Kn→ΩKn+1 _) (cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (sym (transp0₂ n m)) ∙ sym (gradedComm'-elimCase (suc k) m (suc n) (+-suc m n ∙ +-comm (suc m) n ∙ cong predℕ term) (evenOrOdd (suc m)) p b south))) l r j))) ; (r = i0) → help₂ l i j ; (r = i1) → -ₖ'-gen (suc (suc n)) (suc (suc m)) p q (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))) (help₁ l i j))}) (hcomp (λ l → λ { (i = i0) → -ₖ'-gen (suc (suc n)) (suc (suc m)) p q (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))) (Kn→ΩKn+10ₖ _ (~ r ∨ ~ l) j)) ; (i = i1) → -ₖ'-gen (suc (suc n)) (suc (suc m)) p q (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))) (Kn→ΩKn+10ₖ _ (~ r ∨ ~ l) j)) ; (j = i0) → Kn→ΩKn+10ₖ _ r i ; (j = i1) → Kn→ΩKn+10ₖ _ r i ; (r = i0) → lem₄ n m q p a b (~ l) j i ; (r = i1) → -ₖ'-gen (suc (suc n)) (suc (suc m)) p q (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))) (doubleCompPath-filler (sym (Kn→ΩKn+10ₖ _)) (λ i j → Kn→ΩKn+1 _ ((sym (cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (transp0₂ n m)) ∙∙ (λ i → -ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (subst coHomK (+'-comm (suc (suc n)) (suc m)) (_⌣ₖ_ {n = suc (suc n)} {m = suc m} ∣ merid a i ∣ₕ ∣ b ∣ₕ))) ∙∙ cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (transp0₂ n m)) i) j) (Kn→ΩKn+10ₖ _) (~ l) i j))}) (hcomp (λ l → λ { (i = i0) → ∣ north ∣ ; (i = i1) → ∣ north ∣ ; (j = i0) → Kn→ΩKn+10ₖ _ r i ; (j = i1) → Kn→ΩKn+10ₖ _ r i ; (r = i0) → lem₄ n m q p a b i1 j i ; (r = i1) → lem₅ n m p q a b (~ l) i j}) (hcomp (λ l → λ { (i = i0) → ∣ north ∣ ; (i = i1) → ∣ north ∣ ; (j = i0) → Kn→ΩKn+10ₖ _ (r ∨ ~ l) i ; (j = i1) → Kn→ΩKn+10ₖ _ (r ∨ ~ l) i ; (r = i0) → doubleCompPath-filler (sym (Kn→ΩKn+10ₖ _)) (lem₄ n m q p a b i1) (Kn→ΩKn+10ₖ _) (~ l) j i ; (r = i1) → Kn→Ω²Kn+2 (-ₖ'-gen (suc (suc n)) (suc (suc m)) p q (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (subst coHomK (cong suc (sym (+-suc n m))) (gradedComm'-elimCase k n m (+-comm n m ∙∙ cong predℕ (+-comm (suc m) n) ∙∙ cong (predℕ ∘ predℕ) term) (evenOrOdd (suc n)) (evenOrOdd (suc m)) a b (~ l))))) i j}) (lem₆ n m p q a b r i j)))) where help₁ : I → I → I → coHomK _ help₁ l i j = Kn→ΩKn+1 _ (hcomp (λ r → λ { (i = i0) → compPath-filler' (cong ((-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p)) (sym (transp0₂ n m))) (sym (gradedComm'-elimCase (suc k) m (suc n) (+-suc m n ∙ +-comm (suc m) n ∙ cong predℕ term) (evenOrOdd (suc m)) p b north)) r l ; (i = i1) → compPath-filler' (cong ((-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p)) (sym (transp0₂ n m))) (sym (gradedComm'-elimCase (suc k) m (suc n) (+-suc m n ∙ +-comm (suc m) n ∙ cong predℕ term) (evenOrOdd (suc m)) p b south)) r l ; (l = i0) → doubleCompPath-filler (sym (cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (transp0₂ n m))) (λ i → -ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (subst coHomK (+'-comm (suc (suc n)) (suc m)) (_⌣ₖ_ {n = suc (suc n)} {m = suc m} ∣ merid a i ∣ₕ ∣ b ∣ₕ))) (cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (transp0₂ n m)) r i ; (l = i1) → _⌣ₖ_ {n = suc m} {m = suc (suc n)} ∣ b ∣ₕ ∣ merid a i ∣ₕ}) (gradedComm'-elimCase (suc k) m (suc n) (+-suc m n ∙ +-comm (suc m) n ∙ cong predℕ term) (evenOrOdd (suc m)) p b (merid a i) (~ l))) j help₂ : I → I → I → coHomK _ help₂ l i j = hcomp (λ r → λ { (i = i0) → ∣ north ∣ ; (i = i1) → ∣ north ∣ ; (j = i0) → Kn→ΩKn+1 (suc (suc (n + suc m))) (compPath-filler (gradedComm'-elimCase (suc k) n (suc m) (cong predℕ term) (evenOrOdd (suc n)) q a north) (cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n)) r (~ l)) i ; (j = i1) → Kn→ΩKn+1 (suc (suc (n + suc m))) (compPath-filler (gradedComm'-elimCase (suc k) n (suc m) (cong predℕ term) (evenOrOdd (suc n)) q a south) (cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n)) r (~ l)) i ; (l = i0) → Kn→ΩKn+1 _ (doubleCompPath-filler (sym (cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n))) (λ j → -ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q (subst coHomK (+'-comm (suc (suc m)) (suc n)) (_⌣ₖ_ {n = suc (suc m)} {m = (suc n)} ∣ merid b j ∣ₕ ∣ a ∣))) (cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n)) r j) i ; (l = i1) → Kn→ΩKn+1 _ (_⌣ₖ_ {n = (suc n)} {m = suc (suc m)} ∣ a ∣ ∣ merid b j ∣ₕ) i}) (hcomp (λ r → λ { (i = i0) → ∣ north ∣ ; (i = i1) → ∣ north ∣ ; (j = i0) → Kn→ΩKn+1 (suc (suc (n + suc m))) (gradedComm'-elimCase (suc k) n (suc m) (cong predℕ term) (evenOrOdd (suc n)) q a north (~ l ∨ ~ r)) i ; (j = i1) → Kn→ΩKn+1 (suc (suc (n + suc m))) (gradedComm'-elimCase (suc k) n (suc m) (cong predℕ term) (evenOrOdd (suc n)) q a south (~ l ∨ ~ r)) i ; (l = i0) → Kn→ΩKn+1 (suc (suc (n + suc m))) (gradedComm'-elimCase (suc k) n (suc m) (cong predℕ term) (evenOrOdd (suc n)) q a (merid b j) i1) i ; (l = i1) → Kn→ΩKn+1 _ (gradedComm'-elimCase (suc k) n (suc m) (cong predℕ term) (evenOrOdd (suc n)) q a (merid b j) (~ r)) i}) (Kn→ΩKn+1 (suc (suc (n + suc m))) (gradedComm'-elimCase (suc k) n (suc m) (cong predℕ term) (evenOrOdd (suc n)) q a (merid b j) i1) i)) private coherence-transp : (n m : ℕ) (p : _) (q : _) → -ₖ'-gen (suc n) (suc m) p q (subst coHomK (+'-comm (suc m) (suc n)) (0ₖ (suc m +' suc n))) ≡ 0ₖ _ coherence-transp zero zero p q = refl coherence-transp zero (suc m) p q = refl coherence-transp (suc n) zero p q = refl coherence-transp (suc n) (suc m) p q = refl gradedComm'-⌣ₖ∙ : (n m : ℕ) (p : _) (q : _) (a : _) → ⌣ₖ∙ (suc n) (suc m) a ≡ ((λ b → -ₖ'-gen (suc n) (suc m) p q (subst coHomK (+'-comm (suc m) (suc n)) (b ⌣ₖ a))) , (cong (-ₖ'-gen (suc n) (suc m) p q) (cong (subst coHomK (+'-comm (suc m) (suc n))) (0ₖ-⌣ₖ (suc m) (suc n) a)) ∙ coherence-transp n m p q)) gradedComm'-⌣ₖ∙ n m p q = T.elim (λ _ → isOfHLevelPath (3 + n) ((isOfHLevel↑∙ (suc n) m)) _ _) λ a → →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ b → funExt⁻ (cong fst (f₁≡f₂ b)) a) where f₁ : coHomK (suc m) → S₊∙ (suc n) →∙ coHomK-ptd (suc n +' suc m) fst (f₁ b) a = _⌣ₖ_ {n = suc n} {m = suc m} ∣ a ∣ₕ b snd (f₁ b) = 0ₖ-⌣ₖ (suc n) (suc m) b f₂ : coHomK (suc m) → S₊∙ (suc n) →∙ coHomK-ptd (suc n +' suc m) fst (f₂ b) a = -ₖ'-gen (suc n) (suc m) p q (subst coHomK (+'-comm (suc m) (suc n)) (_⌣ₖ_ {n = suc m} {m = suc n} b ∣ a ∣ₕ)) snd (f₂ b) = (cong (-ₖ'-gen (suc n) (suc m) p q) (cong (subst coHomK (+'-comm (suc m) (suc n))) (⌣ₖ-0ₖ (suc m) (suc n) b)) ∙ coherence-transp n m p q) f₁≡f₂ : (b : _) → f₁ b ≡ f₂ b f₁≡f₂ = T.elim (λ _ → isOfHLevelPath (3 + m) (subst (isOfHLevel (3 + m)) (λ i → S₊∙ (suc n) →∙ coHomK-ptd (+'-comm (suc n) (suc m) (~ i))) (isOfHLevel↑∙' (suc m) n)) _ _) λ b → →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ a → gradedComm'-elimCase (n + m) n m refl p q a b) -- Finally, graded commutativity: gradedComm'-⌣ₖ : (n m : ℕ) (a : coHomK n) (b : coHomK m) → a ⌣ₖ b ≡ (-ₖ'^ n · m) (subst coHomK (+'-comm m n) (b ⌣ₖ a)) gradedComm'-⌣ₖ zero zero a b = sym (transportRefl _) ∙ cong (transport refl) (comm-·₀ a b) gradedComm'-⌣ₖ zero (suc m) a b = sym (transportRefl _) ∙∙ (λ k → subst coHomK (isSetℕ _ _ refl (+'-comm (suc m) zero) k) (b ⌣ₖ a)) ∙∙ sym (-ₖ'-gen-inl-left zero (suc m) tt (evenOrOdd (suc m)) (subst coHomK (+'-comm (suc m) zero) (b ⌣ₖ a))) gradedComm'-⌣ₖ (suc n) zero a b = sym (transportRefl _) ∙∙ ((λ k → subst coHomK (isSetℕ _ _ refl (+'-comm zero (suc n)) k) (b ⌣ₖ a))) ∙∙ sym (-ₖ'-gen-inl-right (suc n) zero (evenOrOdd (suc n)) tt (subst coHomK (+'-comm zero (suc n)) (b ⌣ₖ a))) gradedComm'-⌣ₖ (suc n) (suc m) a b = funExt⁻ (cong fst (gradedComm'-⌣ₖ∙ n m (evenOrOdd (suc n)) (evenOrOdd (suc m)) a)) b gradedComm'-⌣ : {A : Type ℓ} (n m : ℕ) (a : coHom n A) (b : coHom m A) → a ⌣ b ≡ (-ₕ'^ n · m) (subst (λ n → coHom n A) (+'-comm m n) (b ⌣ a)) gradedComm'-⌣ n m = ST.elim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f g → cong ∣_∣₂ (funExt (λ x → gradedComm'-⌣ₖ n m (f x) (g x) ∙ cong ((-ₖ'^ n · m) ∘ (subst coHomK (+'-comm m n))) λ i → g (transportRefl x (~ i)) ⌣ₖ f (transportRefl x (~ i)))) ----------------------------------------------------------------------------- -- The previous code introduces another - to facilitate proof -- This a reformulation with the usual -ₕ' definition (the one of the ring) of the results -ₕ^-gen : {k : ℕ} → {A : Type ℓ} → (n m : ℕ) → (p : isEvenT n ⊎ isOddT n) → (q : isEvenT m ⊎ isOddT m) → (a : coHom k A) → coHom k A -ₕ^-gen n m (inl p) q a = a -ₕ^-gen n m (inr p) (inl q) a = a -ₕ^-gen n m (inr p) (inr q) a = -ₕ a -ₕ^_·_ : {k : ℕ} → {A : Type ℓ} → (n m : ℕ) → (a : coHom k A) → coHom k A -ₕ^_·_ n m a = -ₕ^-gen n m (evenOrOdd n) (evenOrOdd m) a -ₕ^-gen-eq : ∀ {ℓ} {k : ℕ} {A : Type ℓ} (n m : ℕ) → (p : isEvenT n ⊎ isOddT n) (q : isEvenT m ⊎ isOddT m) → (x : coHom k A) → -ₕ^-gen n m p q x ≡ (ST.map λ f x → (-ₖ'-gen n m p q) (f x)) x -ₕ^-gen-eq {k = k} n m (inl p) q = ST.elim (λ _ → isSetPathImplicit) λ f → cong ∣_∣₂ (funExt λ x → sym (-ₖ'-gen-inl-left n m p q (f x))) -ₕ^-gen-eq {k = k} n m (inr p) (inl q) = ST.elim (λ _ → isSetPathImplicit) λ f → cong ∣_∣₂ (funExt λ z → sym (-ₖ'-gen-inl-right n m (inr p) q (f z))) -ₕ^-gen-eq {k = k} n m (inr p) (inr q) = ST.elim (λ _ → isSetPathImplicit) λ f → cong ∣_∣₂ (funExt λ z → sym (-ₖ'-gen-inr≡-ₖ' n m p q (f z))) -ₕ^-eq : ∀ {ℓ} {k : ℕ} {A : Type ℓ} (n m : ℕ) → (a : coHom k A) → (-ₕ^ n · m) a ≡ (-ₕ'^ n · m) a -ₕ^-eq n m a = -ₕ^-gen-eq n m (evenOrOdd n) (evenOrOdd m) a gradedComm-⌣ : ∀ {ℓ} {A : Type ℓ} (n m : ℕ) (a : coHom n A) (b : coHom m A) → a ⌣ b ≡ (-ₕ^ n · m) (subst (λ n → coHom n A) (+'-comm m n) (b ⌣ a)) gradedComm-⌣ n m a b = (gradedComm'-⌣ n m a b) ∙ (sym (-ₕ^-eq n m (subst (λ n₁ → coHom n₁ _) (+'-comm m n) (b ⌣ a))))
{ "alphanum_fraction": 0.4246041602, "avg_line_length": 56.8077601411, "ext": "agda", "hexsha": "11866cc169686b648f7bf25515516114ab57dafa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/ZCohomology/RingStructure/GradedCommutativity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/ZCohomology/RingStructure/GradedCommutativity.agda", "max_line_length": 149, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/ZCohomology/RingStructure/GradedCommutativity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 28108, "size": 64420 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Divisibility ------------------------------------------------------------------------ module Data.Nat.Divisibility where open import Data.Nat as Nat open import Data.Nat.DivMod import Data.Nat.Properties as NatProp open import Data.Fin as Fin using (Fin; zero; suc) import Data.Fin.Properties as FP open NatProp.SemiringSolver open import Algebra private module CS = CommutativeSemiring NatProp.commutativeSemiring open import Data.Product open import Relation.Nullary open import Relation.Binary import Relation.Binary.PartialOrderReasoning as PartialOrderReasoning open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; sym; cong; subst) open import Function -- m ∣ n is inhabited iff m divides n. Some sources, like Hardy and -- Wright's "An Introduction to the Theory of Numbers", require m to -- be non-zero. However, some things become a bit nicer if m is -- allowed to be zero. For instance, _∣_ becomes a partial order, and -- the gcd of 0 and 0 becomes defined. infix 4 _∣_ data _∣_ : ℕ → ℕ → Set where divides : {m n : ℕ} (q : ℕ) (eq : n ≡ q * m) → m ∣ n -- Extracts the quotient. quotient : ∀ {m n} → m ∣ n → ℕ quotient (divides q _) = q -- If m divides n, and n is positive, then m ≤ n. ∣⇒≤ : ∀ {m n} → m ∣ suc n → m ≤ suc n ∣⇒≤ (divides zero ()) ∣⇒≤ {m} {n} (divides (suc q) eq) = begin m ≤⟨ NatProp.m≤m+n m (q * m) ⟩ suc q * m ≡⟨ sym eq ⟩ suc n ∎ where open ≤-Reasoning -- _∣_ is a partial order. poset : Poset _ _ _ poset = record { Carrier = ℕ ; _≈_ = _≡_ ; _≤_ = _∣_ ; isPartialOrder = record { isPreorder = record { isEquivalence = PropEq.isEquivalence ; reflexive = reflexive ; trans = trans } ; antisym = antisym } } where module DTO = DecTotalOrder Nat.decTotalOrder open PropEq.≡-Reasoning reflexive : _≡_ ⇒ _∣_ reflexive {n} refl = divides 1 (sym $ proj₁ CS.*-identity n) antisym : Antisymmetric _≡_ _∣_ antisym (divides {n = zero} q₁ eq₁) (divides {n = n₂} q₂ eq₂) = begin n₂ ≡⟨ eq₂ ⟩ q₂ * 0 ≡⟨ CS.*-comm q₂ 0 ⟩ 0 ∎ antisym (divides {n = n₁} q₁ eq₁) (divides {n = zero} q₂ eq₂) = begin 0 ≡⟨ CS.*-comm 0 q₁ ⟩ q₁ * 0 ≡⟨ sym eq₁ ⟩ n₁ ∎ antisym (divides {n = suc n₁} q₁ eq₁) (divides {n = suc n₂} q₂ eq₂) = DTO.antisym (∣⇒≤ (divides q₁ eq₁)) (∣⇒≤ (divides q₂ eq₂)) trans : Transitive _∣_ trans (divides q₁ refl) (divides q₂ refl) = divides (q₂ * q₁) (sym (CS.*-assoc q₂ q₁ _)) module ∣-Reasoning = PartialOrderReasoning poset renaming (_≤⟨_⟩_ to _∣⟨_⟩_; _≈⟨_⟩_ to _≡⟨_⟩_) private module P = Poset poset -- 1 divides everything. 1∣_ : ∀ n → 1 ∣ n 1∣ n = divides n (sym $ proj₂ CS.*-identity n) -- Everything divides 0. _∣0 : ∀ n → n ∣ 0 n ∣0 = divides 0 refl -- 0 only divides 0. 0∣⇒≡0 : ∀ {n} → 0 ∣ n → n ≡ 0 0∣⇒≡0 {n} 0∣n = P.antisym (n ∣0) 0∣n -- Only 1 divides 1. ∣1⇒≡1 : ∀ {n} → n ∣ 1 → n ≡ 1 ∣1⇒≡1 {n} n∣1 = P.antisym n∣1 (1∣ n) -- If i divides m and n, then i divides their sum. ∣-+ : ∀ {i m n} → i ∣ m → i ∣ n → i ∣ m + n ∣-+ (divides {m = i} q refl) (divides q' refl) = divides (q + q') (sym $ proj₂ CS.distrib i q q') -- If i divides m and n, then i divides their difference. ∣-∸ : ∀ {i m n} → i ∣ m + n → i ∣ m → i ∣ n ∣-∸ (divides {m = i} q' eq) (divides q refl) = divides (q' ∸ q) (sym $ NatProp.im≡jm+n⇒[i∸j]m≡n q' q i _ $ sym eq) -- A simple lemma: n divides kn. ∣-* : ∀ k {n} → n ∣ k * n ∣-* k = divides k refl -- If i divides j, then ki divides kj. *-cong : ∀ {i j} k → i ∣ j → k * i ∣ k * j *-cong {i} {j} k (divides q eq) = divides q lemma where open PropEq.≡-Reasoning lemma = begin k * j ≡⟨ cong (_*_ k) eq ⟩ k * (q * i) ≡⟨ solve 3 (λ k q i → k :* (q :* i) := q :* (k :* i)) refl k q i ⟩ q * (k * i) ∎ -- If ki divides kj, and k is positive, then i divides j. /-cong : ∀ {i j} k → suc k * i ∣ suc k * j → i ∣ j /-cong {i} {j} k (divides q eq) = divides q lemma where open PropEq.≡-Reasoning k′ = suc k lemma = NatProp.cancel-*-right j (q * i) (begin j * k′ ≡⟨ CS.*-comm j k′ ⟩ k′ * j ≡⟨ eq ⟩ q * (k′ * i) ≡⟨ solve 3 (λ q k i → q :* (k :* i) := q :* i :* k) refl q k′ i ⟩ q * i * k′ ∎) -- If the remainder after division is non-zero, then the divisor does -- not divide the dividend. nonZeroDivisor-lemma : ∀ m q (r : Fin (1 + m)) → Fin.toℕ r ≢ 0 → ¬ (1 + m) ∣ (Fin.toℕ r + q * (1 + m)) nonZeroDivisor-lemma m zero r r≢zero (divides zero eq) = r≢zero $ begin Fin.toℕ r ≡⟨ sym $ proj₁ CS.*-identity (Fin.toℕ r) ⟩ 1 * Fin.toℕ r ≡⟨ eq ⟩ 0 ∎ where open PropEq.≡-Reasoning nonZeroDivisor-lemma m zero r r≢zero (divides (suc q) eq) = NatProp.¬i+1+j≤i m $ begin m + suc (q * suc m) ≡⟨ solve 2 (λ m q → m :+ (con 1 :+ q) := con 1 :+ m :+ q) refl m (q * suc m) ⟩ suc (m + q * suc m) ≡⟨ sym eq ⟩ 1 * Fin.toℕ r ≡⟨ proj₁ CS.*-identity (Fin.toℕ r) ⟩ Fin.toℕ r ≤⟨ ≤-pred $ FP.bounded r ⟩ m ∎ where open ≤-Reasoning nonZeroDivisor-lemma m (suc q) r r≢zero d = nonZeroDivisor-lemma m q r r≢zero (∣-∸ d' P.refl) where lem = solve 3 (λ m r q → r :+ (m :+ q) := m :+ (r :+ q)) refl (suc m) (Fin.toℕ r) (q * suc m) d' = subst (λ x → (1 + m) ∣ x) lem d -- Divisibility is decidable. _∣?_ : Decidable _∣_ zero ∣? zero = yes (0 ∣0) zero ∣? suc n = no ((λ ()) ∘′ 0∣⇒≡0) suc m ∣? n with n divMod suc m suc m ∣? .(q * suc m) | result q zero refl = yes $ divides q refl suc m ∣? .(1 + Fin.toℕ r + q * suc m) | result q (suc r) refl = no $ nonZeroDivisor-lemma m q (suc r) (λ())
{ "alphanum_fraction": 0.5202129429, "avg_line_length": 29.038647343, "ext": "agda", "hexsha": "59850d6559e7539eea9852732172275af6c80e10", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Nat/Divisibility.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Nat/Divisibility.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Nat/Divisibility.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 2411, "size": 6011 }
------------------------------------------------------------------------ -- An alternative (non-standard) classical definition of weak -- bisimilarity ------------------------------------------------------------------------ -- This definition is based on the function "wb" in Section 6.5.1 of -- Pous and Sangiorgi's "Enhancements of the bisimulation proof -- method". {-# OPTIONS --sized-types #-} open import Labelled-transition-system module Bisimilarity.Weak.Alternative.Classical {ℓ} (lts : LTS ℓ) where open import Prelude import Bisimilarity.Classical open LTS lts -- We get weak bisimilarity by instantiating strong bisimilarity with -- a different LTS. private module WB = Bisimilarity.Classical (weak lts) open WB public using (⟪_,_⟫) renaming ( Bisimulation to Weak-bisimulation ; Bisimilarity′ to Weak-bisimilarity′ ; Bisimilarity to Weak-bisimilarity ; _∼_ to _≈_ )
{ "alphanum_fraction": 0.5941114616, "avg_line_length": 27.1714285714, "ext": "agda", "hexsha": "e34e6367e2ad4618c78292c955c63e40d0e13bc9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Bisimilarity/Weak/Alternative/Classical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Bisimilarity/Weak/Alternative/Classical.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Bisimilarity/Weak/Alternative/Classical.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 222, "size": 951 }
------------------------------------------------------------------------------ -- Properties related with the group commutator ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module GroupTheory.Commutator.PropertiesATP where open import GroupTheory.Base open import GroupTheory.Commutator ------------------------------------------------------------------------------ -- From: A. G. Kurosh. The Theory of Groups, vol. 1. Chelsea Publising -- Company, 2nd edition, 1960. p. 99. postulate commutatorInverse : ∀ a b → [ a , b ] · [ b , a ] ≡ ε {-# ATP prove commutatorInverse #-} -- If the commutator is associative, then commutator of any two -- elements lies in the center of the group, i.e. a [b,c] = [b,c] a. -- From: TPTP 6.4.0 problem GRP/GRP024-5.p. postulate commutatorAssocCenter : (∀ a b c → commutatorAssoc a b c) → (∀ a b c → a · [ b , c ] ≡ [ b , c ] · a) {-# ATP prove commutatorAssocCenter #-}
{ "alphanum_fraction": 0.4873803307, "avg_line_length": 41.0357142857, "ext": "agda", "hexsha": "4c7c4b22d7e30e41032573c5c7c72768acb8e425", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/GroupTheory/Commutator/PropertiesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/GroupTheory/Commutator/PropertiesATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/GroupTheory/Commutator/PropertiesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 271, "size": 1149 }
-- 2014-01-01 Andreas, test case constructed by Christian Sattler {-# OPTIONS --allow-unsolved-metas #-} -- unguarded recursive record record R : Set where constructor cons field r : R postulate F : (R → Set) → Set q : (∀ P → F P) → (∀ P → F P) q h P = h (λ {(cons x) → {!!}}) -- ISSUE WAS: Bug in implementation of eta-expansion of projected var, -- leading to loop in Agda.
{ "alphanum_fraction": 0.6323907455, "avg_line_length": 21.6111111111, "ext": "agda", "hexsha": "6b75339fd73f513fd0a79812d189c456c14ce299", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue376Loop.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue376Loop.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/Issue376Loop.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 120, "size": 389 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Examples of format strings and printf ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module README.Text.Printf where open import Data.Nat.Base open import Data.Char.Base open import Data.List.Base open import Data.String.Base open import Data.Sum.Base open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- Format strings open import Text.Format -- We can specify a format by writing a string which will get interpreted -- by a lexer into a list of formatting directives. -- The specification types are always started with a '%' character: -- Integers (%d or %i) -- Naturals (%u) -- Floats (%f) -- Chars (%c) -- Strings (%s) -- Anything which is not a type specification is a raw string to be spliced -- in the output of printf. -- For instance the following format alternates types and raw strings _ : lexer "%s: %u + %u ≡ %u" ≡ inj₂ (`String ∷ Raw ": " ∷ `ℕ ∷ Raw " + " ∷ `ℕ ∷ Raw " ≡ " ∷ `ℕ ∷ []) _ = refl -- Lexing can fail. There are two possible errors: -- If we start a specification type with a '%' but the string ends then -- we get an UnexpectedEndOfString error _ : lexer "%s: %u + %u ≡ %" ≡ inj₁ (UnexpectedEndOfString "%s: %u + %u ≡ %") _ = refl -- If we start a specification type with a '%' and the following character -- does not correspond to an existing type, we get an InvalidType error -- together with a focus highlighting the position of the problematic type. _ : lexer "%s: %u + %a ≡ %u" ≡ inj₁ (InvalidType "%s: %u + %" 'a' " ≡ %u") _ = refl ------------------------------------------------------------------------ -- Printf open import Text.Printf -- printf is a function which takes a format string as an argument and -- returns a function expecting a value for each type specification present -- in the format and returns a string splicing in these values into the -- format string. -- For instance `printf "%s: %u + %u ≡ %u"` is a -- `String → ℕ → ℕ → ℕ → String` function. _ : String → ℕ → ℕ → ℕ → String _ = printf "%s: %u + %u ≡ %u" _ : printf "%s: %u + %u ≡ %u" "example" 3 2 5 ≡ "example: 3 + 2 ≡ 5" _ = refl -- If the format string str is invalid then `printf str` will have type -- `Error e` where `e` is the lexing error. _ : Text.Printf.Error (UnexpectedEndOfString "%s: %u + %u ≡ %") _ = printf "%s: %u + %u ≡ %" _ : Text.Printf.Error (InvalidType "%s: %u + %" 'a' " ≡ %u") _ = printf "%s: %u + %a ≡ %u" -- Trying to pass arguments to such an ̀Error` type will lead to a -- unification error which hopefully makes the problem clear e.g. -- `printf "%s: %u + %a ≡ %u" "example" 3 2 5` fails with the error: -- Text.Printf.Error (InvalidType "%s: %u + %" 'a' " ≡ %u") should be -- a function type, but it isn't -- when checking that "example" 3 2 5 are valid arguments to a -- function of type Text.Printf.Printf (lexer "%s: %u + %a ≡ %u")
{ "alphanum_fraction": 0.5886200131, "avg_line_length": 31.2040816327, "ext": "agda", "hexsha": "638962ee50fc895327ae09ba4bb4d3c183e307b4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/README/Text/Printf.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/README/Text/Printf.agda", "max_line_length": 75, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/README/Text/Printf.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 837, "size": 3058 }
module Inference-of-implicit-function-space where postulate _⇔_ : Set → Set → Set equivalence : {A B : Set} → (A → B) → (B → A) → A ⇔ B A : Set P : Set P = {x : A} → A ⇔ A works : P ⇔ P works = equivalence (λ r {x} → r {x = x}) (λ r {x} → r {x = x}) works₂ : P ⇔ P works₂ = equivalence {A = P} (λ r {x} → r {x = x}) (λ r {y} → r {y}) fails : P ⇔ P fails = equivalence (λ r {x} → r {x = x}) (λ r {y} → r {y})
{ "alphanum_fraction": 0.4691075515, "avg_line_length": 23, "ext": "agda", "hexsha": "56d8c1fa55202968349a519d1fa1dd17b65faa92", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Inference-of-implicit-function-space.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Inference-of-implicit-function-space.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Inference-of-implicit-function-space.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 188, "size": 437 }
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.Transp {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.Weakening as T hiding (wk; wkTerm; wkEqTerm) open import Definition.Typed.RedSteps open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance as I open import Definition.LogicalRelation.Weakening open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Application open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Properties open import Definition.LogicalRelation.Substitution.Irrelevance as S open import Definition.LogicalRelation.Substitution.Reflexivity open import Definition.LogicalRelation.Substitution.Introductions.Sigma open import Definition.LogicalRelation.Substitution.Introductions.Fst open import Definition.LogicalRelation.Substitution.Introductions.Pi open import Definition.LogicalRelation.Substitution.Introductions.Lambda open import Definition.LogicalRelation.Substitution.Introductions.Application open import Definition.LogicalRelation.Substitution.Introductions.Cast open import Definition.LogicalRelation.Substitution.Introductions.Id open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst open import Definition.LogicalRelation.Substitution.MaybeEmbed open import Definition.LogicalRelation.Substitution.Escape open import Definition.LogicalRelation.Substitution.Introductions.Universe open import Definition.LogicalRelation.Substitution.Reduction open import Definition.LogicalRelation.Substitution.Weakening open import Definition.LogicalRelation.Substitution.ProofIrrelevance open import Tools.Product import Tools.PropositionalEquality as PE IdSymᵗᵛ : ∀ {A l t u e Γ} ([Γ] : ⊩ᵛ Γ) ([U] : Γ ⊩ᵛ⟨ ∞ ⟩ U l ^ [ ! , next l ] / [Γ]) ([AU] : Γ ⊩ᵛ⟨ ∞ ⟩ A ∷ U l ^ [ ! , next l ] / [Γ] / [U]) ([A] : Γ ⊩ᵛ⟨ ∞ ⟩ A ^ [ ! , ι l ] / [Γ]) ([t] : Γ ⊩ᵛ⟨ ∞ ⟩ t ∷ A ^ [ ! , ι l ] / [Γ] / [A]) ([u] : Γ ⊩ᵛ⟨ ∞ ⟩ u ∷ A ^ [ ! , ι l ] / [Γ] / [A]) ([Id] : Γ ⊩ᵛ⟨ ∞ ⟩ Id A t u ^ [ % , ι l ] / [Γ]) → ([Idinv] : Γ ⊩ᵛ⟨ ∞ ⟩ Id A u t ^ [ % , ι l ] / [Γ]) → ([e] : Γ ⊩ᵛ⟨ ∞ ⟩ e ∷ Id A t u ^ [ % , ι l ] / [Γ] / [Id] ) → Γ ⊩ᵛ⟨ ∞ ⟩ Idsym A t u e ∷ Id A u t ^ [ % , ι l ] / [Γ] / [Idinv] IdSymᵗᵛ {A} {l} {t} {u} {e} {Γ} [Γ] [U] [AU] [A] [t] [u] [Id] [Idinv] [e] = validityIrr {A = Id A u t} {t = Idsym A t u e} [Γ] [Idinv] λ {Δ} {σ} ⊢Δ [σ] → PE.subst (λ X → Δ ⊢ X ∷ subst σ (Id A u t) ^ [ % , ι l ] ) (PE.sym (subst-Idsym σ A t u e)) (Idsymⱼ {A = subst σ A} {x = subst σ t} {y = subst σ u} (escapeTerm (proj₁ ([U] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([AU] ⊢Δ [σ]))) (escapeTerm (proj₁ ([A] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ]))) (escapeTerm (proj₁ ([A] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([u] ⊢Δ [σ]))) (escapeTerm (proj₁ ([Id] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([e] ⊢Δ [σ])))) abstract transpᵗᵛ : ∀ {A P l t s u e Γ} ([Γ] : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ ∞ ⟩ A ^ [ ! , l ] / [Γ]) ([P] : Γ ∙ A ^ [ ! , l ] ⊩ᵛ⟨ ∞ ⟩ P ^ [ % , l ] / (_∙_ {A = A} [Γ] [A])) ([t] : Γ ⊩ᵛ⟨ ∞ ⟩ t ∷ A ^ [ ! , l ] / [Γ] / [A]) ([s] : Γ ⊩ᵛ⟨ ∞ ⟩ s ∷ P [ t ] ^ [ % , l ] / [Γ] / substS {A} {P} {t} [Γ] [A] [P] [t]) ([u] : Γ ⊩ᵛ⟨ ∞ ⟩ u ∷ A ^ [ ! , l ] / [Γ] / [A]) ([Id] : Γ ⊩ᵛ⟨ ∞ ⟩ Id A t u ^ [ % , l ] / [Γ]) → ([e] : Γ ⊩ᵛ⟨ ∞ ⟩ e ∷ Id A t u ^ [ % , l ] / [Γ] / [Id] ) → Γ ⊩ᵛ⟨ ∞ ⟩ transp A P t s u e ∷ P [ u ] ^ [ % , l ] / [Γ] / substS {A} {P} {u} [Γ] [A] [P] [u] transpᵗᵛ {A} {P} {l} {t} {s} {u} {e} {Γ} [Γ] [A] [P] [t] [s] [u] [Id] [e] = validityIrr {A = P [ u ]} {t = transp A P t s u e } [Γ] (substS {A} {P} {u} [Γ] [A] [P] [u]) λ {Δ} {σ} ⊢Δ [σ] → let [liftσ] = liftSubstS {F = A} [Γ] ⊢Δ [A] [σ] [A]σ = proj₁ ([A] {Δ} {σ} ⊢Δ [σ]) [P[t]]σ = I.irrelevance′ (singleSubstLift P t) (proj₁ (substS {A} {P} {t} [Γ] [A] [P] [t] {Δ} {σ} ⊢Δ [σ])) X = transpⱼ (escape [A]σ) (escape (proj₁ ([P] {Δ ∙ subst σ A ^ [ ! , l ]} {liftSubst σ} (⊢Δ ∙ (escape [A]σ)) [liftσ]))) (escapeTerm [A]σ (proj₁ ([t] ⊢Δ [σ]))) (escapeTerm [P[t]]σ (I.irrelevanceTerm′ (singleSubstLift P t) PE.refl PE.refl (proj₁ (substS {A} {P} {t} [Γ] [A] [P] [t] {Δ} {σ} ⊢Δ [σ])) [P[t]]σ (proj₁ ([s] ⊢Δ [σ])))) (escapeTerm [A]σ (proj₁ ([u] ⊢Δ [σ]))) (escapeTerm (proj₁ ([Id] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([e] ⊢Δ [σ]))) in PE.subst (λ X → Δ ⊢ transp (subst σ A) ( subst (liftSubst σ) P) (subst σ t) (subst σ s) (subst σ u) (subst σ e) ∷ X ^ [ % , l ] ) (PE.sym (singleSubstLift P u)) X
{ "alphanum_fraction": 0.5627016129, "avg_line_length": 62, "ext": "agda", "hexsha": "7e209ba0ca1597da34023e7a9e18d3e819225535", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Transp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Transp.agda", "max_line_length": 236, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Transp.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 2029, "size": 4960 }
-------------------------------------------------------------------------------- -- This is part of Agda Inference Systems {-# OPTIONS --sized-types --guardedness #-} open import Data.Product open import Data.Vec open import Codata.Colist as Colist open import Agda.Builtin.Equality open import Size open import Codata.Thunk open import Data.Fin open import Data.Nat open import Data.Maybe open import Examples.Colists.Auxiliary.Colist_member open import is-lib.InfSys module Examples.Colists.member {A : Set} where U = A × Colist A ∞ data memberRN : Set where mem-h mem-t : memberRN mem-h-r : FinMetaRule U mem-h-r .Ctx = A × Thunk (Colist A) ∞ mem-h-r .comp (x , xs) = [] , ---------------- (x , x ∷ xs) mem-t-r : FinMetaRule U mem-t-r .Ctx = A × A × Thunk (Colist A) ∞ mem-t-r .comp (x , y , xs) = ((x , xs .force) ∷ []) , ---------------- (x , y ∷ xs) memberIS : IS U memberIS .Names = memberRN memberIS .rules mem-h = from mem-h-r memberIS .rules mem-t = from mem-t-r _member_ : A → Colist A ∞ → Set x member xs = Ind⟦ memberIS ⟧ (x , xs) memSpec : U → Set memSpec (x , xs) = Σ[ i ∈ ℕ ] (Colist.lookup i xs ≡ just x) memSpecClosed : ISClosed memberIS memSpec memSpecClosed mem-h _ _ = zero , refl memSpecClosed mem-t _ pr = let (i , proof) = pr Fin.zero in (suc i) , proof memberSound : ∀{x xs} → x member xs → memSpec (x , xs) memberSound = ind[ memberIS ] memSpec memSpecClosed -- Completeness using memSpec does not terminate -- Product implemented as record. Record projections do not decrease memSpec' : U → ℕ → Set memSpec' (x , xs) i = Colist.lookup i xs ≡ just x memberCompl : ∀{x xs i} → memSpec' (x , xs) i → x member xs memberCompl {.x} {x ∷ _} {zero} refl = apply-ind mem-h _ λ () memberCompl {x} {y ∷ xs} {suc i} eq = apply-ind mem-t _ λ{zero → memberCompl eq} memberComplete : ∀{x xs} → memSpec (x , xs) → x member xs memberComplete (i , eq) = memberCompl eq {- Correctness wrt to Agda DataType -} ∈-sound : ∀{x xs} → x ∈ xs → x member xs ∈-sound here = apply-ind mem-h _ λ () ∈-sound (there mem) = apply-ind mem-t _ λ{zero → ∈-sound mem} ∈-complete : ∀{x xs} → x member xs → x ∈ xs ∈-complete (fold (mem-h , _ , refl , _)) = here ∈-complete (fold (mem-t , _ , refl , prem)) = there (∈-complete (prem zero))
{ "alphanum_fraction": 0.5938161796, "avg_line_length": 29.5125, "ext": "agda", "hexsha": "b6b83f1de4cc9b67683f078537046fbcfc313bf4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "LcicC/inference-systems-agda", "max_forks_repo_path": "Examples/Colists/member.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "LcicC/inference-systems-agda", "max_issues_repo_path": "Examples/Colists/member.agda", "max_line_length": 82, "max_stars_count": 3, "max_stars_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "LcicC/inference-systems-agda", "max_stars_repo_path": "Examples/Colists/member.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-25T15:48:52.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-10T15:53:47.000Z", "num_tokens": 778, "size": 2361 }
{-# OPTIONS --cubical-compatible #-} open import Common.Prelude open import Common.Equality open import Common.Product data _≅_ {A : Set} (a : A) : {B : Set} (b : B) → Set₁ where refl : a ≅ a data D : Bool → Set where x : D true y : D false P : Set -> Set₁ P S = Σ S (\s → s ≅ x) pbool : P (D true) pbool = _ , refl ¬pfin : P (D false) → ⊥ ¬pfin (y , ())
{ "alphanum_fraction": 0.5679347826, "avg_line_length": 17.5238095238, "ext": "agda", "hexsha": "c1b00be20b1e195fd107d963b558085d4b05c7fe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/Issue1408b.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/Issue1408b.agda", "max_line_length": 59, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/Issue1408b.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 142, "size": 368 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) module Categories.Category.Construction.SymmetricMonoidalFunctors {o ℓ e o′ ℓ′ e′} (C : SymmetricMonoidalCategory o ℓ e) (D : SymmetricMonoidalCategory o′ ℓ′ e′) where -- The symmetric monoidal category [C , D] of symmetric monoidal -- functors between the symmetric monoidal categories C and D. open import Level open import Data.Product using (_,_; uncurry′) open import Categories.Category using (Category) open import Categories.Category.Monoidal open import Categories.Category.Monoidal.Braided using (Braided) open import Categories.Category.Monoidal.Symmetric using (Symmetric) import Categories.Functor.Monoidal.Symmetric as SMF import Categories.Functor.Monoidal.PointwiseTensor as PT import Categories.NaturalTransformation.Monoidal.Symmetric as SMNT open import Categories.NaturalTransformation.NaturalIsomorphism using (niHelper) import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Symmetric as SMNI open import Categories.Functor.Bifunctor using (Bifunctor) import Categories.Morphism as Morphism open SymmetricMonoidalCategory D module Lax where open SMF.Lax open SMNT.Lax renaming (id to idNT) -- The category of symmetric monoidal functors. MonoidalFunctorsU : Category (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) (o ⊔ e′) MonoidalFunctorsU = record { Obj = SymmetricMonoidalFunctor C D ; _⇒_ = SymmetricMonoidalNaturalTransformation ; _≈_ = λ α β → ∀ {X} → η α X ≈ η β X ; id = idNT ; _∘_ = _∘ᵥ_ ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = record { refl = Equiv.refl ; sym = λ α≈β → Equiv.sym α≈β ; trans = λ α≈β β≈γ → Equiv.trans α≈β β≈γ } ; ∘-resp-≈ = λ α₁≈β₁ α₂≈β₂ → ∘-resp-≈ α₁≈β₁ α₂≈β₂ } where open SymmetricMonoidalNaturalTransformation using (η) open SMNI.Lax using (_≃_) open Morphism MonoidalFunctorsU using (_≅_) -- Symmetric natural isos are isos in the functor category. ≃⇒≅ : ∀ {F G : SymmetricMonoidalFunctor C D} → F ≃ G → F ≅ G ≃⇒≅ ni = record { from = ni.F⇒G-monoidal ; to = ni.F⇐G-monoidal ; iso = record { isoˡ = λ {X} → ni.iso.isoˡ X ; isoʳ = λ {X} → ni.iso.isoʳ X } } where module ni = SMNI.Lax.SymmetricMonoidalNaturalIsomorphism ni open PT.Lax MonoidalFunctorsU-monoidal : Monoidal MonoidalFunctorsU MonoidalFunctorsU-monoidal = monoidalHelper MonoidalFunctorsU (record { ⊗ = record { F₀ = uncurry′ _⊗̇₀_ ; F₁ = uncurry′ _⊗̇₁_ ; identity = ⊗.identity ; homomorphism = ⊗.homomorphism ; F-resp-≈ = λ{ (eq₁ , eq₂) → ⊗.F-resp-≈ (eq₁ , eq₂) } } ; unit = unitF ; unitorˡ = λ {F} → ≃⇒≅ (⊗̇-unitorˡ {F = F}) ; unitorʳ = λ {F} → ≃⇒≅ (⊗̇-unitorʳ {F = F}) ; associator = λ {F G H} → record -- NOTE: this is clearly the same as -- -- ≃⇒≅ (⊗̇-associator {F = F} {G} {H}) -- -- but the manual expansion seems necessary for Agda to finish -- typechecking it. { from = record { U = ⊗̇-associator.F⇒G {F = F} {G} {H} ; isMonoidal = record { ε-compat = ⊗̇-associator.ε-compat {F = F} {G} {H} ; ⊗-homo-compat = ⊗̇-associator.⊗-homo-compat {F = F} {G} {H} } } ; to = record { U = ⊗̇-associator.F⇐G {F = F} {G} {H} ; isMonoidal = record { ε-compat = ⊗̇-associator.⇐.ε-compat {F = F} {G} {H} ; ⊗-homo-compat = ⊗̇-associator.⇐.⊗-homo-compat {F = F} {G} {H} } } ; iso = record { isoˡ = associator.isoˡ ; isoʳ = associator.isoʳ } } ; unitorˡ-commute = unitorˡ-commute-from ; unitorʳ-commute = unitorʳ-commute-from ; assoc-commute = assoc-commute-from ; triangle = triangle ; pentagon = pentagon }) MonoidalFunctorsU-braided : Braided MonoidalFunctorsU-monoidal MonoidalFunctorsU-braided = record { braiding = niHelper (record { η = λ{ (F , G) → record { U = ⊗̇-braiding.F⇒G {F = F} {G} ; isMonoidal = record { ε-compat = ⊗̇-braiding.ε-compat {F = F} {G} ; ⊗-homo-compat = ⊗̇-braiding.⊗-homo-compat {F = F} {G} } } } ; η⁻¹ = λ{ (F , G) → record { U = ⊗̇-braiding.F⇐G {F = F} {G} ; isMonoidal = record { ε-compat = ⊗̇-braiding.⇐.ε-compat {F = F} {G} ; ⊗-homo-compat = ⊗̇-braiding.⇐.⊗-homo-compat {F = F} {G} } } } ; commute = λ{ (β , γ) {X} → let module β = SymmetricMonoidalNaturalTransformation β module γ = SymmetricMonoidalNaturalTransformation γ in braiding.⇒.commute (β.η X , γ.η X) } ; iso = λ _ → record { isoˡ = braiding.iso.isoˡ _ ; isoʳ = braiding.iso.isoʳ _ } }) ; hexagon₁ = hexagon₁ ; hexagon₂ = hexagon₂ } MonoidalFunctorsU-symmetric : Symmetric MonoidalFunctorsU-monoidal MonoidalFunctorsU-symmetric = record { braided = MonoidalFunctorsU-braided ; commutative = commutative } MonoidalFunctors : SymmetricMonoidalCategory (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) (o ⊔ e′) MonoidalFunctors = record { U = MonoidalFunctorsU ; monoidal = MonoidalFunctorsU-monoidal ; symmetric = MonoidalFunctorsU-symmetric } module Strong where open SMF.Strong open SMNT.Strong renaming (id to idNT) -- The category of symmetric monoidal functors. MonoidalFunctorsU : Category (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) (o ⊔ e′) MonoidalFunctorsU = record { Obj = SymmetricMonoidalFunctor C D ; _⇒_ = SymmetricMonoidalNaturalTransformation ; _≈_ = λ α β → ∀ {X} → η α X ≈ η β X ; id = idNT ; _∘_ = _∘ᵥ_ ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = record { refl = Equiv.refl ; sym = λ α≈β → Equiv.sym α≈β ; trans = λ α≈β β≈γ → Equiv.trans α≈β β≈γ } ; ∘-resp-≈ = λ α₁≈β₁ α₂≈β₂ → ∘-resp-≈ α₁≈β₁ α₂≈β₂ } where open SymmetricMonoidalNaturalTransformation using (η) open SMNI.Strong using (_≃_) open Morphism MonoidalFunctorsU using (_≅_) -- Symmetric natural isos are isos in the functor category. ≃⇒≅ : ∀ {F G : SymmetricMonoidalFunctor C D} → F ≃ G → F ≅ G ≃⇒≅ ni = record { from = ni.F⇒G-monoidal ; to = ni.F⇐G-monoidal ; iso = record { isoˡ = λ {X} → ni.iso.isoˡ X ; isoʳ = λ {X} → ni.iso.isoʳ X } } where module ni = SMNI.Strong.SymmetricMonoidalNaturalIsomorphism ni open PT.Strong MonoidalFunctorsU-monoidal : Monoidal MonoidalFunctorsU MonoidalFunctorsU-monoidal = monoidalHelper MonoidalFunctorsU (record { ⊗ = record { F₀ = uncurry′ _⊗̇₀_ ; F₁ = uncurry′ _⊗̇₁_ ; identity = ⊗.identity ; homomorphism = ⊗.homomorphism ; F-resp-≈ = λ{ (eq₁ , eq₂) → ⊗.F-resp-≈ (eq₁ , eq₂) } } ; unit = unitF ; unitorˡ = λ {F} → ≃⇒≅ (⊗̇-unitorˡ {F = F}) ; unitorʳ = λ {F} → ≃⇒≅ (⊗̇-unitorʳ {F = F}) ; associator = λ {F G H} → record -- NOTE: this is clearly the same as -- -- ≃⇒≅ (⊗̇-associator {F = F} {G} {H}) -- -- but the manual expansion seems necessary for Agda to finish -- typechecking it. { from = record { U = ⊗̇-associator.F⇒G {F = F} {G} {H} ; isMonoidal = record { ε-compat = ⊗̇-associator.ε-compat {F = F} {G} {H} ; ⊗-homo-compat = ⊗̇-associator.⊗-homo-compat {F = F} {G} {H} } } ; to = record { U = ⊗̇-associator.F⇐G {F = F} {G} {H} ; isMonoidal = record { ε-compat = ⊗̇-associator.⇐.ε-compat {F = F} {G} {H} ; ⊗-homo-compat = ⊗̇-associator.⇐.⊗-homo-compat {F = F} {G} {H} } } ; iso = record { isoˡ = associator.isoˡ ; isoʳ = associator.isoʳ } } ; unitorˡ-commute = unitorˡ-commute-from ; unitorʳ-commute = unitorʳ-commute-from ; assoc-commute = assoc-commute-from ; triangle = triangle ; pentagon = pentagon }) MonoidalFunctorsU-braided : Braided MonoidalFunctorsU-monoidal MonoidalFunctorsU-braided = record { braiding = niHelper (record { η = λ{ (F , G) → record { U = ⊗̇-braiding.F⇒G {F = F} {G} ; isMonoidal = record { ε-compat = ⊗̇-braiding.ε-compat {F = F} {G} ; ⊗-homo-compat = ⊗̇-braiding.⊗-homo-compat {F = F} {G} } } } ; η⁻¹ = λ{ (F , G) → record { U = ⊗̇-braiding.F⇐G {F = F} {G} ; isMonoidal = record { ε-compat = ⊗̇-braiding.⇐.ε-compat {F = F} {G} ; ⊗-homo-compat = ⊗̇-braiding.⇐.⊗-homo-compat {F = F} {G} } } } ; commute = λ{ (β , γ) {X} → let module β = SymmetricMonoidalNaturalTransformation β module γ = SymmetricMonoidalNaturalTransformation γ in braiding.⇒.commute (β.η X , γ.η X) } ; iso = λ _ → record { isoˡ = braiding.iso.isoˡ _ ; isoʳ = braiding.iso.isoʳ _ } }) ; hexagon₁ = hexagon₁ ; hexagon₂ = hexagon₂ } MonoidalFunctorsU-symmetric : Symmetric MonoidalFunctorsU-monoidal MonoidalFunctorsU-symmetric = record { braided = MonoidalFunctorsU-braided ; commutative = commutative } MonoidalFunctors : SymmetricMonoidalCategory (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) (o ⊔ e′) MonoidalFunctors = record { U = MonoidalFunctorsU ; monoidal = MonoidalFunctorsU-monoidal ; symmetric = MonoidalFunctorsU-symmetric }
{ "alphanum_fraction": 0.5357483317, "avg_line_length": 35.2013422819, "ext": "agda", "hexsha": "bf7a005f845761c6a790729d1096131a4517efcc", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/SymmetricMonoidalFunctors.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/SymmetricMonoidalFunctors.agda", "max_line_length": 85, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/SymmetricMonoidalFunctors.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 3770, "size": 10490 }
{- This file contains: - An implementation of the free group of a type of generators as a HIT -} {-# OPTIONS --safe #-} module Cubical.HITs.FreeGroup.Base where open import Cubical.Foundations.Prelude private variable ℓ : Level data FreeGroup (A : Type ℓ) : Type ℓ where η : A → FreeGroup A _·_ : FreeGroup A → FreeGroup A → FreeGroup A ε : FreeGroup A inv : FreeGroup A → FreeGroup A assoc : ∀ x y z → x · (y · z) ≡ (x · y) · z idr : ∀ x → x ≡ x · ε idl : ∀ x → x ≡ ε · x invr : ∀ x → x · (inv x) ≡ ε invl : ∀ x → (inv x) · x ≡ ε trunc : isSet (FreeGroup A)
{ "alphanum_fraction": 0.5737704918, "avg_line_length": 21.0344827586, "ext": "agda", "hexsha": "5299cc1868c0b08308b2341160e3573fc3be2548", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/HITs/FreeGroup/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/HITs/FreeGroup/Base.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/HITs/FreeGroup/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 227, "size": 610 }
------------------------------------------------------------------------ -- A type-checker ------------------------------------------------------------------------ import Axiom.Extensionality.Propositional as E import Level open import Data.Universe -- The code makes use of the assumption that propositional equality of -- functions is extensional. module README.DependentlyTyped.Type-checker (Uni₀ : Universe Level.zero Level.zero) (ext : E.Extensionality Level.zero Level.zero) where open import Category.Monad open import Data.Maybe hiding (_>>=_) import Data.Maybe.Categorical as Maybe open import Data.Nat using (ℕ; zero; suc; pred) open import Data.Product as Prod open import Function as F hiding (_∋_) renaming (_∘_ to _⊚_) import README.DependentlyTyped.Equality-checker as EC; open EC Uni₀ ext import README.DependentlyTyped.NBE as NBE; open NBE Uni₀ ext import README.DependentlyTyped.NormalForm as NF open NF Uni₀ hiding (⌊_⌋; no) import README.DependentlyTyped.Raw-term as RT; open RT Uni₀ import README.DependentlyTyped.Term as Term; open Term Uni₀ import README.DependentlyTyped.Term.Substitution as S; open S Uni₀ open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Product open P.≡-Reasoning open RawMonadZero (Maybe.monadZero {f = Level.zero}) -- Computes a syntactic type for a variable from a matching syntactic -- context. type-of-var : ∀ {Γ σ} → Γ ∋ σ → Γ ctxt → Γ ⊢ σ type type-of-var zero (Γ′ ▻ σ′) = σ′ /⊢t wk type-of-var (suc x) (Γ′ ▻ σ′) = type-of-var x Γ′ /⊢t wk -- Infers the type of a variable, if possible. infer-var : (Γ : Ctxt) (x : ℕ) → Dec (∃₂ λ σ (x′ : Γ ∋ σ) → position x′ ≡ x) infer-var ε x = no helper where helper : ¬ ∃₂ λ σ (x′ : ε ∋ σ) → position x′ ≡ x helper (_ , () , _) infer-var (Γ ▻ σ) zero = yes (σ /̂ ŵk , zero , P.refl) infer-var (Γ ▻ σ) (suc x) = Dec.map′ (Prod.map (λ σ → σ /̂ ŵk) (Prod.map suc (P.cong suc))) helper (infer-var Γ x) where helper : (∃₂ λ τ (x′ : Γ ▻ σ ∋ τ) → position x′ ≡ suc x) → (∃₂ λ τ (x′ : Γ ∋ τ) → position x′ ≡ x) helper (._ , zero , ()) helper (._ , suc x′ , eq) = (_ , x′ , P.cong pred eq) -- Infers the /syntactic/ type of a variable, if possible. infer-var-syntactic : ∀ {Γ} → Γ ctxt → (x : ℕ) → Dec (∃ λ σ → Γ ⊢ σ type × ∃ λ (x′ : Γ ∋ σ) → position x′ ≡ x) infer-var-syntactic {Γ} Γ′ x = Dec.map′ (Prod.map F.id (λ p → type-of-var (proj₁ p) Γ′ , proj₁ p , proj₂ p)) (Prod.map F.id proj₂) (infer-var Γ x) mutual -- Tries to infer a well-typed form of a raw type. infer-ty : ∀ {Γ} → Γ ctxt → (σ : Raw-ty) → Maybe (∃₂ λ σ′ (σ″ : Γ ⊢ σ′ type) → ⌊ σ″ ⌋ty ≡ ⌊ σ ⌋raw-ty) infer-ty Γ′ ⋆ = return (_ , ⋆ , P.refl) infer-ty Γ′ (el t) = check Γ′ ⋆ t >>= λ { (t′ , eq) → return (_ , el t′ , P.cong el eq) } infer-ty Γ′ (π σ′₁ σ′₂) = infer-ty Γ′ σ′₁ >>= λ { (_ , σ′₁′ , eq₁) → infer-ty (Γ′ ▻ σ′₁′) σ′₂ >>= λ { (_ , σ′₂′ , eq₂) → return (_ , π σ′₁′ σ′₂′ , P.cong₂ π eq₁ eq₂) }} -- Tries to infer a type for a term. In the case of success a -- well-typed term is returned. infer : ∀ {Γ} → Γ ctxt → (t : Raw) → Maybe (∃ λ σ → Γ ⊢ σ type × ∃ λ (t′ : Γ ⊢ σ) → ⌊ t′ ⌋ ≡ ⌊ t ⌋raw) infer Γ′ (var x) with infer-var-syntactic Γ′ x ... | yes (_ , σ′ , x′ , eq) = return (_ , σ′ , var x′ , P.cong var eq) ... | no _ = ∅ infer Γ′ (ƛ t) = ∅ infer Γ′ (t₁ · t₂) = infer Γ′ t₁ >>= λ { (._ , π σ′₁ σ′₂ , t₁′ , eq₁) → check Γ′ σ′₁ t₂ >>= λ { (t₂′ , eq₂) → return (_ , σ′₂ /⊢t sub t₂′ , t₁′ · t₂′ , P.cong₂ _·_ eq₁ eq₂) } ; _ → ∅ } infer Γ′ (t ∶ σ) = infer-ty Γ′ σ >>= λ { (_ , σ′ , eq) → check Γ′ σ′ t >>= λ { (t′ , eq) → return (_ , σ′ , t′ , eq) }} -- Tries to type-check a term. In the case of success a well-typed -- term is returned. check : ∀ {Γ σ} → Γ ctxt → (σ′ : Γ ⊢ σ type) (t : Raw) → Maybe (∃ λ (t′ : Γ ⊢ σ) → ⌊ t′ ⌋ ≡ ⌊ t ⌋raw) check Γ′ (π σ′₁ σ′₂) (ƛ t) = check (Γ′ ▻ σ′₁) σ′₂ t >>= λ { (t′ , eq) → return (ƛ t′ , P.cong ƛ eq) } check Γ′ σ′ t = infer Γ′ t >>= λ { (_ , τ′ , t′ , eq₁) → τ′ ≟-Type σ′ >>= λ eq₂ → return (P.subst (_⊢_ _) (≅-Type-⇒-≡ eq₂) t′ , (begin ⌊ P.subst (_⊢_ _) (≅-Type-⇒-≡ eq₂) t′ ⌋ ≡⟨ ⌊⌋-cong $ drop-subst-⊢ F.id (≅-Type-⇒-≡ eq₂) ⟩ ⌊ t′ ⌋ ≡⟨ eq₁ ⟩ ⌊ t ⌋raw ∎)) } -- Tries to establish that the given raw term has the given raw type -- (in the empty context). infix 4 _∋?_ _∋?_ : (σ : Raw-ty) (t : Raw) → Maybe (∃₂ λ (σ′ : Type ε) (σ″ : ε ⊢ σ′ type) → ∃ λ (t′ : ε ⊢ σ′) → ⌊ σ″ ⌋ty ≡ ⌊ σ ⌋raw-ty × ⌊ t′ ⌋ ≡ ⌊ t ⌋raw) σ ∋? t = infer-ty ε σ >>= λ { (σ′ , σ″ , eq₁) → check ε σ″ t >>= λ { (t′ , eq₂) → return (σ′ , σ″ , t′ , eq₁ , eq₂) }} ------------------------------------------------------------------------ -- Examples private σ₁ : Raw-ty σ₁ = π ⋆ ⋆ σ₁′ : Type ε σ₁′ = proj₁ $ from-just $ infer-ty ε σ₁ t₁ : Raw t₁ = ƛ (var zero) t₁′ : ε ⊢ σ₁′ t₁′ = proj₁ $ proj₂ $ proj₂ $ from-just $ σ₁ ∋? t₁ t₂ : ε ▻ (⋆ , _) ⊢ (⋆ , _) t₂ = proj₁ $ proj₂ $ proj₂ $ from-just $ infer (ε ▻ ⋆) (var zero) t₃ : Raw t₃ = (ƛ (var zero) ∶ π ⋆ ⋆) · var zero t₃′ : ε ▻ (⋆ , _) ⊢ (⋆ , _) t₃′ = proj₁ $ proj₂ $ proj₂ $ from-just $ infer (ε ▻ ⋆) t₃
{ "alphanum_fraction": 0.4759938049, "avg_line_length": 34.7964071856, "ext": "agda", "hexsha": "f20c0579b63177c0123fcc0a7d80f759cbe3ac23", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "README/DependentlyTyped/Type-checker.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "README/DependentlyTyped/Type-checker.agda", "max_line_length": 104, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "README/DependentlyTyped/Type-checker.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 2226, "size": 5811 }
{-# OPTIONS --without-K --safe #-} module Relation.Binary.Construct.Closure.SymmetricTransitive where open import Level open import Function open import Relation.Binary private variable a ℓ ℓ′ : Level A B : Set a module _ {A : Set a} (_≤_ : Rel A ℓ) where private variable x y z : A data Plus⇔ : Rel A (a ⊔ ℓ) where forth : x ≤ y → Plus⇔ x y back : y ≤ x → Plus⇔ x y forth⁺ : x ≤ y → Plus⇔ y z → Plus⇔ x z back⁺ : y ≤ x → Plus⇔ y z → Plus⇔ x z module _ (_∼_ : Rel A ℓ) where trans : Transitive (Plus⇔ _∼_) trans (forth r) rel′ = forth⁺ r rel′ trans (back r) rel′ = back⁺ r rel′ trans (forth⁺ r rel) rel′ = forth⁺ r (trans rel rel′) trans (back⁺ r rel) rel′ = back⁺ r (trans rel rel′) sym : Symmetric (Plus⇔ _∼_) sym (forth r) = back r sym (back r) = forth r sym (forth⁺ r rel) = trans (sym rel) (back r) sym (back⁺ r rel) = trans (sym rel) (forth r) isPartialEquivalence : IsPartialEquivalence (Plus⇔ _∼_) isPartialEquivalence = record { sym = sym ; trans = trans } partialSetoid : PartialSetoid _ _ partialSetoid = record { Carrier = A ; _≈_ = Plus⇔ _∼_ ; isPartialEquivalence = isPartialEquivalence } module _ (refl : Reflexive _∼_) where isEquivalence : IsEquivalence (Plus⇔ _∼_) isEquivalence = record { refl = forth refl ; sym = sym ; trans = trans } setoid : Setoid _ _ setoid = record { Carrier = A ; _≈_ = Plus⇔ _∼_ ; isEquivalence = isEquivalence } module _ {c e} (S : Setoid c e) where private module S = Setoid S minimal : (f : A → Setoid.Carrier S) → _∼_ =[ f ]⇒ Setoid._≈_ S → Plus⇔ _∼_ =[ f ]⇒ Setoid._≈_ S minimal f inj (forth r) = inj r minimal f inj (back r) = S.sym (inj r) minimal f inj (forth⁺ r rel) = S.trans (inj r) (minimal f inj rel) minimal f inj (back⁺ r rel) = S.trans (S.sym (inj r)) (minimal f inj rel) module Plus⇔Reasoning (_≤_ : Rel A ℓ) where infix 3 forth-syntax back-syntax infixr 2 forth⁺-syntax back⁺-syntax forth-syntax : ∀ x y → x ≤ y → Plus⇔ _≤_ x y forth-syntax _ _ = forth syntax forth-syntax x y x≤y = x ⇒⟨ x≤y ⟩∎ y ∎ back-syntax : ∀ x y → y ≤ x → Plus⇔ _≤_ x y back-syntax _ _ = back syntax back-syntax x y y≤x = x ⇐⟨ y≤x ⟩∎ y ∎ forth⁺-syntax : ∀ x {y z} → x ≤ y → Plus⇔ _≤_ y z → Plus⇔ _≤_ x z forth⁺-syntax _ = forth⁺ syntax forth⁺-syntax x x≤y y⇔z = x ⇒⟨ x≤y ⟩ y⇔z back⁺-syntax : ∀ x {y z} → y ≤ x → Plus⇔ _≤_ y z → Plus⇔ _≤_ x z back⁺-syntax _ = back⁺ syntax back⁺-syntax x y≤x y⇔z = x ⇐⟨ y≤x ⟩ y⇔z module _ {_≤_ : Rel A ℓ} {_≼_ : Rel B ℓ′} (f : A → B) where module _ (inj : _≤_ =[ f ]⇒ _≼_) where gmap : Plus⇔ _≤_ =[ f ]⇒ Plus⇔ _≼_ gmap (forth r) = forth (inj r) gmap (back r) = back (inj r) gmap (forth⁺ r rel) = forth⁺ (inj r) (gmap rel) gmap (back⁺ r rel) = back⁺ (inj r) (gmap rel) map : {_≤_ : Rel A ℓ} {_≼_ : Rel A ℓ′} (inj : _≤_ ⇒ _≼_) → Plus⇔ _≤_ ⇒ Plus⇔ _≼_ map = gmap id
{ "alphanum_fraction": 0.5420114577, "avg_line_length": 27.0862068966, "ext": "agda", "hexsha": "c24fca62676c6ca021ed81571d21d864850fe6b5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ad0f94b6cf18d8a448b844b021aeda58e833d152", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/agda-categories", "max_forks_repo_path": "src/Relation/Binary/Construct/Closure/SymmetricTransitive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ad0f94b6cf18d8a448b844b021aeda58e833d152", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/agda-categories", "max_issues_repo_path": "src/Relation/Binary/Construct/Closure/SymmetricTransitive.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "ad0f94b6cf18d8a448b844b021aeda58e833d152", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/agda-categories", "max_stars_repo_path": "src/Relation/Binary/Construct/Closure/SymmetricTransitive.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1301, "size": 3142 }
module L.Data.Bool where -- Reexport definitions open import L.Data.Bool.Core public open import L.Data.Bool.Properties public -- Functions on Bools infix 7 not_ infixr 6 _∧_ infixr 5 _∨_ _xor_ not_ : Bool → Bool not x = if (λ _ → Bool) ff tt x _∧_ : Bool → Bool → Bool x ∧ y = if (λ _ → Bool) y ff x _∨_ : Bool → Bool → Bool x ∨ y = if (λ _ → Bool) tt y x _xor_ : Bool → Bool → Bool x xor y = if (λ _ → Bool) y (not y) x
{ "alphanum_fraction": 0.6348837209, "avg_line_length": 17.9166666667, "ext": "agda", "hexsha": "75aafe050582d38d2f4f109e43164bb11a0e7ce4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "borszag/smallib", "max_forks_repo_path": "src/L/Data/Bool.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "borszag/smallib", "max_issues_repo_path": "src/L/Data/Bool.agda", "max_line_length": 41, "max_stars_count": null, "max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "borszag/smallib", "max_stars_repo_path": "src/L/Data/Bool.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 162, "size": 430 }
------------------------------------------------------------------------------ -- FOTC version of a nested recursive function by the -- Bove-Capretta method ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- From: Ana Bove and Venanzio Capretta. Nested general recursion and -- partiality in type theory. Vol. 2152 of LNCS. 2001. module FOT.FOTC.Program.Nest.Nest-FOTC-BC where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Data.Nat import FOTC.Data.Nat.Induction.Acc.WF-I open FOTC.Data.Nat.Induction.Acc.WF-I.<-WF open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.PropertiesI ------------------------------------------------------------------------------ -- The nest function. postulate nest : D → D nest-0 : nest zero ≡ zero nest-S : ∀ d → nest (succ₁ d) ≡ nest (nest d) data Dom : D → Set where dom0 : Dom zero domS : ∀ d → Dom d → Dom (nest d) → Dom (succ₁ d) -- Inductive principle associated to the domain predicate. Dom-ind : (P : D → Set) → P zero → (∀ {d} → Dom d → P d → Dom (nest d) → P (nest d) → P (succ₁ d)) → ∀ {d} → Dom d → P d Dom-ind P P0 ih dom0 = P0 Dom-ind P P0 ih (domS d h₁ h₂) = ih h₁ (Dom-ind P P0 ih h₁) h₂ (Dom-ind P P0 ih h₂) -- The domain predicate is total. dom-N : ∀ d → Dom d → N d dom-N .zero dom0 = nzero dom-N .(succ₁ d) (domS d h₁ h₂) = nsucc (dom-N d h₁) nestCong : ∀ {n₁ n₂} → n₁ ≡ n₂ → nest n₁ ≡ nest n₂ nestCong refl = refl nest-x≡0 : ∀ {n} → N n → nest n ≡ zero nest-x≡0 nzero = nest-0 nest-x≡0 (nsucc {n} Nn) = nest (succ₁ n) ≡⟨ nest-S n ⟩ nest (nest n) ≡⟨ nestCong (nest-x≡0 Nn) ⟩ nest zero ≡⟨ nest-0 ⟩ zero ∎ -- The nest function is total in its domain (via structural recursion -- in the domain predicate). nest-DN : ∀ {d} → Dom d → N (nest d) nest-DN dom0 = subst N (sym nest-0) nzero nest-DN (domS d h₁ h₂) = subst N (sym (nest-S d)) (nest-DN h₂) -- The nest function is total. nest-N : ∀ {n} → N n → N (nest n) nest-N Nn = subst N (sym (nest-x≡0 Nn)) nzero nest-≤ : ∀ {n} → Dom n → nest n ≤ n nest-≤ dom0 = le (nest zero) zero ≡⟨ leLeftCong nest-0 ⟩ le zero zero ≡⟨ x≤x nzero ⟩ true ∎ nest-≤ (domS n h₁ h₂) = ≤-trans (nest-N (nsucc (dom-N n h₁))) (nest-N (dom-N n h₁)) (nsucc Nn) prf₁ prf₂ where Nn : N n Nn = dom-N n h₁ prf₁ : nest (succ₁ n) ≤ nest n prf₁ = le (nest (succ₁ n)) (nest n) ≡⟨ leLeftCong (nest-S n) ⟩ le (nest (nest n)) (nest n) ≡⟨ nest-≤ h₂ ⟩ true ∎ prf₂ : nest n ≤ succ₁ n prf₂ = ≤-trans (nest-N (dom-N n h₁)) Nn (nsucc Nn) (nest-≤ h₁) (x≤Sx Nn) N→Dom : ∀ {n} → N n → Dom n N→Dom = <-wfind P ih where P : D → Set P = Dom ih : ∀ {x} → N x → (∀ {y} → N y → y < x → P y) → P x ih nzero h = dom0 ih (nsucc {x} Nx) h = domS x dn-x (h (nest-N Nx) (x≤y→x<Sy (nest-N Nx) Nx (nest-≤ dn-x))) where dn-x : Dom x dn-x = h Nx (x<Sx Nx)
{ "alphanum_fraction": 0.5072771377, "avg_line_length": 31.1132075472, "ext": "agda", "hexsha": "bbea487e0f5914d4ca54ff4d4dc5791f2fde8b51", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/Nest/Nest-FOTC-BC.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/Nest/Nest-FOTC-BC.agda", "max_line_length": 82, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/Nest/Nest-FOTC-BC.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1173, "size": 3298 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Instantiates the natural coefficients ring solver, using coefficient -- equality induced by ℕ. -- -- This is sufficient for proving equalities that are independent of the -- characteristic. In particular, this is enough for equalities in rings of -- characteristic 0. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra module Algebra.Solver.Ring.NaturalCoefficients.Default {r₁ r₂} (R : CommutativeSemiring r₁ r₂) where import Algebra.Operations.Semiring as SemiringOps open import Data.Maybe.Base using (Maybe; map) open import Data.Nat using (_≟_) open import Relation.Binary.Consequences using (dec⟶weaklyDec) import Relation.Binary.PropositionalEquality as P open CommutativeSemiring R open SemiringOps semiring private dec : ∀ m n → Maybe (m × 1# ≈ n × 1#) dec m n = map (λ { P.refl → refl }) (dec⟶weaklyDec _≟_ m n) open import Algebra.Solver.Ring.NaturalCoefficients R dec public
{ "alphanum_fraction": 0.6505032022, "avg_line_length": 33.1212121212, "ext": "agda", "hexsha": "fa44d082dd3dcec6b80505ec06212c554e802dab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/Ring/NaturalCoefficients/Default.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/Ring/NaturalCoefficients/Default.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/Ring/NaturalCoefficients/Default.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 254, "size": 1093 }
-- Andreas, 2016-10-30, issue #2286 reported by carlostome -- {-# OPTIONS -v interaction.give:40 #-} -- {-# OPTIONS -v tc.term.expr:40 #-} -- {-# OPTIONS -v tc.meta:40 #-} -- {-# OPTIONS -v 10 #-} data Nat : Set where zero : Nat succ : Nat → Nat data _==_ {A : Set} (x : A) : A → Set where refl : x == x f : Nat -> Nat f x = {! f x !} -- giving f x here used to loop, as termination checking was not redone p1 : (n : Nat) -> f n == n p1 n = refl -- This unsolved constraint triggered the loop.
{ "alphanum_fraction": 0.5776031434, "avg_line_length": 25.45, "ext": "agda", "hexsha": "6a2a9fa3dd11e79d0a8bfc5e39d7911242b40ba2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2286.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2286.agda", "max_line_length": 90, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2286.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 173, "size": 509 }
-- Andreas, 2018-06-14, issue #2513, parsing attributes -- Run-time only use. postulate @0 RT₁ : Set @erased RT₂ : Set -- Default: unrestricted use. postulate @ω CT₁ : Set @plenty CT₂ : Set -- Irrelevance. postulate . I₀ : Set @irr I₁ : Set @irrelevant I₂ : Set -- Shape-irrelevance postulate -- .. SI₀ : Set -- Does not parse (yet). @shirr SI₁ : Set @shape-irrelevant SI₂ : Set -- Relevance (default). postulate R₀ : Set @relevant R₁ : Set -- Mix. postulate @0 @shape-irrelevant M : Set -- In function spaces and telescopes. @ω id : ∀{@0 A : Set} → @relevant @ω A → A id x = x data Wrap (@0 A : Set) : Set where wrap' : @relevant A → Wrap A wrap : ∀ (@0 A) → A → Wrap A wrap A x = wrap' x -- In record fields. record Squash (@0 A : Set) : Set where no-eta-equality; constructor squash; field @irrelevant squashed : A
{ "alphanum_fraction": 0.595814978, "avg_line_length": 16.2142857143, "ext": "agda", "hexsha": "aea86132ba9829de4ba2d3f94d65cad45ed1a427", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Attributes.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/Attributes.agda", "max_line_length": 55, "max_stars_count": 2, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/Attributes.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 311, "size": 908 }
{-# OPTIONS --without-K --exact-split #-} module 20-pullbacks where import 19-fundamental-cover open 19-fundamental-cover public -- Section 13.1 Cartesian squares {- We introduce the basic concepts of this chapter: commuting squares, cospans, cones, and pullback squares. Pullback squares are also called cartesian squares. -} {- Commutativity of squares is expressed with a homotopy. -} coherence-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (top : C → B) (left : C → A) (right : B → X) (bottom : A → X) → UU (l3 ⊔ l4) coherence-square top left right bottom = (bottom ∘ left) ~ (right ∘ top) {- A cospan is a pair of functions with a common codomain. -} cospan : {l1 l2 : Level} (l : Level) (A : UU l1) (B : UU l2) → UU (l1 ⊔ (l2 ⊔ (lsuc l))) cospan l A B = Σ (UU l) (λ X → (A → X) × (B → X)) {- A cone on a cospan with a vertex C is a pair of functions from C into the domains of the maps in the cospan, equipped with a homotopy witnessing that the resulting square commutes. -} cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → UU l4 → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4))) cone {A = A} {B = B} f g C = Σ (C → A) (λ p → Σ (C → B) (λ q → coherence-square q p g f)) {- A map into the vertex of a cone induces a new cone. -} cone-map : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} {C' : UU l5} → cone f g C → (C' → C) → cone f g C' cone-map f g c h = pair ( (pr1 c) ∘ h) ( pair ( (pr1 (pr2 c)) ∘ h) ( (pr2 (pr2 c)) ·r h)) {- We introduce the universal property of pullbacks. -} universal-property-pullback : {l1 l2 l3 l4 : Level} (l : Level) {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} → cone f g C → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ (l4 ⊔ (lsuc l))))) universal-property-pullback l f g c = (C' : UU l) → is-equiv (cone-map f g {C' = C'} c) is-prop-universal-property-pullback : {l1 l2 l3 l4 : Level} (l : Level) {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c : cone f g C) → is-prop (universal-property-pullback l f g c) is-prop-universal-property-pullback l f g c = is-prop-Π (λ C' → is-subtype-is-equiv (cone-map f g c)) {- lower-universal-property-pullback : {l1 l2 l3 l4 : Level} (l l' : Level) {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c : cone f g C) → universal-property-pullback (l ⊔ l') f g c → universal-property-pullback l f g c lower-universal-property-pullback l l' f g c up-c C' = is-equiv-right-factor {!!} {!!} {!!} {!!} {!!} {!!} -} map-universal-property-pullback : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c : cone f g C) → universal-property-pullback l5 f g c → {C' : UU l5} (c' : cone f g C') → C' → C map-universal-property-pullback f g c up-c {C'} c' = inv-is-equiv (up-c C') c' eq-map-universal-property-pullback : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c : cone f g C) → (up-c : universal-property-pullback l5 f g c) → {C' : UU l5} (c' : cone f g C') → Id (cone-map f g c (map-universal-property-pullback f g c up-c c')) c' eq-map-universal-property-pullback f g c up-c {C'} c' = issec-inv-is-equiv (up-c C') c' {- Next we characterize the identity type of the type of cones with a given vertex C. Note that in the definition of htpy-cone we do not use pattern matching on the cones c and c'. This is to ensure that the type htpy-cone f g c c' is a Σ-type for any c and c', not just for c and c' of the form (pair p (pair q H)) and (pair p' (pair q' H')) respectively. -} coherence-htpy-cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c c' : cone f g C) → (K : (pr1 c) ~ (pr1 c')) (L : (pr1 (pr2 c)) ~ (pr1 (pr2 c'))) → UU (l4 ⊔ l3) coherence-htpy-cone f g c c' K L = ( (pr2 (pr2 c)) ∙h (htpy-left-whisk g L)) ~ ( (htpy-left-whisk f K) ∙h (pr2 (pr2 c'))) htpy-cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} → cone f g C → cone f g C → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4))) htpy-cone f g c c' = Σ ( (pr1 c) ~ (pr1 c')) ( λ K → Σ ((pr1 (pr2 c)) ~ (pr1 (pr2 c'))) ( λ L → coherence-htpy-cone f g c c' K L)) reflexive-htpy-cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c : cone f g C) → htpy-cone f g c c reflexive-htpy-cone f g c = pair refl-htpy (pair refl-htpy htpy-right-unit) htpy-cone-eq : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c c' : cone f g C) → Id c c' → htpy-cone f g c c' htpy-cone-eq f g c .c refl = reflexive-htpy-cone f g c abstract is-contr-total-htpy-cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c : cone f g C) → is-contr (Σ (cone f g C) (htpy-cone f g c)) is-contr-total-htpy-cone {A = A} {B} f g {C} (pair p (pair q H)) = is-contr-total-Eq-structure ( λ p' qH' K → Σ ( q ~ (pr1 qH')) ( coherence-htpy-cone f g (pair p (pair q H)) (pair p' qH') K)) ( is-contr-total-htpy p) ( pair p refl-htpy) ( is-contr-total-Eq-structure ( λ q' H' → coherence-htpy-cone f g ( pair p (pair q H)) ( pair p (pair q' H')) ( refl-htpy)) ( is-contr-total-htpy q) ( pair q refl-htpy) ( is-contr-equiv' ( Σ ((f ∘ p) ~ (g ∘ q)) (λ H' → H ~ H')) ( equiv-tot ( λ H' → equiv-htpy-concat htpy-right-unit H')) ( is-contr-total-htpy H))) abstract is-fiberwise-equiv-htpy-cone-eq : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c : cone f g C) → is-fiberwise-equiv (htpy-cone-eq f g c) is-fiberwise-equiv-htpy-cone-eq f g {C = C} c = fundamental-theorem-id c ( htpy-cone-eq f g c c refl) ( is-contr-total-htpy-cone f g c) ( htpy-cone-eq f g c) equiv-htpy-cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c c' : cone f g C) → Id c c' ≃ htpy-cone f g c c' equiv-htpy-cone f g c c' = pair (htpy-cone-eq f g c c') (is-fiberwise-equiv-htpy-cone-eq f g c c') {- The inverse of htpy-cone-eq is the map eq-htpy-cone. -} eq-htpy-cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {f : A → X} {g : B → X} {C : UU l4} (c c' : cone f g C) → htpy-cone f g c c' → Id c c' eq-htpy-cone {f = f} {g = g} c c' = inv-is-equiv (is-fiberwise-equiv-htpy-cone-eq f g c c') {- This completes our characterization of the identity type of the type of cones with a fixed vertex C. -} {- We now conclude the universal property of pullbacks as the following statement of contractibility. -} abstract is-contr-universal-property-pullback : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → universal-property-pullback l5 f g c → (C' : UU l5) (c' : cone f g C') → is-contr (Σ (C' → C) (λ h → htpy-cone f g (cone-map f g c h) c')) is-contr-universal-property-pullback {C = C} f g c up C' c' = is-contr-equiv' ( Σ (C' → C) (λ h → Id (cone-map f g c h) c')) ( equiv-tot (λ h → equiv-htpy-cone f g (cone-map f g c h) c')) ( is-contr-map-is-equiv (up C') c') {- Next we establish a '3-for-2' property for pullbacks. -} triangle-cone-cone : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {C' : UU l5} {f : A → X} {g : B → X} (c : cone f g C) (c' : cone f g C') (h : C' → C) (KLM : htpy-cone f g (cone-map f g c h) c') (D : UU l6) → (cone-map f g {C' = D} c') ~ ((cone-map f g c) ∘ (λ (k : D → C') → h ∘ k)) triangle-cone-cone {C' = C'} {f = f} {g = g} c c' h KLM D k = inv (ap ( λ t → cone-map f g {C' = D} t k) { x = (cone-map f g c h)} { y = c'} ( eq-htpy-cone (cone-map f g c h) c' KLM)) abstract is-equiv-up-pullback-up-pullback : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {C' : UU l5} (f : A → X) (g : B → X) (c : cone f g C) (c' : cone f g C') (h : C' → C) (KLM : htpy-cone f g (cone-map f g c h) c') → ({l : Level} → universal-property-pullback l f g c) → ({l : Level} → universal-property-pullback l f g c') → is-equiv h is-equiv-up-pullback-up-pullback {C = C} {C' = C'} f g c c' h KLM up up' = is-equiv-is-equiv-postcomp h ( λ D → is-equiv-right-factor ( cone-map f g {C' = D} c') ( cone-map f g c) ( λ (k : D → C') → h ∘ k) ( triangle-cone-cone {C = C} {C' = C'} {f = f} {g = g} c c' h KLM D) ( up D) (up' D)) abstract is-equiv-up-pullback-up-pullback' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {C' : UU l4} (f : A → X) (g : B → X) (c : cone f g C) (c' : cone f g C') → (h : C' → C) (KLM : htpy-cone f g (cone-map f g c h) c') → universal-property-pullback l4 f g c → universal-property-pullback l4 f g c' → is-equiv h is-equiv-up-pullback-up-pullback' {C = C} {C' = C'} f g c c' h KLM up-c up-c' = is-equiv-is-equiv-postcomp' h ( λ D → is-equiv-right-factor ( cone-map f g {C' = D} c') ( cone-map f g c) ( λ (k : D → C') → h ∘ k) ( triangle-cone-cone {C = C} {C' = C'} {f = f} {g = g} c c' h KLM D) (up-c D) (up-c' D)) abstract up-pullback-up-pullback-is-equiv : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {C' : UU l5} (f : A → X) (g : B → X) (c : cone f g C) (c' : cone f g C') (h : C' → C) (KLM : htpy-cone f g (cone-map f g c h) c') → is-equiv h → ({l : Level} → universal-property-pullback l f g c) → ({l : Level} → universal-property-pullback l f g c') up-pullback-up-pullback-is-equiv f g c c' h KLM is-equiv-h up D = is-equiv-comp ( cone-map f g c') ( cone-map f g c) ( λ k → h ∘ k) ( triangle-cone-cone {f = f} {g = g} c c' h KLM D) ( is-equiv-postcomp-is-equiv h is-equiv-h D) ( up D) abstract up-pullback-is-equiv-up-pullback : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {C' : UU l5} (f : A → X) (g : B → X) (c : cone f g C) (c' : cone f g C') (h : C' → C) (KLM : htpy-cone f g (cone-map f g c h) c') → ({l : Level} → universal-property-pullback l f g c') → is-equiv h → ({l : Level} → universal-property-pullback l f g c) up-pullback-is-equiv-up-pullback f g c c' h KLM up' is-equiv-h D = is-equiv-left-factor ( cone-map f g c') ( cone-map f g c) ( λ k → h ∘ k) ( triangle-cone-cone {f = f} {g = g} c c' h KLM D) ( up' D) ( is-equiv-postcomp-is-equiv h is-equiv-h D) {- This concludes the '3-for-2-property' of pullbacks. -} {- We establish the uniquely uniqueness of pullbacks. -} htpy-cone-map-universal-property-pullback : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c : cone f g C) → (up-c : universal-property-pullback l5 f g c) → {C' : UU l5} (c' : cone f g C') → htpy-cone f g ( cone-map f g c (map-universal-property-pullback f g c up-c c')) ( c') htpy-cone-map-universal-property-pullback f g c up-c c' = htpy-cone-eq f g ( cone-map f g c (map-universal-property-pullback f g c up-c c')) ( c') ( eq-map-universal-property-pullback f g c up-c c') {- We describe the type of all pullbacks in a universe UU l. -} UU-pullback : {l1 l2 l3 : Level} (l : Level) {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → UU _ UU-pullback l f g = Σ (UU l) (λ C → Σ (cone f g C) (λ c → universal-property-pullback l f g c)) equiv-pullback : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → UU-pullback l4 f g → UU-pullback l5 f g → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5) equiv-pullback f g (pair C (pair c is-pb-C)) P' = Σ ( (pr1 P') ≃ C) ( λ e → htpy-cone f g (cone-map f g c (map-equiv e)) (pr1 (pr2 P'))) reflexive-equiv-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (P : UU-pullback l4 f g) → equiv-pullback f g P P reflexive-equiv-pullback f g (pair C (pair c is-pb-C)) = pair (equiv-id C) (reflexive-htpy-cone f g c) equiv-pullback-eq : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (P P' : UU-pullback l4 f g) → Id P P' → equiv-pullback f g P P' equiv-pullback-eq f g P .P refl = reflexive-equiv-pullback f g P is-contr-total-equiv-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (P : UU-pullback l4 f g) → is-contr (Σ (UU-pullback l4 f g) (equiv-pullback f g P)) is-contr-total-equiv-pullback f g (pair C (pair c is-pb-C)) = is-contr-total-Eq-structure ( λ C' t e → htpy-cone f g (cone-map f g c (map-equiv e)) (pr1 t)) ( is-contr-total-equiv' C) ( pair C (equiv-id C)) ( is-contr-total-Eq-substructure ( is-contr-total-htpy-cone f g c) ( is-prop-universal-property-pullback _ f g) ( c) ( reflexive-htpy-cone f g c) ( is-pb-C)) is-equiv-equiv-pullback-eq : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (P Q : UU-pullback l4 f g) → is-equiv (equiv-pullback-eq f g P Q) is-equiv-equiv-pullback-eq f g P = fundamental-theorem-id P ( reflexive-equiv-pullback f g P) ( is-contr-total-equiv-pullback f g P) ( equiv-pullback-eq f g P) equiv-equiv-pullback-eq : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (P P' : UU-pullback l4 f g) → Id P P' ≃ equiv-pullback f g P P' equiv-equiv-pullback-eq f g P P' = pair (equiv-pullback-eq f g P P') (is-equiv-equiv-pullback-eq f g P P') {- We show that pullbacks are uniquely unique, and indeed that the type of all pullbacks in any given universe level is a proposition. -} {- abstract uniquely-unique-pullback : { l1 l2 l3 l4 l5 : Level} { A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {C' : UU l5} ( f : A → X) (g : B → X) (c : cone f g C) (c' : cone f g C') → ( up-c' : {l : Level} → universal-property-pullback l f g c') → ( up-c : {l : Level} → universal-property-pullback l f g c) → is-contr ( equiv-pullback f g (pair C (pair c up-c)) (pair C' (pair c' up-c'))) uniquely-unique-pullback {C = C} {C' = C'} f g c c' up-c' up-c = is-contr-total-Eq-substructure ( is-contr-universal-property-pullback f g c up-c C' c') ( is-subtype-is-equiv) ( map-universal-property-pullback f g c up-c c') ( htpy-cone-map-universal-property-pullback f g c up-c c') ( is-equiv-up-pullback-up-pullback f g c c' ( map-universal-property-pullback f g c up-c c') ( htpy-cone-map-universal-property-pullback f g c up-c c') up-c up-c') -} abstract uniquely-unique-pullback' : { l1 l2 l3 l4 : Level} { A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {C' : UU l4} ( f : A → X) (g : B → X) (c : cone f g C) (c' : cone f g C') → ( up-c' : universal-property-pullback l4 f g c') → ( up-c : universal-property-pullback l4 f g c) → is-contr ( equiv-pullback f g (pair C (pair c up-c)) (pair C' (pair c' up-c'))) uniquely-unique-pullback' {C = C} {C' = C'} f g c c' up-c' up-c = is-contr-total-Eq-substructure ( is-contr-universal-property-pullback f g c up-c C' c') ( is-subtype-is-equiv) ( map-universal-property-pullback f g c up-c c') ( htpy-cone-map-universal-property-pullback f g c up-c c') ( is-equiv-up-pullback-up-pullback' f g c c' ( map-universal-property-pullback f g c up-c c') ( htpy-cone-map-universal-property-pullback f g c up-c c') up-c up-c') is-prop-UU-pullback : {l1 l2 l3 : Level} (l : Level) {A : UU l1} {B : UU l2} {X : UU l3} ( f : A → X) (g : B → X) → is-prop (UU-pullback l f g) is-prop-UU-pullback l f g (pair C (pair c up-c)) (pair C' (pair c' up-c')) = is-contr-equiv ( equiv-pullback f g ( pair C (pair c up-c)) ( pair C' (pair c' up-c'))) ( equiv-equiv-pullback-eq f g ( pair C (pair c up-c)) ( pair C' (pair c' up-c'))) ( uniquely-unique-pullback' f g c c' up-c' up-c) -- Section 13.2 {- The canonical pullback is a type which can be equipped with a cone that satisfies the universal property of a pullback. -} canonical-pullback : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → UU ((l1 ⊔ l2) ⊔ l3) canonical-pullback {A = A} {B = B} f g = Σ A (λ x → Σ B (λ y → Id (f x) (g y))) {- We construct the maps and homotopies that are part of the cone structure of the canonical pullback. -} π₁ : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {f : A → X} {g : B → X} → canonical-pullback f g → A π₁ = pr1 π₂ : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {f : A → X} {g : B → X} → canonical-pullback f g → B π₂ t = pr1 (pr2 t) π₃ : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {f : A → X} {g : B → X} → (f ∘ (π₁ {f = f} {g = g})) ~ (g ∘ (π₂ {f = f} {g = g})) π₃ t = pr2 (pr2 t) cone-canonical-pullback : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → cone f g (canonical-pullback f g) cone-canonical-pullback f g = pair π₁ (pair π₂ π₃) {- We show that the canonical pullback satisfies the universal property of a pullback. -} abstract universal-property-pullback-canonical-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → universal-property-pullback l4 f g (cone-canonical-pullback f g) universal-property-pullback-canonical-pullback f g C = is-equiv-comp ( cone-map f g (cone-canonical-pullback f g)) ( tot (λ p → choice-∞)) ( mapping-into-Σ) ( refl-htpy) ( is-equiv-mapping-into-Σ) ( is-equiv-tot-is-fiberwise-equiv ( λ p → is-equiv-choice-∞)) {- We characterize the identity type of the canonical pullback. -} Eq-canonical-pullback : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (t t' : canonical-pullback f g) → UU (l1 ⊔ (l2 ⊔ l3)) Eq-canonical-pullback f g (pair a bp) t' = let b = pr1 bp p = pr2 bp a' = pr1 t' b' = pr1 (pr2 t') p' = pr2 (pr2 t') in Σ (Id a a') (λ α → Σ (Id b b') (λ β → Id ((ap f α) ∙ p') (p ∙ (ap g β)))) reflexive-Eq-canonical-pullback : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (t : canonical-pullback f g) → Eq-canonical-pullback f g t t reflexive-Eq-canonical-pullback f g (pair a (pair b p)) = pair refl (pair refl (inv right-unit)) Eq-canonical-pullback-eq : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (t t' : canonical-pullback f g) → Id t t' → Eq-canonical-pullback f g t t' Eq-canonical-pullback-eq f g t .t refl = reflexive-Eq-canonical-pullback f g t abstract is-contr-total-Eq-canonical-pullback : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (t : canonical-pullback f g) → is-contr (Σ (canonical-pullback f g) (Eq-canonical-pullback f g t)) is-contr-total-Eq-canonical-pullback f g (pair a (pair b p)) = is-contr-total-Eq-structure ( λ a' bp' α → Σ (Id b (pr1 bp')) (λ β → Id ((ap f α) ∙ (pr2 bp')) (p ∙ (ap g β)))) ( is-contr-total-path a) ( pair a refl) ( is-contr-total-Eq-structure ( λ b' p' β → Id ((ap f refl) ∙ p') (p ∙ (ap g β))) ( is-contr-total-path b) ( pair b refl) ( is-contr-equiv' ( Σ (Id (f a) (g b)) (λ p' → Id p p')) ( equiv-tot ( λ p' → (equiv-concat' p' (inv right-unit)) ∘e (equiv-inv p p'))) ( is-contr-total-path p))) abstract is-equiv-Eq-canonical-pullback-eq : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (t t' : canonical-pullback f g) → is-equiv (Eq-canonical-pullback-eq f g t t') is-equiv-Eq-canonical-pullback-eq f g t = fundamental-theorem-id t ( reflexive-Eq-canonical-pullback f g t) ( is-contr-total-Eq-canonical-pullback f g t) ( Eq-canonical-pullback-eq f g t) eq-Eq-canonical-pullback : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} ( f : A → X) (g : B → X) {t t' : canonical-pullback f g} → ( α : Id (pr1 t) (pr1 t')) (β : Id (pr1 (pr2 t)) (pr1 (pr2 t'))) → ( Id ((ap f α) ∙ (pr2 (pr2 t'))) ((pr2 (pr2 t)) ∙ (ap g β))) → Id t t' eq-Eq-canonical-pullback f g {pair a (pair b p)} {pair a' (pair b' p')} α β γ = inv-is-equiv ( is-equiv-Eq-canonical-pullback-eq f g ( pair a (pair b p)) ( pair a' (pair b' p'))) ( pair α (pair β γ)) {- The gap map of a square is the map fron the vertex of the cone into the canonical pullback. -} gap : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) → cone f g C → C → canonical-pullback f g gap f g c z = pair ((pr1 c) z) (pair ((pr1 (pr2 c)) z) ((pr2 (pr2 c)) z)) {- The proposition is-pullback is the assertion that the gap map is an equivalence. Note that this proposition is small, whereas the universal property is a large proposition. Of course, we will show below that the proposition is-pullback is equivalent to the universal property of pullbacks. -} is-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) → cone f g C → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4))) is-pullback f g c = is-equiv (gap f g c) {- We first establish that a cone is equal to the value of cone-map at its own gap map. -} htpy-cone-up-pullback-canonical-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → htpy-cone f g (cone-map f g (cone-canonical-pullback f g) (gap f g c)) c htpy-cone-up-pullback-canonical-pullback f g c = pair refl-htpy ( pair refl-htpy htpy-right-unit) {- We show that the universal property of the pullback implies that the gap map is an equivalence. -} abstract is-pullback-up-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → ({l : Level} → universal-property-pullback l f g c) → is-pullback f g c is-pullback-up-pullback f g c up = is-equiv-up-pullback-up-pullback f g ( cone-canonical-pullback f g) ( c) ( gap f g c) ( htpy-cone-up-pullback-canonical-pullback f g c) ( universal-property-pullback-canonical-pullback f g) ( up) {- We show that the universal property follows from the assumption that the the gap map is an equivalence. -} abstract up-pullback-is-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → ({l : Level} → universal-property-pullback l f g c) up-pullback-is-pullback f g c is-pullback-c = up-pullback-up-pullback-is-equiv f g ( cone-canonical-pullback f g) ( c) ( gap f g c) ( htpy-cone-up-pullback-canonical-pullback f g c) ( is-pullback-c) ( universal-property-pullback-canonical-pullback f g) -- Section 13.3 Fiber products {- We construct the cone for two maps into the unit type. -} cone-prod : {i j : Level} (A : UU i) (B : UU j) → cone (const A unit star) (const B unit star) (A × B) cone-prod A B = pair pr1 (pair pr2 refl-htpy) {- Cartesian products are a special case of pullbacks. -} inv-gap-prod : {i j : Level} (A : UU i) (B : UU j) → canonical-pullback (const A unit star) (const B unit star) → A × B inv-gap-prod A B (pair a (pair b p)) = pair a b issec-inv-gap-prod : {i j : Level} (A : UU i) (B : UU j) → ( ( gap (const A unit star) (const B unit star) (cone-prod A B)) ∘ ( inv-gap-prod A B)) ~ id issec-inv-gap-prod A B (pair a (pair b p)) = eq-Eq-canonical-pullback ( const A unit star) ( const B unit star) refl refl ( is-prop-is-contr' (is-prop-is-contr is-contr-unit star star) p refl) isretr-inv-gap-prod : {i j : Level} (A : UU i) (B : UU j) → ( ( inv-gap-prod A B) ∘ ( gap (const A unit star) (const B unit star) (cone-prod A B))) ~ id isretr-inv-gap-prod A B (pair a b) = eq-pair refl refl abstract is-pullback-prod : {i j : Level} (A : UU i) (B : UU j) → is-pullback (const A unit star) (const B unit star) (cone-prod A B) is-pullback-prod A B = is-equiv-has-inverse ( inv-gap-prod A B) ( issec-inv-gap-prod A B) ( isretr-inv-gap-prod A B) {- We conclude that cartesian products satisfy the universal property of pullbacks. -} abstract universal-property-pullback-prod : {i j : Level} (A : UU i) (B : UU j) → {l : Level} → universal-property-pullback l ( const A unit star) ( const B unit star) ( cone-prod A B) universal-property-pullback-prod A B = up-pullback-is-pullback ( const A unit star) ( const B unit star) ( cone-prod A B) ( is-pullback-prod A B) {- Similar as the above, but now for families of products. -} cone-fiberwise-prod : {l1 l2 l3 : Level} {X : UU l1} (P : X → UU l2) (Q : X → UU l3) → cone (pr1 {A = X} {B = P}) (pr1 {A = X} {B = Q}) (Σ X (λ x → (P x) × (Q x))) cone-fiberwise-prod P Q = pair ( tot (λ x → pr1)) ( pair ( tot (λ x → pr2)) ( refl-htpy)) {- We will show that the fiberwise product is a pullback by showing that the gap map is an equivalence. We do this by directly construct an inverse to the gap map. -} inv-gap-fiberwise-prod : {l1 l2 l3 : Level} {X : UU l1} (P : X → UU l2) (Q : X → UU l3) → canonical-pullback (pr1 {B = P}) (pr1 {B = Q}) → Σ X (λ x → (P x) × (Q x)) inv-gap-fiberwise-prod P Q (pair (pair x p) (pair (pair .x q) refl)) = pair x (pair p q) issec-inv-gap-fiberwise-prod : {l1 l2 l3 : Level} {X : UU l1} (P : X → UU l2) (Q : X → UU l3) → ((gap (pr1 {B = P}) (pr1 {B = Q}) (cone-fiberwise-prod P Q)) ∘ (inv-gap-fiberwise-prod P Q)) ~ id issec-inv-gap-fiberwise-prod P Q (pair (pair x p) (pair (pair .x q) refl)) = eq-pair refl (eq-pair refl refl) isretr-inv-gap-fiberwise-prod : {l1 l2 l3 : Level} {X : UU l1} (P : X → UU l2) (Q : X → UU l3) → ( ( inv-gap-fiberwise-prod P Q) ∘ ( gap (pr1 {B = P}) (pr1 {B = Q}) (cone-fiberwise-prod P Q))) ~ id isretr-inv-gap-fiberwise-prod P Q (pair x (pair p q)) = refl {- With all the pieces in place we conclude that the fiberwise product is a pullback. -} abstract is-pullback-fiberwise-prod : {l1 l2 l3 : Level} {X : UU l1} (P : X → UU l2) (Q : X → UU l3) → is-pullback (pr1 {A = X} {B = P}) (pr1 {A = X} {B = Q}) (cone-fiberwise-prod P Q) is-pullback-fiberwise-prod P Q = is-equiv-has-inverse ( inv-gap-fiberwise-prod P Q) ( issec-inv-gap-fiberwise-prod P Q) ( isretr-inv-gap-fiberwise-prod P Q) {- Furthermore we conclude that the fiberwise product satisfies the universal property of pullbacks. -} abstract universal-property-pullback-fiberwise-prod : {l1 l2 l3 l4 : Level} {X : UU l1} (P : X → UU l2) (Q : X → UU l3) → universal-property-pullback l4 (pr1 {B = P}) (pr1 {B = Q}) (cone-fiberwise-prod P Q) universal-property-pullback-fiberwise-prod P Q = up-pullback-is-pullback pr1 pr1 ( cone-fiberwise-prod P Q) ( is-pullback-fiberwise-prod P Q) {- We now generalize the above to arbitrary maps and their fibers. -} cone-total-prod-fibers : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → cone f g (Σ X (λ x → (fib f x) × (fib g x))) cone-total-prod-fibers f g = pair ( λ t → pr1 (pr1 (pr2 t))) ( pair ( λ t → pr1 (pr2 (pr2 t))) ( λ t → (pr2 (pr1 (pr2 t))) ∙ (inv (pr2 (pr2 (pr2 t)))))) cone-span : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {A' : UU l4} {B' : UU l5} {C : A' → B' → UU l6} (i : A' → A) (j : B' → B) (k : (x : A') (y : B') → C x y → Id (f (i x)) (g (j y))) → cone f g (Σ A' (λ x → Σ B' (C x))) cone-span f g i j k = pair ( λ t → i (pr1 t)) ( pair ( λ t → j (pr1 (pr2 t))) ( λ t → k (pr1 t) (pr1 (pr2 t)) (pr2 (pr2 t)))) abstract is-pullback-cone-span-is-equiv : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {A' : UU l4} {B' : UU l5} {C : A' → B' → UU l6} (i : A' → A) (j : B' → B) (k : (x' : A') (y' : B') → C x' y' → Id (f (i x')) (g (j y'))) → is-equiv i → is-equiv j → ((x : A') (y : B') → is-equiv (k x y)) → is-pullback f g (cone-span f g i j k) is-pullback-cone-span-is-equiv {B = B} f g i j k is-equiv-i is-equiv-j is-equiv-k = is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map ( λ x → Σ B (λ y → Id (f x) (g y))) ( i) ( λ x' → toto (λ y → Id (f (i x')) (g y)) j (k x')) ( is-equiv-i) ( λ x' → is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map ( λ y → Id (f (i x')) (g y)) ( j) ( k x') ( is-equiv-j) ( is-equiv-k x')) abstract is-pullback-total-prod-fibers : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → is-pullback f g (cone-total-prod-fibers f g) is-pullback-total-prod-fibers f g = is-equiv-comp ( gap f g (cone-total-prod-fibers f g)) ( gap f g (cone-span f g ( Σ-fib-to-domain f) ( Σ-fib-to-domain g) ( λ s t α → (pr2 (pr2 s)) ∙ (α ∙ (inv (pr2 (pr2 t))))))) ( gap ( pr1 {B = fib f}) ( pr1 {B = fib g}) ( cone-fiberwise-prod (fib f) (fib g))) ( λ t → refl) ( is-pullback-fiberwise-prod (fib f) (fib g)) ( is-pullback-cone-span-is-equiv f g ( Σ-fib-to-domain f) ( Σ-fib-to-domain g) ( λ s t α → (pr2 (pr2 s)) ∙ (α ∙ (inv (pr2 (pr2 t))))) ( is-equiv-Σ-fib-to-domain f) ( is-equiv-Σ-fib-to-domain g) ( λ s t → is-equiv-comp _ ( concat (pr2 (pr2 s)) (g (pr1 (pr2 t)))) ( concat' (pr1 s) (inv (pr2 (pr2 t)))) ( refl-htpy) ( is-equiv-concat' (pr1 s) (inv (pr2 (pr2 t)))) ( is-equiv-concat (pr2 (pr2 s)) (g (pr1 (pr2 t)))))) -- Section 13.4 Fibers as pullbacks square-fiber : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (b : B) → ( f ∘ (pr1 {B = λ x → Id (f x) b})) ~ ( (const unit B b) ∘ (const (fib f b) unit star)) square-fiber f b = pr2 cone-fiber : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (b : B) → cone f (const unit B b) (fib f b) cone-fiber f b = pair pr1 (pair (const (fib f b) unit star) (square-fiber f b)) abstract is-pullback-cone-fiber : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → (b : B) → is-pullback f (const unit B b) (cone-fiber f b) is-pullback-cone-fiber f b = is-equiv-tot-is-fiberwise-equiv ( λ a → is-equiv-left-unit-law-Σ-map-gen (λ t → Id (f a) b) is-contr-unit star) abstract universal-property-pullback-cone-fiber : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (b : B) → universal-property-pullback l3 f (const unit B b) (cone-fiber f b) universal-property-pullback-cone-fiber {B = B} f b = up-pullback-is-pullback f (const unit B b) ( cone-fiber f b) ( is-pullback-cone-fiber f b) cone-fiber-fam : {l1 l2 : Level} {A : UU l1} (B : A → UU l2) (a : A) → cone (pr1 {B = B}) (const unit A a) (B a) cone-fiber-fam B a = pair (λ b → pair a b) (pair (const (B a) unit star) (λ b → refl)) abstract is-pullback-cone-fiber-fam : {l1 l2 : Level} {A : UU l1} (B : A → UU l2) → (a : A) → is-pullback (pr1 {B = B}) (const unit A a) (cone-fiber-fam B a) is-pullback-cone-fiber-fam {A = A} B a = is-equiv-comp ( gap (pr1 {B = B}) (const unit A a) (cone-fiber-fam B a)) ( gap (pr1 {B = B}) (const unit A a) (cone-fiber (pr1 {B = B}) a)) ( fib-pr1-fib-fam B a) ( λ y → refl) ( is-equiv-fib-pr1-fib-fam B a) ( is-pullback-cone-fiber pr1 a) -- Section 13.5 Fiberwise equivalences cone-subst : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (Q : B → UU l3) → cone f (pr1 {B = Q}) (Σ A (λ x → Q (f x))) cone-subst f Q = pair pr1 (pair (Σ-map-base-map f Q) (λ t → refl)) inv-gap-cone-subst : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (Q : B → UU l3) → canonical-pullback f (pr1 {B = Q}) → Σ A (λ x → Q (f x)) inv-gap-cone-subst f Q (pair x (pair (pair .(f x) q) refl)) = pair x q issec-inv-gap-cone-subst : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (Q : B → UU l3) → ((gap f (pr1 {B = Q}) (cone-subst f Q)) ∘ (inv-gap-cone-subst f Q)) ~ id issec-inv-gap-cone-subst f Q (pair x (pair (pair .(f x) q) refl)) = refl isretr-inv-gap-cone-subst : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (Q : B → UU l3) → ((inv-gap-cone-subst f Q) ∘ (gap f (pr1 {B = Q}) (cone-subst f Q))) ~ id isretr-inv-gap-cone-subst f Q (pair x q) = refl abstract is-pullback-cone-subst : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (Q : B → UU l3) → is-pullback f (pr1 {B = Q}) (cone-subst f Q) is-pullback-cone-subst f Q = is-equiv-has-inverse ( inv-gap-cone-subst f Q) ( issec-inv-gap-cone-subst f Q) ( isretr-inv-gap-cone-subst f Q) cone-toto : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {P : A → UU l3} (Q : B → UU l4) (f : A → B) (g : (x : A) → (P x) → (Q (f x))) → cone f (pr1 {B = Q}) (Σ A P) cone-toto Q f g = pair pr1 (pair (toto Q f g) (λ t → refl)) abstract is-pullback-is-fiberwise-equiv : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {P : A → UU l3} (Q : B → UU l4) (f : A → B) (g : (x : A) → (P x) → (Q (f x))) → is-fiberwise-equiv g → is-pullback f (pr1 {B = Q}) (cone-toto Q f g) is-pullback-is-fiberwise-equiv Q f g is-equiv-g = is-equiv-comp ( gap f pr1 (cone-toto Q f g)) ( gap f pr1 (cone-subst f Q)) ( tot g) ( λ t → refl) ( is-equiv-tot-is-fiberwise-equiv is-equiv-g) ( is-pullback-cone-subst f Q) abstract universal-property-pullback-is-fiberwise-equiv : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {P : A → UU l3} (Q : B → UU l4) (f : A → B) (g : (x : A) → (P x) → (Q (f x))) → is-fiberwise-equiv g → universal-property-pullback l5 f (pr1 {B = Q}) (cone-toto Q f g) universal-property-pullback-is-fiberwise-equiv Q f g is-equiv-g = up-pullback-is-pullback f pr1 (cone-toto Q f g) ( is-pullback-is-fiberwise-equiv Q f g is-equiv-g) abstract is-fiberwise-equiv-is-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {P : A → UU l3} (Q : B → UU l4) (f : A → B) (g : (x : A) → (P x) → (Q (f x))) → is-pullback f (pr1 {B = Q}) (cone-toto Q f g) → is-fiberwise-equiv g is-fiberwise-equiv-is-pullback Q f g is-pullback-cone-toto = is-fiberwise-equiv-is-equiv-tot g ( is-equiv-right-factor ( gap f pr1 (cone-toto Q f g)) ( gap f pr1 (cone-subst f Q)) ( tot g) ( λ t → refl) ( is-pullback-cone-subst f Q) ( is-pullback-cone-toto)) abstract is-fiberwise-equiv-universal-property-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {P : A → UU l3} (Q : B → UU l4) (f : A → B) (g : (x : A) → (P x) → (Q (f x))) → ( {l : Level} → universal-property-pullback l f (pr1 {B = Q}) (cone-toto Q f g)) → is-fiberwise-equiv g is-fiberwise-equiv-universal-property-pullback Q f g up = is-fiberwise-equiv-is-pullback Q f g ( is-pullback-up-pullback f pr1 (cone-toto Q f g) up) fib-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → (x : A) → fib (pr1 c) x → fib g (f x) fib-square f g c x t = let p = pr1 c q = pr1 (pr2 c) H = pr2 (pr2 c) in pair (q (pr1 t) ) ((inv (H (pr1 t))) ∙ (ap f (pr2 t))) fib-square-id : {l1 l2 : Level} {B : UU l1} {X : UU l2} (g : B → X) (x : X) → fib-square id g (pair g (pair id refl-htpy)) x ~ id fib-square-id g .(g b) (pair b refl) = refl square-tot-fib-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → ( (gap f g c) ∘ (Σ-fib-to-domain (pr1 c))) ~ ( (tot (λ a → tot (λ b → inv))) ∘ (tot (fib-square f g c))) square-tot-fib-square f g c (pair .((pr1 c) x) (pair x refl)) = let p = pr1 c q = pr1 (pr2 c) H = pr2 (pr2 c) in eq-pair refl ( eq-pair refl ( inv ((ap inv right-unit) ∙ (inv-inv (H x))))) abstract is-fiberwise-equiv-fib-square-is-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → is-fiberwise-equiv (fib-square f g c) is-fiberwise-equiv-fib-square-is-pullback f g c pb = let p = pr1 c q = pr1 (pr2 c) H = pr2 (pr2 c) in is-fiberwise-equiv-is-equiv-tot ( fib-square f g c) ( is-equiv-top-is-equiv-bottom-square ( Σ-fib-to-domain p) ( tot (λ x → tot (λ y → inv))) ( tot (fib-square f g c)) ( gap f g c) ( square-tot-fib-square f g c) ( is-equiv-Σ-fib-to-domain p) ( is-equiv-tot-is-fiberwise-equiv ( λ x → is-equiv-tot-is-fiberwise-equiv ( λ y → is-equiv-inv (g y) (f x)))) ( pb)) abstract is-pullback-is-fiberwise-equiv-fib-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-fiberwise-equiv (fib-square f g c) → is-pullback f g c is-pullback-is-fiberwise-equiv-fib-square f g c is-equiv-fsq = let p = pr1 c q = pr1 (pr2 c) H = pr2 (pr2 c) in is-equiv-bottom-is-equiv-top-square ( Σ-fib-to-domain p) ( tot (λ x → tot (λ y → inv))) ( tot (fib-square f g c)) ( gap f g c) ( square-tot-fib-square f g c) ( is-equiv-Σ-fib-to-domain p) ( is-equiv-tot-is-fiberwise-equiv ( λ x → is-equiv-tot-is-fiberwise-equiv ( λ y → is-equiv-inv (g y) (f x)))) ( is-equiv-tot-is-fiberwise-equiv is-equiv-fsq) abstract is-trunc-is-pullback : {l1 l2 l3 l4 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → is-trunc-map k g → is-trunc-map k (pr1 c) is-trunc-is-pullback k f g c pb is-trunc-g a = is-trunc-is-equiv k ( fib g (f a)) ( fib-square f g c a) ( is-fiberwise-equiv-fib-square-is-pullback f g c pb a) (is-trunc-g (f a)) abstract is-emb-is-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → is-emb g → is-emb (pr1 c) is-emb-is-pullback f g c pb is-emb-g = is-emb-is-prop-map ( pr1 c) ( is-trunc-is-pullback neg-one-𝕋 f g c pb (is-prop-map-is-emb g is-emb-g)) abstract is-equiv-is-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-equiv g → is-pullback f g c → is-equiv (pr1 c) is-equiv-is-pullback f g c is-equiv-g pb = is-equiv-is-contr-map ( is-trunc-is-pullback neg-two-𝕋 f g c pb ( is-contr-map-is-equiv is-equiv-g)) abstract is-pullback-is-equiv : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-equiv g → is-equiv (pr1 c) → is-pullback f g c is-pullback-is-equiv f g c is-equiv-g is-equiv-p = is-pullback-is-fiberwise-equiv-fib-square f g c ( λ a → is-equiv-is-contr ( fib-square f g c a) ( is-contr-map-is-equiv is-equiv-p a) ( is-contr-map-is-equiv is-equiv-g (f a))) -- Section 13.6 The pullback pasting property coherence-square-comp-horizontal : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (top-left : A → B) (top-right : B → C) (left : A → X) (mid : B → Y) (right : C → Z) (bottom-left : X → Y) (bottom-right : Y → Z) → coherence-square top-left left mid bottom-left → coherence-square top-right mid right bottom-right → coherence-square (top-right ∘ top-left) left right (bottom-right ∘ bottom-left) coherence-square-comp-horizontal top-left top-right left mid right bottom-left bottom-right sq-left sq-right = (bottom-right ·l sq-left) ∙h (sq-right ·r top-left) coherence-square-comp-vertical : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (top : A → X) (left-top : A → B) (right-top : X → Y) (mid : B → Y) (left-bottom : B → C) (right-bottom : Y → Z) (bottom : C → Z) → coherence-square top left-top right-top mid → coherence-square mid left-bottom right-bottom bottom → coherence-square top (left-bottom ∘ left-top) (right-bottom ∘ right-top) bottom coherence-square-comp-vertical top left-top right-top mid left-bottom right-bottom bottom sq-top sq-bottom = (sq-bottom ·r left-top) ∙h (right-bottom ·l sq-top) cone-comp-horizontal : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (i : X → Y) (j : Y → Z) (h : C → Z) → (c : cone j h B) → (cone i (pr1 c) A) → cone (j ∘ i) h A cone-comp-horizontal i j h c d = pair ( pr1 d) ( pair ( (pr1 (pr2 c)) ∘ (pr1 (pr2 d))) ( coherence-square-comp-horizontal (pr1 (pr2 d)) (pr1 (pr2 c)) (pr1 d) (pr1 c) h i j (pr2 (pr2 d)) (pr2 (pr2 c)))) cone-comp-vertical : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (f : C → Z) (g : Y → Z) (h : X → Y) → (c : cone f g B) → cone (pr1 (pr2 c)) h A → cone f (g ∘ h) A cone-comp-vertical f g h c d = pair ( (pr1 c) ∘ (pr1 d)) ( pair ( pr1 (pr2 d)) ( coherence-square-comp-vertical ( pr1 (pr2 d)) (pr1 d) h (pr1 (pr2 c)) (pr1 c) g f ( pr2 (pr2 d)) (pr2 (pr2 c)))) fib-square-comp-horizontal : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (i : X → Y) (j : Y → Z) (h : C → Z) → (c : cone j h B) (d : cone i (pr1 c) A) → (x : X) → ( fib-square (j ∘ i) h (cone-comp-horizontal i j h c d) x) ~ ( (fib-square j h c (i x)) ∘ (fib-square i (pr1 c) d x)) fib-square-comp-horizontal i j h c d .(pr1 d a) (pair a refl) = let f = pr1 d k = pr1 (pr2 d) H = pr2 (pr2 d) g = pr1 c l = pr1 (pr2 c) K = pr2 (pr2 c) in eq-pair refl ( ( ap ( concat' (h (l (k a))) refl) ( distributive-inv-concat (ap j (H a)) (K (k a)))) ∙ ( ( assoc (inv (K (k a))) (inv (ap j (H a))) refl) ∙ ( ap ( concat (inv (K (k a))) (j (i (f a)))) ( ( ap (concat' (j (g (k a))) refl) (inv (ap-inv j (H a)))) ∙ ( inv (ap-concat j (inv (H a)) refl)))))) fib-square-comp-vertical : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (f : C → Z) (g : Y → Z) (h : X → Y) → (c : cone f g B) (d : cone (pr1 (pr2 c)) h A) (x : C) → ( ( fib-square f (g ∘ h) (cone-comp-vertical f g h c d) x) ∘ ( inv-map-fib-comp (pr1 c) (pr1 d) x)) ~ ( ( inv-map-fib-comp g h (f x)) ∘ ( toto ( λ t → fib h (pr1 t)) ( fib-square f g c x) ( λ t → fib-square (pr1 (pr2 c)) h d (pr1 t)))) fib-square-comp-vertical f g h (pair p (pair q H)) (pair p' (pair q' H')) .(p (p' a)) (pair (pair .(p' a) refl) (pair a refl)) = eq-pair refl ( ( right-unit) ∙ ( ( distributive-inv-concat (H (p' a)) (ap g (H' a))) ∙ ( ( ap ( concat (inv (ap g (H' a))) (f (p (p' a)))) ( inv right-unit)) ∙ ( ap ( concat' (g (h (q' a))) ( pr2 ( fib-square f g ( pair p (pair q H)) ( p (p' a)) ( pair (p' a) refl)))) ( ( inv (ap-inv g (H' a))) ∙ ( ap (ap g) (inv right-unit))))))) abstract is-pullback-rectangle-is-pullback-left-square : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (i : X → Y) (j : Y → Z) (h : C → Z) (c : cone j h B) (d : cone i (pr1 c) A) → is-pullback j h c → is-pullback i (pr1 c) d → is-pullback (j ∘ i) h (cone-comp-horizontal i j h c d) is-pullback-rectangle-is-pullback-left-square i j h c d is-pb-c is-pb-d = is-pullback-is-fiberwise-equiv-fib-square (j ∘ i) h ( cone-comp-horizontal i j h c d) ( λ x → is-equiv-comp ( fib-square (j ∘ i) h (cone-comp-horizontal i j h c d) x) ( fib-square j h c (i x)) ( fib-square i (pr1 c) d x) ( fib-square-comp-horizontal i j h c d x) ( is-fiberwise-equiv-fib-square-is-pullback i (pr1 c) d is-pb-d x) ( is-fiberwise-equiv-fib-square-is-pullback j h c is-pb-c (i x))) abstract is-pullback-left-square-is-pullback-rectangle : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (i : X → Y) (j : Y → Z) (h : C → Z) (c : cone j h B) (d : cone i (pr1 c) A) → is-pullback j h c → is-pullback (j ∘ i) h (cone-comp-horizontal i j h c d) → is-pullback i (pr1 c) d is-pullback-left-square-is-pullback-rectangle i j h c d is-pb-c is-pb-rect = is-pullback-is-fiberwise-equiv-fib-square i (pr1 c) d ( λ x → is-equiv-right-factor ( fib-square (j ∘ i) h (cone-comp-horizontal i j h c d) x) ( fib-square j h c (i x)) ( fib-square i (pr1 c) d x) ( fib-square-comp-horizontal i j h c d x) ( is-fiberwise-equiv-fib-square-is-pullback j h c is-pb-c (i x)) ( is-fiberwise-equiv-fib-square-is-pullback (j ∘ i) h ( cone-comp-horizontal i j h c d) is-pb-rect x)) abstract is-pullback-top-is-pullback-rectangle : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (f : C → Z) (g : Y → Z) (h : X → Y) → (c : cone f g B) (d : cone (pr1 (pr2 c)) h A) → is-pullback f g c → is-pullback f (g ∘ h) (cone-comp-vertical f g h c d) → is-pullback (pr1 (pr2 c)) h d is-pullback-top-is-pullback-rectangle f g h c d is-pb-c is-pb-dc = is-pullback-is-fiberwise-equiv-fib-square (pr1 (pr2 c)) h d ( λ x → is-fiberwise-equiv-is-equiv-toto-is-equiv-base-map ( λ t → fib h (pr1 t)) ( fib-square f g c ((pr1 c) x)) ( λ t → fib-square (pr1 (pr2 c)) h d (pr1 t)) ( is-fiberwise-equiv-fib-square-is-pullback f g c is-pb-c ((pr1 c) x)) ( is-equiv-top-is-equiv-bottom-square ( inv-map-fib-comp (pr1 c) (pr1 d) ((pr1 c) x)) ( inv-map-fib-comp g h (f ((pr1 c) x))) ( toto ( λ t → fib h (pr1 t)) ( fib-square f g c ((pr1 c) x)) ( λ t → fib-square (pr1 (pr2 c)) h d (pr1 t))) ( fib-square f (g ∘ h) (cone-comp-vertical f g h c d) ((pr1 c) x)) ( fib-square-comp-vertical f g h c d ((pr1 c) x)) ( is-equiv-inv-map-fib-comp (pr1 c) (pr1 d) ((pr1 c) x)) ( is-equiv-inv-map-fib-comp g h (f ((pr1 c) x))) ( is-fiberwise-equiv-fib-square-is-pullback f (g ∘ h) ( cone-comp-vertical f g h c d) is-pb-dc ((pr1 c) x))) ( pair x refl)) abstract is-pullback-rectangle-is-pullback-top : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (f : C → Z) (g : Y → Z) (h : X → Y) → (c : cone f g B) (d : cone (pr1 (pr2 c)) h A) → is-pullback f g c → is-pullback (pr1 (pr2 c)) h d → is-pullback f (g ∘ h) (cone-comp-vertical f g h c d) is-pullback-rectangle-is-pullback-top f g h c d is-pb-c is-pb-d = is-pullback-is-fiberwise-equiv-fib-square f (g ∘ h) ( cone-comp-vertical f g h c d) ( λ x → is-equiv-bottom-is-equiv-top-square ( inv-map-fib-comp (pr1 c) (pr1 d) x) ( inv-map-fib-comp g h (f x)) ( toto ( λ t → fib h (pr1 t)) ( fib-square f g c x) ( λ t → fib-square (pr1 (pr2 c)) h d (pr1 t))) ( fib-square f (g ∘ h) (cone-comp-vertical f g h c d) x) ( fib-square-comp-vertical f g h c d x) ( is-equiv-inv-map-fib-comp (pr1 c) (pr1 d) x) ( is-equiv-inv-map-fib-comp g h (f x)) ( is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map ( λ t → fib h (pr1 t)) ( fib-square f g c x) ( λ t → fib-square (pr1 (pr2 c)) h d (pr1 t)) ( is-fiberwise-equiv-fib-square-is-pullback f g c is-pb-c x) ( λ t → is-fiberwise-equiv-fib-square-is-pullback (pr1 (pr2 c)) h d is-pb-d (pr1 t)))) -- Section 13.7 Descent for coproducts and Σ-types fib-functor-coprod-inl-fib : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (x : A) → fib f x → fib (functor-coprod f g) (inl x) fib-functor-coprod-inl-fib f g x (pair a' p) = pair (inl a') (ap inl p) fib-fib-functor-coprod-inl : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (x : A) → fib (functor-coprod f g) (inl x) → fib f x fib-fib-functor-coprod-inl f g x (pair (inl a') p) = pair a' (map-compute-eq-coprod-inl-inl (f a') x p) fib-fib-functor-coprod-inl f g x (pair (inr b') p) = ind-empty {P = λ t → fib f x} ( map-compute-eq-coprod-inr-inl (g b') x p) issec-fib-fib-functor-coprod-inl : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (x : A) → ( (fib-functor-coprod-inl-fib f g x) ∘ ( fib-fib-functor-coprod-inl f g x)) ~ id issec-fib-fib-functor-coprod-inl f g .(f a') (pair (inl a') refl) = eq-pair refl ( ap (ap inl) ( isretr-inv-is-equiv ( is-equiv-map-raise _ (Id (f a') (f a'))) refl)) issec-fib-fib-functor-coprod-inl f g x (pair (inr b') p) = ind-empty { P = λ t → Id ( fib-functor-coprod-inl-fib f g x ( fib-fib-functor-coprod-inl f g x (pair (inr b') p))) ( pair (inr b') p)} ( map-compute-eq-coprod-inr-inl (g b') x p) isretr-fib-fib-functor-coprod-inl : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (x : A) → ( (fib-fib-functor-coprod-inl f g x) ∘ ( fib-functor-coprod-inl-fib f g x)) ~ id isretr-fib-fib-functor-coprod-inl f g .(f a') (pair a' refl) = eq-pair refl ( isretr-inv-is-equiv (is-equiv-map-raise _ (Id (f a') (f a'))) refl) abstract is-equiv-fib-functor-coprod-inl-fib : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (x : A) → is-equiv (fib-functor-coprod-inl-fib f g x) is-equiv-fib-functor-coprod-inl-fib f g x = is-equiv-has-inverse ( fib-fib-functor-coprod-inl f g x) ( issec-fib-fib-functor-coprod-inl f g x) ( isretr-fib-fib-functor-coprod-inl f g x) fib-functor-coprod-inr-fib : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (y : B) → fib g y → fib (functor-coprod f g) (inr y) fib-functor-coprod-inr-fib f g y (pair b' p) = pair (inr b') (ap inr p) fib-fib-functor-coprod-inr : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (y : B) → fib (functor-coprod f g) (inr y) → fib g y fib-fib-functor-coprod-inr f g y (pair (inl a') p) = ind-empty {P = λ t → fib g y} ( map-compute-eq-coprod-inl-inr (f a') y p) fib-fib-functor-coprod-inr f g y (pair (inr b') p) = pair b' (map-compute-eq-coprod-inr-inr (g b') y p) issec-fib-fib-functor-coprod-inr : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (y : B) → ( (fib-functor-coprod-inr-fib f g y) ∘ ( fib-fib-functor-coprod-inr f g y)) ~ id issec-fib-fib-functor-coprod-inr f g .(g b') (pair (inr b') refl) = eq-pair refl ( ap (ap inr) ( isretr-inv-is-equiv ( is-equiv-map-raise _ (Id (g b') (g b'))) refl)) issec-fib-fib-functor-coprod-inr f g y (pair (inl a') p) = ind-empty { P = λ t → Id ( fib-functor-coprod-inr-fib f g y ( fib-fib-functor-coprod-inr f g y (pair (inl a') p))) ( pair (inl a') p)} ( map-compute-eq-coprod-inl-inr (f a') y p) isretr-fib-fib-functor-coprod-inr : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (y : B) → ( (fib-fib-functor-coprod-inr f g y) ∘ ( fib-functor-coprod-inr-fib f g y)) ~ id isretr-fib-fib-functor-coprod-inr f g .(g b') (pair b' refl) = eq-pair refl ( isretr-inv-is-equiv (is-equiv-map-raise _ (Id (g b') (g b'))) refl) abstract is-equiv-fib-functor-coprod-inr-fib : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (y : B) → is-equiv (fib-functor-coprod-inr-fib f g y) is-equiv-fib-functor-coprod-inr-fib f g y = is-equiv-has-inverse ( fib-fib-functor-coprod-inr f g y) ( issec-fib-fib-functor-coprod-inr f g y) ( isretr-fib-fib-functor-coprod-inr f g y) cone-descent-coprod : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A → X) (g : B → X) (i : X' → X) (cone-A' : cone f i A') (cone-B' : cone g i B') → cone (ind-coprod _ f g) i (coprod A' B') cone-descent-coprod f g i (pair h (pair f' H)) (pair k (pair g' K)) = pair ( functor-coprod h k) ( pair ( ind-coprod _ f' g') ( ind-coprod _ H K)) triangle-descent-square-fib-functor-coprod-inl-fib : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A' → A) (g : B' → B) (h : X' → X) (αA : A → X) (αB : B → X) (αA' : A' → X') (αB' : B' → X') (HA : (αA ∘ f) ~ (h ∘ αA')) (HB : (αB ∘ g) ~ (h ∘ αB')) (x : A) → (fib-square αA h (pair f (pair αA' HA)) x) ~ ( (fib-square (ind-coprod _ αA αB) h ( pair ( functor-coprod f g) ( pair (ind-coprod _ αA' αB') (ind-coprod _ HA HB))) (inl x)) ∘ ( fib-functor-coprod-inl-fib f g x)) triangle-descent-square-fib-functor-coprod-inl-fib {X = X} {X' = X'} f g h αA αB αA' αB' HA HB x (pair a' p) = eq-pair refl ( ap (concat (inv (HA a')) (αA x)) ( ap-comp (ind-coprod _ αA αB) inl p)) triangle-descent-square-fib-functor-coprod-inr-fib : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A' → A) (g : B' → B) (h : X' → X) (αA : A → X) (αB : B → X) (αA' : A' → X') (αB' : B' → X') (HA : (αA ∘ f) ~ (h ∘ αA')) (HB : (αB ∘ g) ~ (h ∘ αB')) (y : B) → (fib-square αB h (pair g (pair αB' HB)) y) ~ ( (fib-square (ind-coprod _ αA αB) h ( pair ( functor-coprod f g) ( pair (ind-coprod _ αA' αB') (ind-coprod _ HA HB))) (inr y)) ∘ ( fib-functor-coprod-inr-fib f g y)) triangle-descent-square-fib-functor-coprod-inr-fib {X = X} {X' = X'} f g h αA αB αA' αB' HA HB y ( pair b' p) = eq-pair refl ( ap (concat (inv (HB b')) (αB y)) ( ap-comp (ind-coprod _ αA αB) inr p)) abstract descent-coprod : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A → X) (g : B → X) (i : X' → X) (cone-A' : cone f i A') (cone-B' : cone g i B') → is-pullback f i cone-A' → is-pullback g i cone-B' → is-pullback (ind-coprod _ f g) i (cone-descent-coprod f g i cone-A' cone-B') descent-coprod f g i (pair h (pair f' H)) (pair k (pair g' K)) is-pb-cone-A' is-pb-cone-B' = is-pullback-is-fiberwise-equiv-fib-square ( ind-coprod _ f g) ( i) ( cone-descent-coprod f g i (pair h (pair f' H)) (pair k (pair g' K))) ( ind-coprod _ ( λ x → is-equiv-left-factor ( fib-square f i (pair h (pair f' H)) x) ( fib-square (ind-coprod _ f g) i ( pair (functor-coprod h k) ( pair (ind-coprod _ f' g') (ind-coprod _ H K))) ( inl x)) ( fib-functor-coprod-inl-fib h k x) ( triangle-descent-square-fib-functor-coprod-inl-fib h k i f g f' g' H K x) ( is-fiberwise-equiv-fib-square-is-pullback f i ( pair h (pair f' H)) is-pb-cone-A' x) ( is-equiv-fib-functor-coprod-inl-fib h k x)) ( λ y → is-equiv-left-factor ( fib-square g i (pair k (pair g' K)) y) ( fib-square ( ind-coprod _ f g) i ( pair ( functor-coprod h k) ( pair (ind-coprod _ f' g') (ind-coprod _ H K))) (inr y)) ( fib-functor-coprod-inr-fib h k y) ( triangle-descent-square-fib-functor-coprod-inr-fib h k i f g f' g' H K y) ( is-fiberwise-equiv-fib-square-is-pullback g i ( pair k (pair g' K)) is-pb-cone-B' y) ( is-equiv-fib-functor-coprod-inr-fib h k y))) abstract descent-coprod-inl : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A → X) (g : B → X) (i : X' → X) (cone-A' : cone f i A') (cone-B' : cone g i B') → is-pullback ( ind-coprod _ f g) ( i) ( cone-descent-coprod f g i cone-A' cone-B') → is-pullback f i cone-A' descent-coprod-inl f g i (pair h (pair f' H)) (pair k (pair g' K)) is-pb-dsq = is-pullback-is-fiberwise-equiv-fib-square f i (pair h (pair f' H)) ( λ a → is-equiv-comp ( fib-square f i (pair h (pair f' H)) a) ( fib-square (ind-coprod _ f g) i ( cone-descent-coprod f g i ( pair h (pair f' H)) (pair k (pair g' K))) (inl a)) ( fib-functor-coprod-inl-fib h k a) ( triangle-descent-square-fib-functor-coprod-inl-fib h k i f g f' g' H K a) ( is-equiv-fib-functor-coprod-inl-fib h k a) ( is-fiberwise-equiv-fib-square-is-pullback (ind-coprod _ f g) i ( cone-descent-coprod f g i ( pair h (pair f' H)) (pair k (pair g' K))) is-pb-dsq (inl a))) abstract descent-coprod-inr : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A → X) (g : B → X) (i : X' → X) (cone-A' : cone f i A') (cone-B' : cone g i B') → is-pullback ( ind-coprod _ f g) ( i) ( cone-descent-coprod f g i cone-A' cone-B') → is-pullback g i cone-B' descent-coprod-inr f g i (pair h (pair f' H)) (pair k (pair g' K)) is-pb-dsq = is-pullback-is-fiberwise-equiv-fib-square g i (pair k (pair g' K)) ( λ b → is-equiv-comp ( fib-square g i (pair k (pair g' K)) b) ( fib-square (ind-coprod _ f g) i ( cone-descent-coprod f g i ( pair h (pair f' H)) (pair k (pair g' K))) (inr b)) ( fib-functor-coprod-inr-fib h k b) ( triangle-descent-square-fib-functor-coprod-inr-fib h k i f g f' g' H K b) ( is-equiv-fib-functor-coprod-inr-fib h k b) ( is-fiberwise-equiv-fib-square-is-pullback (ind-coprod _ f g) i ( cone-descent-coprod f g i ( pair h (pair f' H)) (pair k (pair g' K))) is-pb-dsq (inr b))) -- Descent for Σ-types cone-descent-Σ : {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : I → UU l2} {A' : I → UU l3} {X : UU l4} {X' : UU l5} (f : (i : I) → A i → X) (h : X' → X) (c : (i : I) → cone (f i) h (A' i)) → cone (ind-Σ f) h (Σ I A') cone-descent-Σ f h c = pair ( tot (λ i → (pr1 (c i)))) ( pair ( ind-Σ (λ i → (pr1 (pr2 (c i))))) ( ind-Σ (λ i → (pr2 (pr2 (c i)))))) triangle-descent-Σ : {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : I → UU l2} {A' : I → UU l3} {X : UU l4} {X' : UU l5} (f : (i : I) → A i → X) (h : X' → X) (c : (i : I) → cone (f i) h (A' i)) → (i : I) (a : A i) → ( fib-square (f i) h (c i) a) ~ ((fib-square (ind-Σ f) h (cone-descent-Σ f h c) (pair i a)) ∘ (fib-tot-fib-ftr (λ i → (pr1 (c i))) (pair i a))) triangle-descent-Σ f h c i .(pr1 (c i) a') (pair a' refl) = refl abstract descent-Σ : {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : I → UU l2} {A' : I → UU l3} {X : UU l4} {X' : UU l5} (f : (i : I) → A i → X) (h : X' → X) (c : (i : I) → cone (f i) h (A' i)) → ((i : I) → is-pullback (f i) h (c i)) → is-pullback (ind-Σ f) h (cone-descent-Σ f h c) descent-Σ f h c is-pb-c = is-pullback-is-fiberwise-equiv-fib-square ( ind-Σ f) ( h) ( cone-descent-Σ f h c) ( ind-Σ ( λ i a → is-equiv-left-factor ( fib-square (f i) h (c i) a) ( fib-square (ind-Σ f) h (cone-descent-Σ f h c) (pair i a)) ( fib-tot-fib-ftr (λ i → pr1 (c i)) (pair i a)) ( triangle-descent-Σ f h c i a) ( is-fiberwise-equiv-fib-square-is-pullback (f i) h (c i) (is-pb-c i) a) ( is-equiv-fib-tot-fib-ftr (λ i → pr1 (c i)) (pair i a)))) abstract descent-Σ' : {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : I → UU l2} {A' : I → UU l3} {X : UU l4} {X' : UU l5} (f : (i : I) → A i → X) (h : X' → X) (c : (i : I) → cone (f i) h (A' i)) → is-pullback (ind-Σ f) h (cone-descent-Σ f h c) → ((i : I) → is-pullback (f i) h (c i)) descent-Σ' f h c is-pb-dsq i = is-pullback-is-fiberwise-equiv-fib-square (f i) h (c i) ( λ a → is-equiv-comp ( fib-square (f i) h (c i) a) ( fib-square (ind-Σ f) h (cone-descent-Σ f h c) (pair i a)) ( fib-tot-fib-ftr (λ i → pr1 (c i)) (pair i a)) ( triangle-descent-Σ f h c i a) ( is-equiv-fib-tot-fib-ftr (λ i → pr1 (c i)) (pair i a)) ( is-fiberwise-equiv-fib-square-is-pullback (ind-Σ f) h ( cone-descent-Σ f h c) is-pb-dsq (pair i a))) -- Extra material -- Homotopical squares {- We consider the situation where we have two 'parallel squares', i.e. a diagram of the form ---------> C ---------> B | | | | | | | | V V V V A ---------> X. ---------> Suppose that between each parallel pair of maps there is a homotopy, and that there is a homotopy between the homotopies that fill the two squares, as expessed by the type coherence-htpy-square below. Our goal is to show that if one of the squares is a pullback square, then so is the other. We do so without using function extensionality. -} coherence-htpy-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {f f' : A → X} (Hf : f ~ f') {g g' : B → X} (Hg : g ~ g') → (c : cone f g C) (c' : cone f' g' C) (Hp : pr1 c ~ pr1 c') (Hq : pr1 (pr2 c) ~ pr1 (pr2 c')) → UU _ coherence-htpy-square {f = f} {f'} Hf {g} {g'} Hg c c' Hp Hq = let p = pr1 c q = pr1 (pr2 c) H = pr2 (pr2 c) p' = pr1 c' q' = pr1 (pr2 c') H' = pr2 (pr2 c') in ( H ∙h ((g ·l Hq) ∙h (Hg ·r q'))) ~ (((f ·l Hp) ∙h (Hf ·r p')) ∙h H') fam-htpy-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {f f' : A → X} (Hf : f ~ f') {g g' : B → X} (Hg : g ~ g') → (c : cone f g C) → (c' : cone f' g' C) → (pr1 c ~ pr1 c') → UU _ fam-htpy-square {f = f} {f'} Hf {g} {g'} Hg c c' Hp = Σ ((pr1 (pr2 c)) ~ (pr1 (pr2 c'))) (coherence-htpy-square Hf Hg c c' Hp) htpy-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {f f' : A → X} (Hf : f ~ f') {g g' : B → X} (Hg : g ~ g') → cone f g C → cone f' g' C → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4))) htpy-square {f = f} {f'} Hf {g} {g'} Hg c c' = Σ ((pr1 c) ~ (pr1 c')) (fam-htpy-square Hf Hg c c') map-is-pullback-htpy : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {f : A → X} {f' : A → X} (Hf : f ~ f') {g : B → X} {g' : B → X} (Hg : g ~ g') → canonical-pullback f' g' → canonical-pullback f g map-is-pullback-htpy {f = f} {f'} Hf {g} {g'} Hg = tot (λ a → tot (λ b → ( concat' (f a) (inv (Hg b))) ∘ (concat (Hf a) (g' b)))) abstract is-equiv-map-is-pullback-htpy : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {f : A → X} {f' : A → X} (Hf : f ~ f') {g : B → X} {g' : B → X} (Hg : g ~ g') → is-equiv (map-is-pullback-htpy Hf Hg) is-equiv-map-is-pullback-htpy {f = f} {f'} Hf {g} {g'} Hg = is-equiv-tot-is-fiberwise-equiv (λ a → is-equiv-tot-is-fiberwise-equiv (λ b → is-equiv-comp ( (concat' (f a) (inv (Hg b))) ∘ (concat (Hf a) (g' b))) ( concat' (f a) (inv (Hg b))) ( concat (Hf a) (g' b)) ( refl-htpy) ( is-equiv-concat (Hf a) (g' b)) ( is-equiv-concat' (f a) (inv (Hg b))))) tot-pullback-rel : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (x : A) → UU _ tot-pullback-rel {B = B} f g x = Σ B (λ y → Id (f x) (g y)) triangle-is-pullback-htpy : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {f : A → X} {f' : A → X} (Hf : f ~ f') {g : B → X} {g' : B → X} (Hg : g ~ g') {c : cone f g C} {c' : cone f' g' C} (Hc : htpy-square Hf Hg c c') → (gap f g c) ~ ((map-is-pullback-htpy Hf Hg) ∘ (gap f' g' c')) triangle-is-pullback-htpy {A = A} {B} {X} {C} {f = f} {f'} Hf {g} {g'} Hg {pair p (pair q H)} {pair p' (pair q' H')} (pair Hp (pair Hq HH)) z = eq-Eq-canonical-pullback f g ( Hp z) ( Hq z) ( ( inv ( assoc (ap f (Hp z)) ((Hf (p' z)) ∙ (H' z)) (inv (Hg (q' z))))) ∙ ( inv ( con-inv ( (H z) ∙ (ap g (Hq z))) ( Hg (q' z)) ( ( ap f (Hp z)) ∙ ((Hf (p' z)) ∙ (H' z))) ( ( assoc (H z) (ap g (Hq z)) (Hg (q' z))) ∙ ( ( HH z) ∙ ( assoc (ap f (Hp z)) (Hf (p' z)) (H' z))))))) abstract is-pullback-htpy : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {f : A → X} (f' : A → X) (Hf : f ~ f') {g : B → X} (g' : B → X) (Hg : g ~ g') {c : cone f g C} (c' : cone f' g' C) (Hc : htpy-square Hf Hg c c') → is-pullback f' g' c' → is-pullback f g c is-pullback-htpy {f = f} f' Hf {g} g' Hg {c = pair p (pair q H)} (pair p' (pair q' H')) (pair Hp (pair Hq HH)) is-pb-c' = is-equiv-comp ( gap f g (pair p (pair q H))) ( map-is-pullback-htpy Hf Hg) ( gap f' g' (pair p' (pair q' H'))) ( triangle-is-pullback-htpy Hf Hg {pair p (pair q H)} {pair p' (pair q' H')} (pair Hp (pair Hq HH))) ( is-pb-c') ( is-equiv-map-is-pullback-htpy Hf Hg) abstract is-pullback-htpy' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) {f' : A → X} (Hf : f ~ f') (g : B → X) {g' : B → X} (Hg : g ~ g') → (c : cone f g C) {c' : cone f' g' C} (Hc : htpy-square Hf Hg c c') → is-pullback f g c → is-pullback f' g' c' is-pullback-htpy' f {f'} Hf g {g'} Hg (pair p (pair q H)) {pair p' (pair q' H')} (pair Hp (pair Hq HH)) is-pb-c = is-equiv-right-factor ( gap f g (pair p (pair q H))) ( map-is-pullback-htpy Hf Hg) ( gap f' g' (pair p' (pair q' H'))) ( triangle-is-pullback-htpy Hf Hg {pair p (pair q H)} {pair p' (pair q' H')} (pair Hp (pair Hq HH))) ( is-equiv-map-is-pullback-htpy Hf Hg) ( is-pb-c) {- In the following part we will relate the type htpy-square to the Identity type of cones. Here we will rely on function extensionality. -} reflexive-htpy-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → htpy-square (refl-htpy {f = f}) (refl-htpy {f = g}) c c reflexive-htpy-square f g c = pair refl-htpy (pair refl-htpy htpy-right-unit) htpy-square-eq-refl-htpy : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c c' : cone f g C) → Id c c' → htpy-square (refl-htpy {f = f}) (refl-htpy {f = g}) c c' htpy-square-eq-refl-htpy f g c .c refl = pair refl-htpy (pair refl-htpy htpy-right-unit) htpy-square-refl-htpy-htpy-cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) → (c c' : cone f g C) → htpy-cone f g c c' → htpy-square (refl-htpy {f = f}) (refl-htpy {f = g}) c c' htpy-square-refl-htpy-htpy-cone f g (pair p (pair q H)) (pair p' (pair q' H')) = tot ( λ K → tot ( λ L M → ( htpy-ap-concat H _ _ htpy-right-unit) ∙h ( M ∙h htpy-ap-concat' _ _ H' (htpy-inv htpy-right-unit)))) abstract is-equiv-htpy-square-refl-htpy-htpy-cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) → (c c' : cone f g C) → is-equiv (htpy-square-refl-htpy-htpy-cone f g c c') is-equiv-htpy-square-refl-htpy-htpy-cone f g (pair p (pair q H)) (pair p' (pair q' H')) = is-equiv-tot-is-fiberwise-equiv ( λ K → is-equiv-tot-is-fiberwise-equiv ( λ L → is-equiv-comp ( λ M → ( htpy-ap-concat H _ _ htpy-right-unit) ∙h ( M ∙h ( htpy-ap-concat' _ _ H' (htpy-inv htpy-right-unit)))) ( htpy-concat ( htpy-ap-concat H _ _ htpy-right-unit) ( ((f ·l K) ∙h refl-htpy) ∙h H')) ( htpy-concat' ( H ∙h (g ·l L)) ( htpy-ap-concat' _ _ H' (htpy-inv htpy-right-unit))) ( refl-htpy) ( is-equiv-htpy-concat' ( H ∙h (g ·l L)) ( λ x → ap (λ z → z ∙ H' x) (inv right-unit))) ( is-equiv-htpy-concat ( λ x → ap (_∙_ (H x)) right-unit) ( ((f ·l K) ∙h refl-htpy) ∙h H')))) abstract is-contr-total-htpy-square-refl-htpy-refl-htpy : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) → (c : cone f g C) → is-contr (Σ (cone f g C) (htpy-square (refl-htpy' f) (refl-htpy' g) c)) is-contr-total-htpy-square-refl-htpy-refl-htpy {A = A} {B} {X} {C} f g (pair p (pair q H)) = let c = pair p (pair q H) in is-contr-is-equiv' ( Σ (cone f g C) (htpy-cone f g c)) ( tot (htpy-square-refl-htpy-htpy-cone f g c)) ( is-equiv-tot-is-fiberwise-equiv ( is-equiv-htpy-square-refl-htpy-htpy-cone f g c)) ( is-contr-total-htpy-cone f g c) abstract is-contr-total-htpy-square-refl-htpy : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) {g g' : B → X} (Hg : g ~ g') → (c : cone f g C) → is-contr (Σ (cone f g' C) (htpy-square (refl-htpy' f) Hg c)) is-contr-total-htpy-square-refl-htpy {C = C} f {g} = ind-htpy g ( λ g'' Hg' → ( c : cone f g C) → is-contr (Σ (cone f g'' C) (htpy-square (refl-htpy' f) Hg' c))) ( is-contr-total-htpy-square-refl-htpy-refl-htpy f g) abstract is-contr-total-htpy-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {f f' : A → X} (Hf : f ~ f') {g g' : B → X} (Hg : g ~ g') → (c : cone f g C) → is-contr (Σ (cone f' g' C) (htpy-square Hf Hg c)) is-contr-total-htpy-square {A = A} {B} {X} {C} {f} {f'} Hf {g} {g'} Hg = ind-htpy { A = A} { B = λ t → X} ( f) ( λ f'' Hf' → (g g' : B → X) (Hg : g ~ g') (c : cone f g C) → is-contr (Σ (cone f'' g' C) (htpy-square Hf' Hg c))) ( λ g g' Hg → is-contr-total-htpy-square-refl-htpy f Hg) Hf g g' Hg tr-tr-refl-htpy-cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → let tr-c = tr (λ x → cone x g C) (eq-htpy (refl-htpy {f = f})) c tr-tr-c = tr (λ y → cone f y C) (eq-htpy (refl-htpy {f = g})) tr-c in Id tr-tr-c c tr-tr-refl-htpy-cone {C = C} f g c = let tr-c = tr (λ f''' → cone f''' g C) (eq-htpy refl-htpy) c tr-tr-c = tr (λ g'' → cone f g'' C) (eq-htpy refl-htpy) tr-c α : Id tr-tr-c tr-c α = ap (λ t → tr (λ g'' → cone f g'' C) t tr-c) (eq-htpy-refl-htpy g) β : Id tr-c c β = ap (λ t → tr (λ f''' → cone f''' g C) t c) (eq-htpy-refl-htpy f) in α ∙ β htpy-square-eq-refl-htpy-refl-htpy : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c c' : cone f g C) → let tr-c = tr (λ x → cone x g C) (eq-htpy (refl-htpy {f = f})) c tr-tr-c = tr (λ y → cone f y C) (eq-htpy (refl-htpy {f = g})) tr-c in Id tr-tr-c c' → htpy-square (refl-htpy' f) (refl-htpy' g) c c' htpy-square-eq-refl-htpy-refl-htpy f g c c' = ind-is-equiv ( λ p → htpy-square (refl-htpy' f) (refl-htpy' g) c c') ( λ (p : Id c c') → (tr-tr-refl-htpy-cone f g c) ∙ p) ( is-equiv-concat (tr-tr-refl-htpy-cone f g c) c') ( htpy-square-eq-refl-htpy f g c c') comp-htpy-square-eq-refl-htpy-refl-htpy : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c c' : cone f g C) → ( (htpy-square-eq-refl-htpy-refl-htpy f g c c') ∘ (concat (tr-tr-refl-htpy-cone f g c) c')) ~ ( htpy-square-eq-refl-htpy f g c c') comp-htpy-square-eq-refl-htpy-refl-htpy f g c c' = htpy-comp-is-equiv ( λ p → htpy-square (refl-htpy' f) (refl-htpy' g) c c') ( λ (p : Id c c') → (tr-tr-refl-htpy-cone f g c) ∙ p) ( is-equiv-concat (tr-tr-refl-htpy-cone f g c) c') ( htpy-square-eq-refl-htpy f g c c') abstract htpy-square-eq' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) {g g' : B → X} (Hg : g ~ g') → (c : cone f g C) (c' : cone f g' C) → let tr-c = tr (λ x → cone x g C) (eq-htpy (refl-htpy {f = f})) c tr-tr-c = tr (λ y → cone f y C) (eq-htpy Hg) tr-c in Id tr-tr-c c' → htpy-square (refl-htpy' f) Hg c c' htpy-square-eq' {C = C} f {g} = ind-htpy g ( λ g'' Hg' → ( c : cone f g C) (c' : cone f g'' C) → Id (tr (λ g'' → cone f g'' C) (eq-htpy Hg') ( tr (λ f''' → cone f''' g C) (eq-htpy (refl-htpy' f)) c)) c' → htpy-square refl-htpy Hg' c c') ( htpy-square-eq-refl-htpy-refl-htpy f g) comp-htpy-square-eq' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c c' : cone f g C) → ( ( htpy-square-eq' f refl-htpy c c') ∘ ( concat (tr-tr-refl-htpy-cone f g c) c')) ~ ( htpy-square-eq-refl-htpy f g c c') comp-htpy-square-eq' {A = A} {B} {X} {C} f g c c' = htpy-right-whisk ( htpy-eq (htpy-eq (htpy-eq (comp-htpy g ( λ g'' Hg' → ( c : cone f g C) (c' : cone f g'' C) → Id (tr (λ g'' → cone f g'' C) (eq-htpy Hg') ( tr (λ f''' → cone f''' g C) (eq-htpy (refl-htpy' f)) c)) c' → htpy-square refl-htpy Hg' c c') ( htpy-square-eq-refl-htpy-refl-htpy f g)) c) c')) ( concat (tr-tr-refl-htpy-cone f g c) c') ∙h ( comp-htpy-square-eq-refl-htpy-refl-htpy f g c c') abstract htpy-square-eq : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {f f' : A → X} (Hf : f ~ f') {g g' : B → X} (Hg : g ~ g') → (c : cone f g C) (c' : cone f' g' C) → let tr-c = tr (λ x → cone x g C) (eq-htpy Hf) c tr-tr-c = tr (λ y → cone f' y C) (eq-htpy Hg) tr-c in Id tr-tr-c c' → htpy-square Hf Hg c c' htpy-square-eq {A = A} {B} {X} {C} {f} {f'} Hf {g} {g'} Hg c c' p = ind-htpy f ( λ f'' Hf' → ( g g' : B → X) (Hg : g ~ g') (c : cone f g C) (c' : cone f'' g' C) → ( Id (tr (λ g'' → cone f'' g'' C) (eq-htpy Hg) ( tr (λ f''' → cone f''' g C) (eq-htpy Hf') c)) c') → htpy-square Hf' Hg c c') ( λ g g' → htpy-square-eq' f {g = g} {g' = g'}) Hf g g' Hg c c' p comp-htpy-square-eq : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c c' : cone f g C) → ( ( htpy-square-eq refl-htpy refl-htpy c c') ∘ ( concat (tr-tr-refl-htpy-cone f g c) c')) ~ ( htpy-square-eq-refl-htpy f g c c') comp-htpy-square-eq {A = A} {B} {X} {C} f g c c' = htpy-right-whisk ( htpy-eq (htpy-eq (htpy-eq (htpy-eq (htpy-eq (htpy-eq (comp-htpy f ( λ f'' Hf' → ( g g' : B → X) (Hg : g ~ g') (c : cone f g C) (c' : cone f'' g' C) → ( Id ( tr (λ g'' → cone f'' g'' C) (eq-htpy Hg) ( tr (λ f''' → cone f''' g C) (eq-htpy Hf') c)) c') → htpy-square Hf' Hg c c') ( λ g g' → htpy-square-eq' f {g = g} {g' = g'})) g) g) refl-htpy) c) c')) ( concat (tr-tr-refl-htpy-cone f g c) c') ∙h ( comp-htpy-square-eq' f g c c') abstract is-fiberwise-equiv-htpy-square-eq : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {f f' : A → X} (Hf : f ~ f') {g g' : B → X} (Hg : g ~ g') → (c : cone f g C) (c' : cone f' g' C) → is-equiv (htpy-square-eq Hf Hg c c') is-fiberwise-equiv-htpy-square-eq {A = A} {B} {X} {C} {f} {f'} Hf {g} {g'} Hg c c' = ind-htpy f ( λ f' Hf → ( g g' : B → X) (Hg : g ~ g') (c : cone f g C) (c' : cone f' g' C) → is-equiv (htpy-square-eq Hf Hg c c')) ( λ g g' Hg c c' → ind-htpy g ( λ g' Hg → ( c : cone f g C) (c' : cone f g' C) → is-equiv (htpy-square-eq refl-htpy Hg c c')) ( λ c c' → is-equiv-left-factor ( htpy-square-eq-refl-htpy f g c c') ( htpy-square-eq refl-htpy refl-htpy c c') ( concat (tr-tr-refl-htpy-cone f g c) c') ( htpy-inv (comp-htpy-square-eq f g c c')) ( fundamental-theorem-id c ( reflexive-htpy-square f g c) ( is-contr-total-htpy-square (refl-htpy' f) (refl-htpy' g) c) ( htpy-square-eq-refl-htpy f g c) c') ( is-equiv-concat (tr-tr-refl-htpy-cone f g c) c')) Hg c c') Hf g g' Hg c c' eq-htpy-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {f f' : A → X} (Hf : f ~ f') {g g' : B → X} (Hg : g ~ g') → (c : cone f g C) (c' : cone f' g' C) → let tr-c = tr (λ x → cone x g C) (eq-htpy Hf) c tr-tr-c = tr (λ y → cone f' y C) (eq-htpy Hg) tr-c in htpy-square Hf Hg c c' → Id tr-tr-c c' eq-htpy-square Hf Hg c c' = inv-is-equiv { f = htpy-square-eq Hf Hg c c'} ( is-fiberwise-equiv-htpy-square-eq Hf Hg c c') -- Exercises -- Exercise 10.1 cone-Id : {l : Level} {A : UU l} (x y : A) → cone (const unit A x) (const unit A y) (Id x y) cone-Id x y = pair ( const (Id x y) unit star) ( pair ( const (Id x y) unit star) ( id)) inv-gap-cone-Id : {l : Level} {A : UU l} (x y : A) → canonical-pullback (const unit A x) (const unit A y) → Id x y inv-gap-cone-Id x y (pair star (pair star p)) = p issec-inv-gap-cone-Id : {l : Level} {A : UU l} (x y : A) → ( ( gap (const unit A x) (const unit A y) (cone-Id x y)) ∘ ( inv-gap-cone-Id x y)) ~ id issec-inv-gap-cone-Id x y (pair star (pair star p)) = refl isretr-inv-gap-cone-Id : {l : Level} {A : UU l} (x y : A) → ( ( inv-gap-cone-Id x y) ∘ ( gap (const unit A x) (const unit A y) (cone-Id x y))) ~ id isretr-inv-gap-cone-Id x y p = refl abstract is-pullback-cone-Id : {l : Level} {A : UU l} (x y : A) → is-pullback (const unit A x) (const unit A y) (cone-Id x y) is-pullback-cone-Id x y = is-equiv-has-inverse ( inv-gap-cone-Id x y) ( issec-inv-gap-cone-Id x y) ( isretr-inv-gap-cone-Id x y) {- One way to solve this exercise is to show that Id (pr1 t) (pr2 t) is a pullback for every t : A × A. This allows one to use path induction to show that the inverse of the gap map is a section. -} cone-Id' : {l : Level} {A : UU l} (t : A × A) → cone (const unit (A × A) t) (diagonal A) (Id (pr1 t) (pr2 t)) cone-Id' {A = A} (pair x y) = pair ( const (Id x y) unit star) ( pair ( const (Id x y) A x) ( λ p → eq-pair refl (inv p))) inv-gap-cone-Id' : {l : Level} {A : UU l} (t : A × A) → canonical-pullback (const unit (A × A) t) (diagonal A) → Id (pr1 t) (pr2 t) inv-gap-cone-Id' t (pair star (pair z p)) = (ap pr1 p) ∙ (inv (ap pr2 p)) issec-inv-gap-cone-Id' : {l : Level} {A : UU l} (t : A × A) → ( ( gap (const unit (A × A) t) (diagonal A) (cone-Id' t)) ∘ ( inv-gap-cone-Id' t)) ~ id issec-inv-gap-cone-Id' .(pair z z) (pair star (pair z refl)) = refl isretr-inv-gap-cone-Id' : {l : Level} {A : UU l} (t : A × A) → ( ( inv-gap-cone-Id' t) ∘ ( gap (const unit (A × A) t) (diagonal A) (cone-Id' t))) ~ id isretr-inv-gap-cone-Id' (pair x .x) refl = refl abstract is-pullback-cone-Id' : {l : Level} {A : UU l} (t : A × A) → is-pullback (const unit (A × A) t) (diagonal A) (cone-Id' t) is-pullback-cone-Id' t = is-equiv-has-inverse ( inv-gap-cone-Id' t) ( issec-inv-gap-cone-Id' t) ( isretr-inv-gap-cone-Id' t) -- Exercise 10.2 diagonal-map : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → A → canonical-pullback f f diagonal-map f x = pair x (pair x refl) fib-ap-fib-diagonal-map : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (t : canonical-pullback f f) → (fib (diagonal-map f) t) → (fib (ap f) (pr2 (pr2 t))) fib-ap-fib-diagonal-map f .(pair z (pair z refl)) (pair z refl) = pair refl refl fib-diagonal-map-fib-ap : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (t : canonical-pullback f f) → (fib (ap f) (pr2 (pr2 t))) → (fib (diagonal-map f) t) fib-diagonal-map-fib-ap f (pair x (pair .x .refl)) (pair refl refl) = pair x refl issec-fib-diagonal-map-fib-ap : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (t : canonical-pullback f f) → ((fib-ap-fib-diagonal-map f t) ∘ (fib-diagonal-map-fib-ap f t)) ~ id issec-fib-diagonal-map-fib-ap f (pair x (pair .x .refl)) (pair refl refl) = refl isretr-fib-diagonal-map-fib-ap : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (t : canonical-pullback f f) → ((fib-diagonal-map-fib-ap f t) ∘ (fib-ap-fib-diagonal-map f t)) ~ id isretr-fib-diagonal-map-fib-ap f .(pair x (pair x refl)) (pair x refl) = refl abstract is-equiv-fib-ap-fib-diagonal-map : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (t : canonical-pullback f f) → is-equiv (fib-ap-fib-diagonal-map f t) is-equiv-fib-ap-fib-diagonal-map f t = is-equiv-has-inverse ( fib-diagonal-map-fib-ap f t) ( issec-fib-diagonal-map-fib-ap f t) ( isretr-fib-diagonal-map-fib-ap f t) abstract is-trunc-diagonal-map-is-trunc-map : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) → is-trunc-map (succ-𝕋 k) f → is-trunc-map k (diagonal-map f) is-trunc-diagonal-map-is-trunc-map k f is-trunc-f (pair x (pair y p)) = is-trunc-is-equiv k (fib (ap f) p) ( fib-ap-fib-diagonal-map f (pair x (pair y p))) ( is-equiv-fib-ap-fib-diagonal-map f (pair x (pair y p))) ( is-trunc-ap-is-trunc-map k f is-trunc-f x y p) abstract is-trunc-map-is-trunc-diagonal-map : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) → is-trunc-map k (diagonal-map f) → is-trunc-map (succ-𝕋 k) f is-trunc-map-is-trunc-diagonal-map k f is-trunc-δ b (pair x p) (pair x' p') = is-trunc-is-equiv k ( fib (ap f) (p ∙ (inv p'))) ( fib-ap-eq-fib f (pair x p) (pair x' p')) ( is-equiv-fib-ap-eq-fib f (pair x p) (pair x' p')) ( is-trunc-is-equiv' k ( fib (diagonal-map f) (pair x (pair x' (p ∙ (inv p'))))) ( fib-ap-fib-diagonal-map f (pair x (pair x' (p ∙ (inv p'))))) ( is-equiv-fib-ap-fib-diagonal-map f (pair x (pair x' (p ∙ (inv p'))))) ( is-trunc-δ (pair x (pair x' (p ∙ (inv p')))))) abstract is-equiv-diagonal-map-is-emb : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-emb f → is-equiv (diagonal-map f) is-equiv-diagonal-map-is-emb f is-emb-f = is-equiv-is-contr-map ( is-trunc-diagonal-map-is-trunc-map neg-two-𝕋 f ( is-prop-map-is-emb f is-emb-f)) abstract is-emb-is-equiv-diagonal-map : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-equiv (diagonal-map f) → is-emb f is-emb-is-equiv-diagonal-map f is-equiv-δ = is-emb-is-prop-map f ( is-trunc-map-is-trunc-diagonal-map neg-two-𝕋 f ( is-contr-map-is-equiv is-equiv-δ)) -- Exercise 10.3 cone-swap : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) → cone f g C → cone g f C cone-swap f g (pair p (pair q H)) = pair q (pair p (htpy-inv H)) map-canonical-pullback-swap : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → canonical-pullback f g → canonical-pullback g f map-canonical-pullback-swap f g (pair a (pair b p)) = pair b (pair a (inv p)) inv-inv-map-canonical-pullback-swap : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → (map-canonical-pullback-swap f g ∘ map-canonical-pullback-swap g f) ~ id inv-inv-map-canonical-pullback-swap f g (pair b (pair a q)) = eq-pair refl (eq-pair refl (inv-inv q)) abstract is-equiv-map-canonical-pullback-swap : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → is-equiv (map-canonical-pullback-swap f g) is-equiv-map-canonical-pullback-swap f g = is-equiv-has-inverse ( map-canonical-pullback-swap g f) ( inv-inv-map-canonical-pullback-swap f g) ( inv-inv-map-canonical-pullback-swap g f) triangle-map-canonical-pullback-swap : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → ( gap g f (cone-swap f g c)) ~ ( ( map-canonical-pullback-swap f g) ∘ ( gap f g c)) triangle-map-canonical-pullback-swap f g (pair p (pair q H)) x = refl abstract is-pullback-cone-swap : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → is-pullback g f (cone-swap f g c) is-pullback-cone-swap f g c is-pb-c = is-equiv-comp ( gap g f (cone-swap f g c)) ( map-canonical-pullback-swap f g) ( gap f g c) ( triangle-map-canonical-pullback-swap f g c) ( is-pb-c) ( is-equiv-map-canonical-pullback-swap f g) abstract is-pullback-cone-swap' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback g f (cone-swap f g c) → is-pullback f g c is-pullback-cone-swap' f g c is-pb-c' = is-equiv-right-factor ( gap g f (cone-swap f g c)) ( map-canonical-pullback-swap f g) ( gap f g c) ( triangle-map-canonical-pullback-swap f g c) ( is-equiv-map-canonical-pullback-swap f g) ( is-pb-c') {- We conclude the swapped versions of some properties derived above, for future convenience -} abstract is-trunc-is-pullback' : {l1 l2 l3 l4 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → is-trunc-map k f → is-trunc-map k (pr1 (pr2 c)) is-trunc-is-pullback' k f g (pair p (pair q H)) pb is-trunc-f = is-trunc-is-pullback k g f ( cone-swap f g (pair p (pair q H))) ( is-pullback-cone-swap f g (pair p (pair q H)) pb) is-trunc-f abstract is-emb-is-pullback' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → is-emb f → is-emb (pr1 (pr2 c)) is-emb-is-pullback' f g c pb is-emb-f = is-emb-is-prop-map ( pr1 (pr2 c)) ( is-trunc-is-pullback' neg-one-𝕋 f g c pb ( is-prop-map-is-emb f is-emb-f)) abstract is-equiv-is-pullback' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-equiv f → is-pullback f g c → is-equiv (pr1 (pr2 c)) is-equiv-is-pullback' f g c is-equiv-f pb = is-equiv-is-contr-map ( is-trunc-is-pullback' neg-two-𝕋 f g c pb ( is-contr-map-is-equiv is-equiv-f)) abstract is-pullback-is-equiv' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-equiv f → is-equiv (pr1 (pr2 c)) → is-pullback f g c is-pullback-is-equiv' f g (pair p (pair q H)) is-equiv-f is-equiv-q = is-pullback-cone-swap' f g (pair p (pair q H)) ( is-pullback-is-equiv g f ( cone-swap f g (pair p (pair q H))) is-equiv-f is-equiv-q) -- Exercise 10.4 cone-empty : {l1 l2 l3 : Level} {B : UU l1} {X : UU l2} {C : UU l3} → (g : B → X) (p : C → empty) (q : C → B) → cone (ind-empty {P = λ t → X}) g C cone-empty g p q = pair p ( pair q ( λ c → ind-empty {P = λ t → Id (ind-empty (p c)) (g (q c))} (p c))) abstract descent-empty : {l1 l2 l3 : Level} {B : UU l1} {X : UU l2} {C : UU l3} → let f = ind-empty {P = λ t → X} in (g : B → X) (c : cone f g C) → is-pullback f g c descent-empty g c = is-pullback-is-fiberwise-equiv-fib-square _ g c ind-empty abstract descent-empty' : {l1 l2 l3 : Level} {B : UU l1} {X : UU l2} {C : UU l3} → (g : B → X) (p : C → empty) (q : C → B) → is-pullback (ind-empty {P = λ t → X}) g (cone-empty g p q) descent-empty' g p q = descent-empty g (cone-empty g p q) -- Exercise 10.5 {- We show that a square is a pullback square if and only if every exponent of it is a pullback square. -} cone-exponent : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (T : UU l5) (f : A → X) (g : B → X) (c : cone f g C) → cone (λ (h : T → A) → f ∘ h) (λ (h : T → B) → g ∘ h) (T → C) cone-exponent T f g (pair p (pair q H)) = pair ( λ h → p ∘ h) ( pair ( λ h → q ∘ h) ( λ h → eq-htpy (H ·r h))) map-canonical-pullback-exponent : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (T : UU l4) → canonical-pullback (λ (h : T → A) → f ∘ h) (λ (h : T → B) → g ∘ h) → cone f g T map-canonical-pullback-exponent f g T = tot (λ p → tot (λ q → htpy-eq)) abstract is-equiv-map-canonical-pullback-exponent : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (T : UU l4) → is-equiv (map-canonical-pullback-exponent f g T) is-equiv-map-canonical-pullback-exponent f g T = is-equiv-tot-is-fiberwise-equiv ( λ p → is-equiv-tot-is-fiberwise-equiv ( λ q → funext (f ∘ p) (g ∘ q))) triangle-map-canonical-pullback-exponent : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (T : UU l5) (f : A → X) (g : B → X) (c : cone f g C) → ( cone-map f g {C' = T} c) ~ ( ( map-canonical-pullback-exponent f g T) ∘ ( gap ( λ (h : T → A) → f ∘ h) ( λ (h : T → B) → g ∘ h) ( cone-exponent T f g c))) triangle-map-canonical-pullback-exponent {A = A} {B} T f g (pair p (pair q H)) h = eq-pair refl (eq-pair refl (inv (issec-eq-htpy (H ·r h)))) abstract is-pullback-exponent-is-pullback : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → (T : UU l5) → is-pullback ( λ (h : T → A) → f ∘ h) ( λ (h : T → B) → g ∘ h) ( cone-exponent T f g c) is-pullback-exponent-is-pullback f g c is-pb-c T = is-equiv-right-factor ( cone-map f g c) ( map-canonical-pullback-exponent f g T) ( gap (_∘_ f) (_∘_ g) (cone-exponent T f g c)) ( triangle-map-canonical-pullback-exponent T f g c) ( is-equiv-map-canonical-pullback-exponent f g T) ( up-pullback-is-pullback f g c is-pb-c T) abstract is-pullback-is-pullback-exponent : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → ((l5 : Level) (T : UU l5) → is-pullback ( λ (h : T → A) → f ∘ h) ( λ (h : T → B) → g ∘ h) ( cone-exponent T f g c)) → is-pullback f g c is-pullback-is-pullback-exponent f g c is-pb-exp = is-pullback-up-pullback f g c ( λ T → is-equiv-comp ( cone-map f g c) ( map-canonical-pullback-exponent f g T) ( gap (_∘_ f) (_∘_ g) (cone-exponent T f g c)) ( triangle-map-canonical-pullback-exponent T f g c) ( is-pb-exp _ T) ( is-equiv-map-canonical-pullback-exponent f g T)) -- Exercise 10.6 {- Note: the solution below involves a substantial amount of path algebra. It would be nice to find a simpler solution. -} cone-fold : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) → cone f g C → cone (functor-prod f g) (diagonal X) C cone-fold f g (pair p (pair q H)) = pair ( λ z → pair (p z) (q z)) ( pair ( g ∘ q) ( λ z → eq-pair-triv (pair (H z) refl))) map-cone-fold : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) → (g : B → X) → canonical-pullback f g → canonical-pullback (functor-prod f g) (diagonal X) map-cone-fold f g (pair a (pair b p)) = pair ( pair a b) ( pair ( g b) ( eq-pair-triv (pair p refl))) inv-map-cone-fold : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) → (g : B → X) → canonical-pullback (functor-prod f g) (diagonal X) → canonical-pullback f g inv-map-cone-fold f g (pair (pair a b) (pair x α)) = pair a (pair b ((ap pr1 α) ∙ (inv (ap pr2 α)))) ap-diagonal : {l : Level} {A : UU l} {x y : A} (p : Id x y) → Id (ap (diagonal A) p) (eq-pair-triv (pair p p)) ap-diagonal refl = refl eq-pair-triv-concat : {l1 l2 : Level} {A : UU l1} {B : UU l2} {x x' x'' : A} {y y' y'' : B} (p : Id x x') (p' : Id x' x'') (q : Id y y') (q' : Id y' y'') → Id ( eq-pair-triv {s = pair x y} {t = pair x'' y''} (pair (p ∙ p') (q ∙ q'))) ( ( eq-pair-triv {s = pair x y} {t = pair x' y'} (pair p q)) ∙ ( eq-pair-triv (pair p' q'))) eq-pair-triv-concat refl p' refl q' = refl issec-inv-map-cone-fold : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → ((map-cone-fold f g) ∘ (inv-map-cone-fold f g)) ~ id issec-inv-map-cone-fold {A = A} {B} {X} f g (pair (pair a b) (pair x α)) = eq-Eq-canonical-pullback ( functor-prod f g) ( diagonal X) refl ( ap pr2 α) ( ( ( ( inv (issec-pair-eq-triv' (pair (f a) (g b)) (pair x x) α)) ∙ ( ap ( λ t → (eq-pair-triv ( pair t (ap pr2 α)))) ( ( ( inv right-unit) ∙ ( inv (ap (concat (ap pr1 α) x) (left-inv (ap pr2 α))))) ∙ ( inv (assoc (ap pr1 α) (inv (ap pr2 α)) (ap pr2 α)))))) ∙ ( eq-pair-triv-concat ( (ap pr1 α) ∙ (inv (ap pr2 α))) ( ap pr2 α) ( refl) ( ap pr2 α))) ∙ ( ap ( concat ( eq-pair-triv ( pair ((ap pr1 α) ∙ (inv (ap pr2 α))) refl)) ( pair x x)) ( inv (ap-diagonal (ap pr2 α))))) ap-pr1-eq-pair-triv : {l1 l2 : Level} {A : UU l1} {B : UU l2} {x x' : A} (p : Id x x') {y y' : B} (q : Id y y') → Id (ap pr1 (eq-pair-triv' (pair x y) (pair x' y') (pair p q))) p ap-pr1-eq-pair-triv refl refl = refl ap-pr2-eq-pair-triv : {l1 l2 : Level} {A : UU l1} {B : UU l2} {x x' : A} (p : Id x x') {y y' : B} (q : Id y y') → Id (ap pr2 (eq-pair-triv' (pair x y) (pair x' y') (pair p q))) q ap-pr2-eq-pair-triv refl refl = refl isretr-inv-map-cone-fold : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → ((inv-map-cone-fold f g) ∘ (map-cone-fold f g)) ~ id isretr-inv-map-cone-fold { A = A} { B = B} { X = X} f g (pair a (pair b p)) = eq-Eq-canonical-pullback {A = A} {B = B} {X = X} f g refl refl ( inv ( ( ap ( concat' (f a) refl) ( ( ( ap ( λ t → t ∙ ( inv (ap pr2 (eq-pair-triv' ( pair (f a) (g b)) ( pair (g b) (g b)) ( pair p refl))))) ( ap-pr1-eq-pair-triv p refl)) ∙ ( ap (λ t → p ∙ (inv t)) (ap-pr2-eq-pair-triv p refl))) ∙ ( right-unit))) ∙ ( right-unit))) abstract is-equiv-map-cone-fold : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → is-equiv (map-cone-fold f g) is-equiv-map-cone-fold f g = is-equiv-has-inverse ( inv-map-cone-fold f g) ( issec-inv-map-cone-fold f g) ( isretr-inv-map-cone-fold f g) triangle-map-cone-fold : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → ( gap (functor-prod f g) (diagonal X) (cone-fold f g c)) ~ ( (map-cone-fold f g) ∘ (gap f g c)) triangle-map-cone-fold f g (pair p (pair q H)) z = refl abstract is-pullback-cone-fold-is-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → is-pullback (functor-prod f g) (diagonal X) (cone-fold f g c) is-pullback-cone-fold-is-pullback f g c is-pb-c = is-equiv-comp ( gap (functor-prod f g) (diagonal _) (cone-fold f g c)) ( map-cone-fold f g) ( gap f g c) ( triangle-map-cone-fold f g c) ( is-pb-c) ( is-equiv-map-cone-fold f g) abstract is-pullback-is-pullback-cone-fold : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback (functor-prod f g) (diagonal X) (cone-fold f g c) → is-pullback f g c is-pullback-is-pullback-cone-fold f g c is-pb-fold = is-equiv-right-factor ( gap (functor-prod f g) (diagonal _) (cone-fold f g c)) ( map-cone-fold f g) ( gap f g c) ( triangle-map-cone-fold f g c) ( is-equiv-map-cone-fold f g) ( is-pb-fold) -- Exercise 10.7 cone-pair : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} {C' : UU l4'} (f : A → X) (g : B → X) (f' : A' → X') (g' : B' → X') → cone f g C → cone f' g' C' → cone (functor-prod f f') (functor-prod g g') (C × C') cone-pair f g f' g' (pair p (pair q H)) (pair p' (pair q' H')) = pair ( functor-prod p p') ( pair ( functor-prod q q') ( ( htpy-inv (functor-prod-comp p p' f f')) ∙h ( ( functor-prod-htpy H H') ∙h ( functor-prod-comp q q' g g')))) map-cone-pair' : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A → X) (g : B → X) (f' : A' → X') (g' : B' → X') → (t : A × A') (s : B × B') → (Id (f (pr1 t)) (g (pr1 s))) × (Id (f' (pr2 t)) (g' (pr2 s))) → (Id (pr1 (functor-prod f f' t)) (pr1 (functor-prod g g' s))) × (Id (pr2 (functor-prod f f' t)) (pr2 (functor-prod g g' s))) map-cone-pair' f g f' g' (pair a a') (pair b b') = id abstract is-equiv-map-cone-pair' : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A → X) (g : B → X) (f' : A' → X') (g' : B' → X') → (t : A × A') (s : B × B') → is-equiv (map-cone-pair' f g f' g' t s) is-equiv-map-cone-pair' f g f' g' (pair a a') (pair b b') = is-equiv-id _ map-cone-pair : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A → X) (g : B → X) (f' : A' → X') (g' : B' → X') → (canonical-pullback f g) × (canonical-pullback f' g') → canonical-pullback (functor-prod f f') (functor-prod g g') map-cone-pair {A' = A'} {B'} f g f' g' = ( tot ( λ t → ( tot ( λ s → ( eq-pair-triv ∘ (map-cone-pair' f g f' g' t s)))) ∘ ( swap-total-Eq-structure ( λ y → Id (f (pr1 t)) (g y)) ( λ y → B') ( λ y p y' → Id (f' (pr2 t)) (g' y'))))) ∘ ( swap-total-Eq-structure ( λ x → Σ _ (λ y → Id (f x) (g y))) ( λ x → A') ( λ x t x' → Σ _ (λ y' → Id (f' x') (g' y')))) triangle-map-cone-pair : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} {C' : UU l4'} (f : A → X) (g : B → X) (c : cone f g C) (f' : A' → X') (g' : B' → X') (c' : cone f' g' C') → (gap (functor-prod f f') (functor-prod g g') (cone-pair f g f' g' c c')) ~ ((map-cone-pair f g f' g') ∘ (functor-prod (gap f g c) (gap f' g' c'))) triangle-map-cone-pair f g (pair p (pair q H)) f' g' (pair p' (pair q' H')) (pair z z') = eq-pair refl (eq-pair refl right-unit) abstract is-equiv-map-cone-pair : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A → X) (g : B → X) (f' : A' → X') (g' : B' → X') → is-equiv (map-cone-pair f g f' g') is-equiv-map-cone-pair f g f' g' = is-equiv-comp ( map-cone-pair f g f' g') ( tot ( λ t → ( tot ( λ s → ( eq-pair-triv ∘ (map-cone-pair' f g f' g' t s)))) ∘ ( swap-total-Eq-structure _ _ _))) ( swap-total-Eq-structure _ _ _) ( refl-htpy) ( is-equiv-swap-total-Eq-structure _ _ _) ( is-equiv-tot-is-fiberwise-equiv ( λ t → is-equiv-comp ( ( tot ( λ s → ( eq-pair-triv ∘ (map-cone-pair' f g f' g' t s)))) ∘ ( swap-total-Eq-structure ( λ y → Id (f (pr1 t)) (g y)) ( λ y → _) ( λ y p y' → Id (f' (pr2 t)) (g' y')))) ( tot ( λ s → ( eq-pair-triv ∘ (map-cone-pair' f g f' g' t s)))) ( swap-total-Eq-structure ( λ y → Id (f (pr1 t)) (g y)) ( λ y → _) ( λ y p y' → Id (f' (pr2 t)) (g' y'))) ( refl-htpy) ( is-equiv-swap-total-Eq-structure _ _ _) ( is-equiv-tot-is-fiberwise-equiv ( λ s → is-equiv-comp ( eq-pair-triv ∘ (map-cone-pair' f g f' g' t s)) ( eq-pair-triv) ( map-cone-pair' f g f' g' t s) ( refl-htpy) ( is-equiv-map-cone-pair' f g f' g' t s) ( is-equiv-eq-pair-triv' ( functor-prod f f' t) ( functor-prod g g' s)))))) abstract is-pullback-prod-is-pullback-pair : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} {C' : UU l4'} (f : A → X) (g : B → X) (c : cone f g C) (f' : A' → X') (g' : B' → X') (c' : cone f' g' C') → is-pullback f g c → is-pullback f' g' c' → is-pullback ( functor-prod f f') (functor-prod g g') (cone-pair f g f' g' c c') is-pullback-prod-is-pullback-pair f g c f' g' c' is-pb-c is-pb-c' = is-equiv-comp ( gap (functor-prod f f') (functor-prod g g') (cone-pair f g f' g' c c')) ( map-cone-pair f g f' g') ( functor-prod (gap f g c) (gap f' g' c')) ( triangle-map-cone-pair f g c f' g' c') ( is-equiv-functor-prod _ _ is-pb-c is-pb-c') ( is-equiv-map-cone-pair f g f' g') map-fib-functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) (t : C × D) → fib (functor-prod f g) t → (fib f (pr1 t)) × (fib g (pr2 t)) map-fib-functor-prod f g .(functor-prod f g (pair a b)) (pair (pair a b) refl) = pair (pair a refl) (pair b refl) inv-map-fib-functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) (t : C × D) → (fib f (pr1 t)) × (fib g (pr2 t)) → fib (functor-prod f g) t inv-map-fib-functor-prod f g (pair .(f x) .(g y)) (pair (pair x refl) (pair y refl)) = pair (pair x y) refl issec-inv-map-fib-functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) (t : C × D) → ((map-fib-functor-prod f g t) ∘ (inv-map-fib-functor-prod f g t)) ~ id issec-inv-map-fib-functor-prod f g (pair .(f x) .(g y)) (pair (pair x refl) (pair y refl)) = refl isretr-inv-map-fib-functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) (t : C × D) → ((inv-map-fib-functor-prod f g t) ∘ (map-fib-functor-prod f g t)) ~ id isretr-inv-map-fib-functor-prod f g .(functor-prod f g (pair a b)) (pair (pair a b) refl) = refl abstract is-equiv-map-fib-functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) (t : C × D) → is-equiv (map-fib-functor-prod f g t) is-equiv-map-fib-functor-prod f g t = is-equiv-has-inverse ( inv-map-fib-functor-prod f g t) ( issec-inv-map-fib-functor-prod f g t) ( isretr-inv-map-fib-functor-prod f g t) abstract is-equiv-left-factor-is-equiv-functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) (d : D) → is-equiv (functor-prod f g) → is-equiv f is-equiv-left-factor-is-equiv-functor-prod f g d is-equiv-fg = is-equiv-is-contr-map ( λ x → is-contr-left-factor-prod ( fib f x) ( fib g d) ( is-contr-is-equiv' ( fib (functor-prod f g) (pair x d)) ( map-fib-functor-prod f g (pair x d)) ( is-equiv-map-fib-functor-prod f g (pair x d)) ( is-contr-map-is-equiv is-equiv-fg (pair x d)))) abstract is-equiv-right-factor-is-equiv-functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) (c : C) → is-equiv (functor-prod f g) → is-equiv g is-equiv-right-factor-is-equiv-functor-prod f g c is-equiv-fg = is-equiv-is-contr-map ( λ y → is-contr-right-factor-prod ( fib f c) ( fib g y) ( is-contr-is-equiv' ( fib (functor-prod f g) (pair c y)) ( map-fib-functor-prod f g (pair c y)) ( is-equiv-map-fib-functor-prod f g (pair c y)) ( is-contr-map-is-equiv is-equiv-fg (pair c y)))) abstract is-pullback-left-factor-is-pullback-prod : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} {C' : UU l4'} (f : A → X) (g : B → X) (c : cone f g C) (f' : A' → X') (g' : B' → X') (c' : cone f' g' C') → is-pullback ( functor-prod f f') ( functor-prod g g') ( cone-pair f g f' g' c c') → canonical-pullback f' g' → is-pullback f g c is-pullback-left-factor-is-pullback-prod f g c f' g' c' is-pb-cc' t = is-equiv-left-factor-is-equiv-functor-prod (gap f g c) (gap f' g' c') t ( is-equiv-right-factor ( gap ( functor-prod f f') ( functor-prod g g') ( cone-pair f g f' g' c c')) ( map-cone-pair f g f' g') ( functor-prod (gap f g c) (gap f' g' c')) ( triangle-map-cone-pair f g c f' g' c') ( is-equiv-map-cone-pair f g f' g') ( is-pb-cc')) abstract is-pullback-right-factor-is-pullback-prod : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} {C' : UU l4'} (f : A → X) (g : B → X) (c : cone f g C) (f' : A' → X') (g' : B' → X') (c' : cone f' g' C') → is-pullback ( functor-prod f f') ( functor-prod g g') ( cone-pair f g f' g' c c') → canonical-pullback f g → is-pullback f' g' c' is-pullback-right-factor-is-pullback-prod f g c f' g' c' is-pb-cc' t = is-equiv-right-factor-is-equiv-functor-prod (gap f g c) (gap f' g' c') t ( is-equiv-right-factor ( gap ( functor-prod f f') ( functor-prod g g') ( cone-pair f g f' g' c c')) ( map-cone-pair f g f' g') ( functor-prod (gap f g c) (gap f' g' c')) ( triangle-map-cone-pair f g c f' g' c') ( is-equiv-map-cone-pair f g f' g') ( is-pb-cc')) -- Exercise 10.8 cone-Π : {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {X : I → UU l4} {C : I → UU l5} (f : (i : I) → A i → X i) (g : (i : I) → B i → X i) (c : (i : I) → cone (f i) (g i) (C i)) → cone (postcomp-Π f) (postcomp-Π g) ((i : I) → C i) cone-Π f g c = pair ( postcomp-Π (λ i → pr1 (c i))) ( pair ( postcomp-Π (λ i → pr1 (pr2 (c i)))) ( htpy-postcomp-Π (λ i → pr2 (pr2 (c i))))) map-canonical-pullback-Π : {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {X : I → UU l4} (f : (i : I) → A i → X i) (g : (i : I) → B i → X i) → canonical-pullback (postcomp-Π f) (postcomp-Π g) → (i : I) → canonical-pullback (f i) (g i) map-canonical-pullback-Π f g (pair α (pair β γ)) i = pair (α i) (pair (β i) (htpy-eq γ i)) inv-map-canonical-pullback-Π : {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {X : I → UU l4} (f : (i : I) → A i → X i) (g : (i : I) → B i → X i) → ((i : I) → canonical-pullback (f i) (g i)) → canonical-pullback (postcomp-Π f) (postcomp-Π g) inv-map-canonical-pullback-Π f g h = pair ( λ i → (pr1 (h i))) ( pair ( λ i → (pr1 (pr2 (h i)))) ( eq-htpy (λ i → (pr2 (pr2 (h i)))))) issec-inv-map-canonical-pullback-Π : {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {X : I → UU l4} (f : (i : I) → A i → X i) (g : (i : I) → B i → X i) → ((map-canonical-pullback-Π f g) ∘ (inv-map-canonical-pullback-Π f g)) ~ id issec-inv-map-canonical-pullback-Π f g h = eq-htpy ( λ i → eq-Eq-canonical-pullback (f i) (g i) refl refl ( inv ( ( right-unit) ∙ ( htpy-eq (issec-eq-htpy (λ i → (pr2 (pr2 (h i))))) i)))) isretr-inv-map-canonical-pullback-Π : {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {X : I → UU l4} (f : (i : I) → A i → X i) (g : (i : I) → B i → X i) → ((inv-map-canonical-pullback-Π f g) ∘ (map-canonical-pullback-Π f g)) ~ id isretr-inv-map-canonical-pullback-Π f g (pair α (pair β γ)) = eq-Eq-canonical-pullback ( postcomp-Π f) ( postcomp-Π g) refl refl ( inv (right-unit ∙ (isretr-eq-htpy γ))) abstract is-equiv-map-canonical-pullback-Π : {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {X : I → UU l4} (f : (i : I) → A i → X i) (g : (i : I) → B i → X i) → is-equiv (map-canonical-pullback-Π f g) is-equiv-map-canonical-pullback-Π f g = is-equiv-has-inverse ( inv-map-canonical-pullback-Π f g) ( issec-inv-map-canonical-pullback-Π f g) ( isretr-inv-map-canonical-pullback-Π f g) triangle-map-canonical-pullback-Π : {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {X : I → UU l4} {C : I → UU l5} (f : (i : I) → A i → X i) (g : (i : I) → B i → X i) (c : (i : I) → cone (f i) (g i) (C i)) → ( postcomp-Π (λ i → gap (f i) (g i) (c i))) ~ ( ( map-canonical-pullback-Π f g) ∘ ( gap (postcomp-Π f) (postcomp-Π g) (cone-Π f g c))) triangle-map-canonical-pullback-Π f g c h = eq-htpy (λ i → eq-Eq-canonical-pullback (f i) (g i) refl refl ( (htpy-eq (issec-eq-htpy _) i) ∙ (inv right-unit))) abstract is-pullback-cone-Π : {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {X : I → UU l4} {C : I → UU l5} (f : (i : I) → A i → X i) (g : (i : I) → B i → X i) (c : (i : I) → cone (f i) (g i) (C i)) → ((i : I) → is-pullback (f i) (g i) (c i)) → is-pullback (postcomp-Π f) (postcomp-Π g) (cone-Π f g c) is-pullback-cone-Π f g c is-pb-c = is-equiv-right-factor ( postcomp-Π (λ i → gap (f i) (g i) (c i))) ( map-canonical-pullback-Π f g) ( gap (postcomp-Π f) (postcomp-Π g) (cone-Π f g c)) ( triangle-map-canonical-pullback-Π f g c) ( is-equiv-map-canonical-pullback-Π f g) ( is-equiv-postcomp-Π _ is-pb-c) -- Exercise 10.9 hom-cospan : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f' : A' → X') (g' : B' → X') → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ (l1' ⊔ (l2' ⊔ l3'))))) hom-cospan {A = A} {B} {X} f g {A'} {B'} {X'} f' g' = Σ (A → A') (λ hA → Σ (B → B') (λ hB → Σ (X → X') (λ hX → ((f' ∘ hA) ~ (hX ∘ f)) × ((g' ∘ hB) ~ (hX ∘ g))))) id-hom-cospan : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → hom-cospan f g f g id-hom-cospan f g = pair id (pair id (pair id (pair refl-htpy refl-htpy))) functor-canonical-pullback : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f' : A' → X') (g' : B' → X') → hom-cospan f' g' f g → canonical-pullback f' g' → canonical-pullback f g functor-canonical-pullback f g f' g' (pair hA (pair hB (pair hX (pair HA HB)))) (pair a' (pair b' p')) = pair (hA a') (pair (hB b') ((HA a') ∙ ((ap hX p') ∙ (inv (HB b'))))) cospan-hom-cospan-rotate : {l1 l2 l3 l1' l2' l3' l1'' l2'' l3'' : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f' : A' → X') (g' : B' → X') {A'' : UU l1''} {B'' : UU l2''} {X'' : UU l3''} (f'' : A'' → X'') (g'' : B'' → X'') (h : hom-cospan f' g' f g) (h' : hom-cospan f'' g'' f g) → hom-cospan (pr1 h) (pr1 h') (pr1 (pr2 (pr2 h))) (pr1 (pr2 (pr2 h'))) cospan-hom-cospan-rotate f g f' g' f'' g'' (pair hA (pair hB (pair hX (pair HA HB)))) (pair hA' (pair hB' (pair hX' (pair HA' HB')))) = pair f' (pair f'' (pair f (pair (htpy-inv HA) (htpy-inv HA')))) cospan-hom-cospan-rotate' : {l1 l2 l3 l1' l2' l3' l1'' l2'' l3'' : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f' : A' → X') (g' : B' → X') {A'' : UU l1''} {B'' : UU l2''} {X'' : UU l3''} (f'' : A'' → X'') (g'' : B'' → X'') (h : hom-cospan f' g' f g) (h' : hom-cospan f'' g'' f g) → hom-cospan (pr1 (pr2 h)) (pr1 (pr2 h')) (pr1 (pr2 (pr2 h))) (pr1 (pr2 (pr2 h'))) cospan-hom-cospan-rotate' f g f' g' f'' g'' (pair hA (pair hB (pair hX (pair HA HB)))) (pair hA' (pair hB' (pair hX' (pair HA' HB')))) = pair g' (pair g'' (pair g (pair (htpy-inv HB) (htpy-inv HB')))) {- map-3-by-3-canonical-pullback' : {l1 l2 l3 l1' l2' l3' l1'' l2'' l3'' : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f' : A' → X') (g' : B' → X') {A'' : UU l1''} {B'' : UU l2''} {X'' : UU l3''} (f'' : A'' → X'') (g'' : B → X'') (h : hom-cospan f' g' f g) (h' : hom-cospan f'' g'' f g) → Σ ( canonical-pullback f' g') (λ t' → Σ ( canonical-pullback f'' g'') (λ t'' → Eq-canonical-pullback f g ( functor-canonical-pullback f g f' g' h t') ( functor-canonical-pullback f g f'' g'' h' t''))) → Σ ( canonical-pullback (pr1 h) (pr1 h')) (λ s → Σ ( canonical-pullback (pr1 (pr2 h)) (pr1 (pr2 h'))) (λ s' → Eq-canonical-pullback (pr1 (pr2 (pr2 h))) (pr1 (pr2 (pr2 h'))) ( functor-canonical-pullback ( pr1 (pr2 (pr2 h))) ( pr1 (pr2 (pr2 h'))) ( pr1 h) ( pr1 h') ( cospan-hom-cospan-rotate f g f' g' f'' g'' h h') ( s)) ( functor-canonical-pullback ( pr1 (pr2 (pr2 h))) ( pr1 (pr2 (pr2 h'))) ( pr1 (pr2 h)) ( pr1 (pr2 h')) ( cospan-hom-cospan-rotate' f g f' g' f'' g'' h h') ( s')))) map-3-by-3-canonical-pullback' f g f' g' f'' g'' ( pair hA (pair hB (pair hX (pair HA HB)))) ( pair hA' (pair hB' (pair hX' (pair HA' HB')))) ( pair ( pair a' (pair b' p')) ( pair (pair a'' (pair b'' p'')) (pair α (pair β γ)))) = pair (pair a' (pair a'' α)) (pair (pair b' (pair b'' β)) (pair p' (pair p'' {!!}))) map-3-by-3-canonical-pullback : {l1 l2 l3 l1' l2' l3' l1'' l2'' l3'' : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f' : A' → X') (g' : B' → X') {A'' : UU l1''} {B'' : UU l2''} {X'' : UU l3''} (f'' : A'' → X'') (g'' : B → X'') (h : hom-cospan f' g' f g) (h' : hom-cospan f'' g'' f g) → canonical-pullback ( functor-canonical-pullback f g f' g' h) ( functor-canonical-pullback f g f'' g'' h') → canonical-pullback ( functor-canonical-pullback ( pr1 (pr2 (pr2 h))) ( pr1 (pr2 (pr2 h'))) ( pr1 h) ( pr1 h') ( cospan-hom-cospan-rotate f g f' g' f'' g'' h h')) ( functor-canonical-pullback ( pr1 (pr2 (pr2 h))) ( pr1 (pr2 (pr2 h'))) ( pr1 (pr2 h)) ( pr1 (pr2 h')) ( cospan-hom-cospan-rotate' f g f' g' f'' g'' h h')) map-3-by-3-canonical-pullback = {!!} -}
{ "alphanum_fraction": 0.5136841206, "avg_line_length": 38.1211331814, "ext": "agda", "hexsha": "2144703c977af7119befe73cbcab25f41ece21bc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "hemangandhi/HoTT-Intro", "max_forks_repo_path": "Agda/20-pullbacks.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "hemangandhi/HoTT-Intro", "max_issues_repo_path": "Agda/20-pullbacks.agda", "max_line_length": 135, "max_stars_count": null, "max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "hemangandhi/HoTT-Intro", "max_stars_repo_path": "Agda/20-pullbacks.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 50103, "size": 117070 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.ConsensusTypes.Block as Block import LibraBFT.Impl.Consensus.ConsensusTypes.BlockData as BlockData import LibraBFT.Impl.Consensus.ConsensusTypes.QuorumCert as QuorumCert import LibraBFT.Impl.Types.BlockInfo as BlockInfo import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier open import LibraBFT.Impl.OBM.Crypto hiding (verify) open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.Impl.OBM.Rust.RustTypes open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import Optics.All open import Util.PKCS hiding (verify) open import Util.Prelude open import Util.Hash ------------------------------------------------------------------------------ open import Data.String using (String) module LibraBFT.Impl.Consensus.ConsensusTypes.BlockRetrieval where verify : BlockRetrievalResponse → HashValue → U64 → ValidatorVerifier → Either ErrLog Unit verify self blockId numBlocks sigVerifier = grd‖ self ^∙ brpStatus /= BRSSucceeded ≔ Left fakeErr -- here ["/= BRSSucceeded"] ‖ length (self ^∙ brpBlocks) /= numBlocks ≔ Left fakeErr -- here ["not enough blocks returned", show (self^.brpBlocks), show numBlocks] ‖ otherwise≔ verifyBlocks (self ^∙ brpBlocks) where here' : List String → List String here' t = "BlockRetrieval" ∷ "verify" ∷ t verifyBlock : HashValue → Block → Either ErrLog HashValue verifyBlocks : List Block → Either ErrLog Unit verifyBlocks blks = foldM_ verifyBlock blockId blks verifyBlock expectedId block = do Block.validateSignature block sigVerifier Block.verifyWellFormed block lcheck (block ^∙ bId == expectedId) (here' ("blocks do not form a chain" ∷ [])) -- lsHV (block^.bId), lsHV expectedId pure (block ^∙ bParentId)
{ "alphanum_fraction": 0.6871633752, "avg_line_length": 43.6862745098, "ext": "agda", "hexsha": "0b90162dee8368233fccfe1f80f25f2da88cf519", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/BlockRetrieval.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/BlockRetrieval.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/BlockRetrieval.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 570, "size": 2228 }
{-# OPTIONS --type-in-type #-} open import Data.Unit open import Data.Product hiding ( curry ; uncurry ) open import Data.List hiding ( concat ) open import Data.String open import Relation.Binary.PropositionalEquality open import Function module Spire.Examples.CompLev where ---------------------------------------------------------------------- Label : Set Label = String Enum : Set Enum = List Label data Tag : Enum → Set where here : ∀{l E} → Tag (l ∷ E) there : ∀{l E} → Tag E → Tag (l ∷ E) Branches : (E : Enum) (P : Tag E → Set) → Set Branches [] P = ⊤ Branches (l ∷ E) P = P here × Branches E (λ t → P (there t)) case : {E : Enum} (P : Tag E → Set) (cs : Branches E P) (t : Tag E) → P t case P (c , cs) here = c case P (c , cs) (there t) = case (λ t → P (there t)) cs t ---------------------------------------------------------------------- data Tel : Set where End : Tel Arg : (A : Set) (B : A → Tel) → Tel Elᵀ : Tel → Set Elᵀ End = ⊤ Elᵀ (Arg A B) = Σ A (λ a → Elᵀ (B a)) ---------------------------------------------------------------------- data Desc (I : Set) : Set where End : Desc I Rec : (i : I) (D : Desc I) → Desc I RecFun : (A : Set) (B : A → I) (D : Desc I) → Desc I Arg : (A : Set) (B : A → Desc I) → Desc I ---------------------------------------------------------------------- ISet : Set → Set ISet I = I → Set Elᴰ : {I : Set} (D : Desc I) → ISet I → Set Elᴰ End X = ⊤ Elᴰ (Rec j D) X = X j × Elᴰ D X Elᴰ (RecFun A B D) X = ((a : A) → X (B a)) × Elᴰ D X Elᴰ (Arg A B) X = Σ A (λ a → Elᴰ (B a) X) Hyps : {I : Set} (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (xs : Elᴰ D X) → Set Hyps End X P tt = ⊤ Hyps (Rec i D) X P (x , xs) = P i x × Hyps D X P xs Hyps (RecFun A B D) X P (f , xs) = ((a : A) → P (B a) (f a)) × Hyps D X P xs Hyps (Arg A B) X P (a , xs) = Hyps (B a) X P xs ---------------------------------------------------------------------- data μ {I : Set} (R : I → Desc I) (i : I) : Set where init : Elᴰ (R i) (μ R) → μ R i ---------------------------------------------------------------------- ind : {I : Set} (R : I → Desc I) (M : (i : I) → μ R i → Set) (α : ∀ i (xs : Elᴰ (R i) (μ R)) (ihs : Hyps (R i) (μ R) M xs) → M i (init xs)) (i : I) (x : μ R i) → M i x prove : {I : Set} (D : Desc I) (R : I → Desc I) (M : (i : I) → μ R i → Set) (α : ∀ i (xs : Elᴰ (R i) (μ R)) (ihs : Hyps (R i) (μ R) M xs) → M i (init xs)) (xs : Elᴰ D (μ R)) → Hyps D (μ R) M xs ind R M α i (init xs) = α i xs (prove (R i) R M α xs) prove End R M α tt = tt prove (Rec j D) R M α (x , xs) = ind R M α j x , prove D R M α xs prove (RecFun A B D) R M α (f , xs) = (λ a → ind R M α (B a) (f a)) , prove D R M α xs prove (Arg A B) R M α (a , xs) = prove (B a) R M α xs ---------------------------------------------------------------------- DescE : Enum DescE = "End" ∷ "Rec" ∷ "Arg" ∷ [] DescT : Set DescT = Tag DescE -- EndT : DescT pattern EndT = here -- RecT : DescT pattern RecT = there here -- ArgT : DescT pattern ArgT = there (there here) DescR : Set → ⊤ → Desc ⊤ DescR I tt = Arg (Tag DescE) (case (λ _ → Desc ⊤) ( (Arg I λ i → End) , (Arg I λ i → Rec tt End) , (Arg Set λ A → RecFun A (λ a → tt) End) , tt )) `Desc : (I : Set) → Set `Desc I = μ (DescR I) tt -- `End : {I : Set} (i : I) → `Desc I pattern `End i = init (EndT , i , tt) -- `Rec : {I : Set} (i : I) (D : `Desc I) → `Desc I pattern `Rec i D = init (RecT , i , D , tt) -- `Arg : {I : Set} (A : Set) (B : A → `Desc I) → `Desc I pattern `Arg A B = init (ArgT , A , B , tt) ---------------------------------------------------------------------- FixI : (I : Set) → Set FixI I = I × `Desc I FixR' : (I : Set) (D : `Desc I) → I → `Desc I → Desc (FixI I) FixR' I D i (`End j) = Arg (j ≡ i) λ q → End FixR' I D i (`Rec j E) = Rec (j , D) (FixR' I D i E) FixR' I D i (`Arg A B) = Arg A λ a → FixR' I D i (B a) FixR' I D i (init (there (there (there ())) , xs)) FixR : (I : Set) (D : `Desc I) → FixI I → Desc (FixI I) FixR I D E,i = FixR' I D (proj₁ E,i) (proj₂ E,i) `Fix : (I : Set) (D : `Desc I) (i : I) → Set `Fix I D i = μ (FixR I D) (i , D) ----------------------------------------------------------------------
{ "alphanum_fraction": 0.4280592734, "avg_line_length": 28.462585034, "ext": "agda", "hexsha": "791d72839675f2b6002c3987504d72a9f06c66d4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-08-17T21:00:07.000Z", "max_forks_repo_forks_event_min_datetime": "2015-08-17T21:00:07.000Z", "max_forks_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "spire/spire", "max_forks_repo_path": "formalization/agda/Spire/Examples/CompLev.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "spire/spire", "max_issues_repo_path": "formalization/agda/Spire/Examples/CompLev.agda", "max_line_length": 89, "max_stars_count": 43, "max_stars_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "spire/spire", "max_stars_repo_path": "formalization/agda/Spire/Examples/CompLev.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T17:10:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-28T23:25:33.000Z", "num_tokens": 1605, "size": 4184 }
module Issue87 where data I : Set where data D : I -> Set where d : forall {i} (x : D i) -> D i bar : forall {i} -> D i -> D i -> D i bar (d x) (d y) with y bar (d x) (d {i} y) | z = d {i} y -- ERROR WAS: -- Panic: unbound variable i -- when checking that the expression i has type I -- Andreas, 2016-06-02 -- This looks weird, but is accepted currently: test : ∀ i → D i → D i → D i test .i (d {i} x) (d {.i} y) with y test .i (d {j} x) (d {i} y) | _ = d {i} y -- Note the {j}!
{ "alphanum_fraction": 0.5428571429, "avg_line_length": 22.2727272727, "ext": "agda", "hexsha": "8741a7c1d7c4d2e8a63d2577ba2c22bfe83ca98a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue87.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue87.agda", "max_line_length": 49, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue87.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 197, "size": 490 }
open import Agda.Builtin.Equality _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} → (f : ∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = λ x → f (g x) postulate A : Set B : A → Set C : {x : A} → B x → Set f : ∀ {x : A} (y : B x) → C y g : (x : A) → B x test : (f ∘ g) ≡ (f ∘ g) test = {!!} -- WAS: goal displayed as ((λ {x} -> f) ∘ g) ≡ ((λ {x} -> f) ∘ g) -- WANT: no spurious hidden lambda i.e. (f ∘ g) ≡ (f ∘ g)
{ "alphanum_fraction": 0.3659491194, "avg_line_length": 23.2272727273, "ext": "agda", "hexsha": "8363390bfd6296596b85eeac140ab8c5bbcd9f11", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3238.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3238.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3238.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 249, "size": 511 }
open import Data.Natural using ( Natural ; # ; _+_ ) module System.IO.Examples.Four where four : Natural four = # 2 + # 2
{ "alphanum_fraction": 0.674796748, "avg_line_length": 20.5, "ext": "agda", "hexsha": "ceb7b3a5352a6cb376d734f4876ce954141d2e3e", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/System/IO/Examples/Four.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/System/IO/Examples/Four.agda", "max_line_length": 52, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/System/IO/Examples/Four.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 36, "size": 123 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Sets.EquivalenceRelations open import Setoids.Setoids open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Groups.Definition module Groups.Homomorphisms.Definition where record GroupHom {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·A_ : A → A → A} {B : Set n} {T : Setoid {n} {p} B} {_·B_ : B → B → B} (G : Group S _·A_) (H : Group T _·B_) (f : A → B) : Set (m ⊔ n ⊔ o ⊔ p) where open Group H open Setoid T field groupHom : {x y : A} → f (x ·A y) ∼ (f x) ·B (f y) wellDefined : {x y : A} → Setoid._∼_ S x y → f x ∼ f y groupHom' : {x y : A} → (f x) ·B (f y) ∼ f (x ·A y) groupHom' = Equivalence.symmetric eq groupHom record InjectiveGroupHom {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·A_ : A → A → A} {B : Set n} {T : Setoid {n} {p} B} {_·B_ : B → B → B} {G : Group S _·A_} {H : Group T _·B_} {underf : A → B} (f : GroupHom G H underf) : Set (m ⊔ n ⊔ o ⊔ p) where open Setoid S renaming (_∼_ to _∼A_) open Setoid T renaming (_∼_ to _∼B_) field injective : SetoidInjection S T underf
{ "alphanum_fraction": 0.5796579658, "avg_line_length": 46.2916666667, "ext": "agda", "hexsha": "f9080768704877a2f3278a1a94be862e04d2e952", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Homomorphisms/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Homomorphisms/Definition.agda", "max_line_length": 255, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Homomorphisms/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 466, "size": 1111 }
-- Andreas, 2017-02-14 issue #2455 reported by mechvel -- Test case by Andrea -- Seem that the fix for issue #44 was not complete. -- When inserting module parameters for a definition, -- we need to respect polarities! -- {-# OPTIONS -v tc.decl:10 -v tc.polarity:70 -v tc.sig.inst:30 #-} module Issue2455 where data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x data Unit : Set where unit : Unit postulate A : Set P : A → Set p : ∀ {e} → P e module M (e : A) (f : Unit) where aux : Unit → P e aux unit = p -- se does not depent on f -- se gets type (e : A) (f :{UnusedArg} Unit) -> A se = e -- aux' should not depend on f -- For this to work, the module parameters for se must be -- respecting UnusedArg. aux' : Unit → P se aux' unit = p works : ∀ x y e → M.aux e x ≡ M.aux e y works _ _ _ = refl fails : ∀ x y e → M.aux' e x ≡ M.aux' e y fails _ _ _ = refl
{ "alphanum_fraction": 0.596069869, "avg_line_length": 20.8181818182, "ext": "agda", "hexsha": "1aacfe459e80044753bd6c2d508a53ed3dbe8a8a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Blaisorblade/Agda", "max_forks_repo_path": "test/Succeed/Issue2455.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "Blaisorblade/Agda", "max_issues_repo_path": "test/Succeed/Issue2455.agda", "max_line_length": 68, "max_stars_count": 3, "max_stars_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "Blaisorblade/Agda", "max_stars_repo_path": "test/Succeed/Issue2455.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 322, "size": 916 }
module ShouldBeApplicationOf where data One : Set where one : One data Two : Set where two : Two f : One -> Two f two = two
{ "alphanum_fraction": 0.6875, "avg_line_length": 12.8, "ext": "agda", "hexsha": "43e5ac67ca4fb846a1faca7cfe0537e05196793d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/ShouldBeApplicationOf.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/ShouldBeApplicationOf.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/ShouldBeApplicationOf.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 37, "size": 128 }
-- Andreas, bug found 2011-12-31 {-# OPTIONS --irrelevant-projections #-} module Issue543 where open import Common.Equality data ⊥ : Set where record ⊤ : Set where constructor tt data Bool : Set where true false : Bool T : Bool → Set T true = ⊤ T false = ⊥ record Squash {ℓ}(A : Set ℓ) : Set ℓ where constructor squash field .unsquash : A open Squash -- ok: sqT≡sqF : squash true ≡ squash false sqT≡sqF = refl -- this should not be provable!! .irrT≡F : true ≡ false irrT≡F = subst (λ s → unsquash (squash true) ≡ unsquash s) sqT≡sqF refl -- the rest is easy T≠F : true ≡ false → ⊥ T≠F p = subst T p tt .irr⊥ : ⊥ irr⊥ = T≠F irrT≡F rel⊥ : .⊥ → ⊥ rel⊥ () absurd : ⊥ absurd = rel⊥ irr⊥
{ "alphanum_fraction": 0.6295774648, "avg_line_length": 15.4347826087, "ext": "agda", "hexsha": "76321c10d405b284ea2d6ca3b453167a6d7d74a7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/Issue543.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/Issue543.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/Issue543.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 292, "size": 710 }
{-# OPTIONS --without-K --exact-split --safe #-} module HoTT.Ident where data Id (X : Set) : X → X → Set where refl : (x : X) → Id X x x _≡_ : {X : Set} → X → X → Set x ≡ y = Id _ x y 𝕁 : {X : Set} → (A : (x y : X) → x ≡ y → Set) → ((x : X) → A x x (refl x)) → (x y : X) → (p : x ≡ y) → A x y p 𝕁 A f x x (refl x) = f x ℍ : {X : Set} → (x : X) → (B : (y : X) → x ≡ y → Set) → B x (refl x) → (y : X) → (p : x ≡ y) → B y p ℍ x B b x (refl x) = b -- Defining `𝕁` in terms of `ℍ`. 𝕁' : {X : Set} → (A : (x y : X) → x ≡ y → Set) → ((x : X) → A x x (refl x)) → (x y : X) → (p : x ≡ y) → A x y p 𝕁' A f x = ℍ x (A x) (f x) -- Defining `ℍ` in terms of `𝕁`. transport : {X : Set} → (f : X → Set) → (x y : X) → (x ≡ y) → f x → f y transport f = 𝕁 (λ x y p → f x → f y) (λ x y → y) data Σ (A : Set) (p : A → Set) : Set where _,_ : (x : A) → p x → Σ A p curry : {A : Set} {B : A → Set} → ((x : A) → B x → Set) → Σ A B → Set curry f (x , y) = f x y -- This is just for the "Note" below. singl : (A : Set) → A → Set singl A x = Σ A (λ y → x ≡ y) -- Note: `≡` in the conclusion is WRT `Id (singl X x)`. -- Source: http://www.cse.chalmers.se/~coquand/singl.pdf lemma : {X : Set} → (x y : X) → (p : x ≡ y) → (x , refl x) ≡ (y , p) lemma = 𝕁 (λ x y p → (x , refl x) ≡ (y , p)) (λ x → refl (x , refl x)) ℍ' : {X : Set} → (x : X) → (B : (y : X) → x ≡ y → Set) → B x (refl x) → (y : X) → (p : x ≡ y) → B y p ℍ' x B b y p = transport (curry B) (x , refl x) (y , p) (lemma x y p) b
{ "alphanum_fraction": 0.4193762442, "avg_line_length": 25.5423728814, "ext": "agda", "hexsha": "d77b326eb295b813c95a32789424ddb14073cc55", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "049af4726fb1e2810705a798280389e72cb323f9", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "izuk/agda-hott", "max_forks_repo_path": "HoTT/Ident.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "049af4726fb1e2810705a798280389e72cb323f9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "izuk/agda-hott", "max_issues_repo_path": "HoTT/Ident.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "049af4726fb1e2810705a798280389e72cb323f9", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "izuk/agda-hott", "max_stars_repo_path": "HoTT/Ident.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 752, "size": 1507 }
------------------------------------------------------------------------ -- Compiler correctness ------------------------------------------------------------------------ open import Prelude import Lambda.Syntax module Lambda.Compiler-correctness {Name : Type} (open Lambda.Syntax Name) (def : Name → Tm 1) where import Equality.Propositional as E import Tactic.By.Propositional as By open import Prelude.Size open import List E.equality-with-J using (_++_) open import Monad E.equality-with-J using (return; _>>=_) open import Vec.Data E.equality-with-J open import Delay-monad.Bisimilarity open import Lambda.Compiler def open import Lambda.Delay-crash open import Lambda.Interpreter def open import Lambda.Virtual-machine.Instructions Name hiding (crash) open import Lambda.Virtual-machine comp-name private module C = Closure Code module T = Closure Tm ------------------------------------------------------------------------ -- A lemma -- A rearrangement lemma for ⟦_⟧. ⟦⟧-· : ∀ {n} (t₁ t₂ : Tm n) {ρ} {k : T.Value → Delay-crash C.Value ∞} → ⟦ t₁ · t₂ ⟧ ρ >>= k ∼ ⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ >>= k ⟦⟧-· t₁ t₂ {ρ} {k} = ⟦ t₁ · t₂ ⟧ ρ >>= k ∼⟨⟩ (do v₁ ← ⟦ t₁ ⟧ ρ v₂ ← ⟦ t₂ ⟧ ρ v₁ ∙ v₂) >>= k ∼⟨ symmetric (associativity (⟦ t₁ ⟧ _) _ _) ⟩ (do v₁ ← ⟦ t₁ ⟧ ρ (do v₂ ← ⟦ t₂ ⟧ ρ v₁ ∙ v₂) >>= k) ∼⟨ (⟦ t₁ ⟧ _ ∎) >>=-cong (λ _ → symmetric (associativity (⟦ t₂ ⟧ _) _ _)) ⟩ (do v₁ ← ⟦ t₁ ⟧ ρ v₂ ← ⟦ t₂ ⟧ ρ v₁ ∙ v₂ >>= k) ∎ ------------------------------------------------------------------------ -- Well-formed continuations and stacks -- A continuation is OK with respect to a certain state if the -- following property is satisfied. Cont-OK : Size → State → (T.Value → Delay-crash C.Value ∞) → Type Cont-OK i ⟨ c , s , ρ ⟩ k = ∀ v → [ i ] exec ⟨ c , val (comp-val v) ∷ s , ρ ⟩ ≈ k v -- If the In-tail-context parameter indicates that we are in a tail -- context, then the stack must have a certain shape, and it must be -- related to the continuation in a certain way. data Stack-OK (i : Size) (k : T.Value → Delay-crash C.Value ∞) : In-tail-context → Stack → Type where unrestricted : ∀ {s} → Stack-OK i k false s restricted : ∀ {s n} {c : Code n} {ρ : C.Env n} → Cont-OK i ⟨ c , s , ρ ⟩ k → Stack-OK i k true (ret c ρ ∷ s) -- A lemma that can be used to show that certain stacks are OK. ret-ok : ∀ {p i s n c} {ρ : C.Env n} {k} → Cont-OK i ⟨ c , s , ρ ⟩ k → Stack-OK i k p (ret c ρ ∷ s) ret-ok {true} c-ok = restricted c-ok ret-ok {false} _ = unrestricted ------------------------------------------------------------------------ -- The semantics of the compiled program matches that of the source -- code mutual -- Some lemmas making up the main part of the compiler correctness -- result. ⟦⟧-correct : ∀ {i n} (t : Tm n) (ρ : T.Env n) {c s} {k : T.Value → Delay-crash C.Value ∞} {tc} → Stack-OK i k tc s → Cont-OK i ⟨ c , s , comp-env ρ ⟩ k → [ i ] exec ⟨ comp tc t c , s , comp-env ρ ⟩ ≈ ⟦ t ⟧ ρ >>= k ⟦⟧-correct (var x) ρ {c} {s} {k} _ c-ok = exec ⟨ var x ∷ c , s , comp-env ρ ⟩ ≳⟨⟩ exec ⟨ c , val By.⟨ index (comp-env ρ) x ⟩ ∷ s , comp-env ρ ⟩ ≡⟨ By.⟨by⟩ (comp-index ρ x) ⟩ exec ⟨ c , val (comp-val (index ρ x)) ∷ s , comp-env ρ ⟩ ≈⟨ c-ok (index ρ x) ⟩∼ k (index ρ x) ∼⟨⟩ ⟦ var x ⟧ ρ >>= k ∎ ⟦⟧-correct (lam t) ρ {c} {s} {k} _ c-ok = exec ⟨ clo (comp-body t) ∷ c , s , comp-env ρ ⟩ ≳⟨⟩ exec ⟨ c , val (comp-val (T.lam t ρ)) ∷ s , comp-env ρ ⟩ ≈⟨ c-ok (T.lam t ρ) ⟩∼ k (T.lam t ρ) ∼⟨⟩ ⟦ lam t ⟧ ρ >>= k ∎ ⟦⟧-correct (t₁ · t₂) ρ {c} {s} {k} _ c-ok = exec ⟨ comp false t₁ (comp false t₂ (app ∷ c)) , s , comp-env ρ ⟩ ≈⟨ (⟦⟧-correct t₁ _ unrestricted λ v₁ → exec ⟨ comp false t₂ (app ∷ c) , val (comp-val v₁) ∷ s , comp-env ρ ⟩ ≈⟨ (⟦⟧-correct t₂ _ unrestricted λ v₂ → exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val v₁) ∷ s , comp-env ρ ⟩ ≈⟨ ∙-correct v₁ v₂ c-ok ⟩∼ v₁ ∙ v₂ >>= k ∎) ⟩∼ (⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ >>= k) ∎) ⟩∼ (⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ >>= k) ∼⟨ symmetric (⟦⟧-· t₁ t₂) ⟩ ⟦ t₁ · t₂ ⟧ ρ >>= k ∎ ⟦⟧-correct (call f t) ρ {c} {s} {k} unrestricted c-ok = exec ⟨ comp false (call f t) c , s , comp-env ρ ⟩ ∼⟨⟩ exec ⟨ comp false t (cal f ∷ c) , s , comp-env ρ ⟩ ≈⟨ (⟦⟧-correct t _ unrestricted λ v → exec ⟨ cal f ∷ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≈⟨ (later λ { .force → exec ⟨ comp-name f , ret c (comp-env ρ) ∷ s , comp-val v ∷ [] ⟩ ≈⟨ body-lemma (def f) [] c-ok ⟩∼ (⟦ def f ⟧ (v ∷ []) >>= k) ∎ }) ⟩∼ (T.lam (def f) [] ∙ v >>= k) ∎) ⟩∼ (⟦ t ⟧ ρ >>= λ v → T.lam (def f) [] ∙ v >>= k) ∼⟨ associativity (⟦ t ⟧ ρ) _ _ ⟩ (⟦ t ⟧ ρ >>= λ v → T.lam (def f) [] ∙ v) >>= k ∼⟨⟩ ⟦ call f t ⟧ ρ >>= k ∎ ⟦⟧-correct (call f t) ρ {c} {ret c′ ρ′ ∷ s} {k} (restricted c-ok) _ = exec ⟨ comp true (call f t) c , ret c′ ρ′ ∷ s , comp-env ρ ⟩ ∼⟨⟩ exec ⟨ comp false t (tcl f ∷ c) , ret c′ ρ′ ∷ s , comp-env ρ ⟩ ≈⟨ (⟦⟧-correct t _ unrestricted λ v → exec ⟨ tcl f ∷ c , val (comp-val v) ∷ ret c′ ρ′ ∷ s , comp-env ρ ⟩ ≈⟨ (later λ { .force → exec ⟨ comp-name f , ret c′ ρ′ ∷ s , comp-val v ∷ [] ⟩ ≈⟨ body-lemma (def f) [] c-ok ⟩∼ ⟦ def f ⟧ (v ∷ []) >>= k ∎ }) ⟩∼ T.lam (def f) [] ∙ v >>= k ∎) ⟩∼ (⟦ t ⟧ ρ >>= λ v → T.lam (def f) [] ∙ v >>= k) ∼⟨ associativity (⟦ t ⟧ ρ) _ _ ⟩ (⟦ t ⟧ ρ >>= λ v → T.lam (def f) [] ∙ v) >>= k ∼⟨⟩ ⟦ call f t ⟧ ρ >>= k ∎ ⟦⟧-correct (con b) ρ {c} {s} {k} _ c-ok = exec ⟨ con b ∷ c , s , comp-env ρ ⟩ ≳⟨⟩ exec ⟨ c , val (comp-val (T.con b)) ∷ s , comp-env ρ ⟩ ≈⟨ c-ok (T.con b) ⟩∼ k (T.con b) ∼⟨⟩ ⟦ con b ⟧ ρ >>= k ∎ ⟦⟧-correct (if t₁ t₂ t₃) ρ {c} {s} {k} {tc} s-ok c-ok = exec ⟨ comp false t₁ (bra (comp tc t₂ []) (comp tc t₃ []) ∷ c) , s , comp-env ρ ⟩ ≈⟨ (⟦⟧-correct t₁ _ unrestricted λ v₁ → ⟦if⟧-correct v₁ t₂ t₃ s-ok c-ok) ⟩∼ (⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦if⟧ v₁ t₂ t₃ ρ >>= k) ∼⟨ associativity (⟦ t₁ ⟧ ρ) _ _ ⟩ (⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦if⟧ v₁ t₂ t₃ ρ) >>= k ∼⟨⟩ ⟦ if t₁ t₂ t₃ ⟧ ρ >>= k ∎ body-lemma : ∀ {i n n′} (t : Tm (1 + n)) ρ {ρ′ : C.Env n′} {c s v} {k : T.Value → Delay-crash C.Value ∞} → Cont-OK i ⟨ c , s , ρ′ ⟩ k → [ i ] exec ⟨ comp-body t , ret c ρ′ ∷ s , comp-val v ∷ comp-env ρ ⟩ ≈ ⟦ t ⟧ (v ∷ ρ) >>= k body-lemma t ρ {ρ′} {c} {s} {v} {k} c-ok = exec ⟨ comp-body t , ret c ρ′ ∷ s , comp-val v ∷ comp-env ρ ⟩ ∼⟨⟩ exec ⟨ comp-body t , ret c ρ′ ∷ s , comp-env (v ∷ ρ) ⟩ ≈⟨ (⟦⟧-correct t (_ ∷ _) (ret-ok c-ok) λ v′ → exec ⟨ ret ∷ [] , val (comp-val v′) ∷ ret c ρ′ ∷ s , comp-env (v ∷ ρ) ⟩ ≳⟨⟩ exec ⟨ c , val (comp-val v′) ∷ s , ρ′ ⟩ ≈⟨ c-ok v′ ⟩∼ k v′ ∎) ⟩∼ ⟦ t ⟧ (v ∷ ρ) >>= k ∎ ∙-correct : ∀ {i n} v₁ v₂ {ρ : C.Env n} {c s} {k : T.Value → Delay-crash C.Value ∞} → Cont-OK i ⟨ c , s , ρ ⟩ k → [ i ] exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val v₁) ∷ s , ρ ⟩ ≈ v₁ ∙ v₂ >>= k ∙-correct (T.lam t₁ ρ₁) v₂ {ρ} {c} {s} {k} c-ok = exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val (T.lam t₁ ρ₁)) ∷ s , ρ ⟩ ≈⟨ later (λ { .force → exec ⟨ comp-body t₁ , ret c ρ ∷ s , comp-val v₂ ∷ comp-env ρ₁ ⟩ ≈⟨ body-lemma t₁ _ c-ok ⟩∼ ⟦ t₁ ⟧ (v₂ ∷ ρ₁) >>= k ∎ }) ⟩∎ T.lam t₁ ρ₁ ∙ v₂ >>= k ∎ ∙-correct (T.con b) v₂ {ρ} {c} {s} {k} _ = exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val (T.con b)) ∷ s , ρ ⟩ ≳⟨⟩ crash ∼⟨⟩ T.con b ∙ v₂ >>= k ∎ ⟦if⟧-correct : ∀ {i n} v₁ (t₂ t₃ : Tm n) {ρ : T.Env n} {c s} {k : T.Value → Delay-crash C.Value ∞} {tc} → Stack-OK i k tc s → Cont-OK i ⟨ c , s , comp-env ρ ⟩ k → [ i ] exec ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c , val (comp-val v₁) ∷ s , comp-env ρ ⟩ ≈ ⟦if⟧ v₁ t₂ t₃ ρ >>= k ⟦if⟧-correct (T.lam t₁ ρ₁) t₂ t₃ {ρ} {c} {s} {k} {tc} _ _ = exec ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c , val (comp-val (T.lam t₁ ρ₁)) ∷ s , comp-env ρ ⟩ ≳⟨⟩ crash ∼⟨⟩ ⟦if⟧ (T.lam t₁ ρ₁) t₂ t₃ ρ >>= k ∎ ⟦if⟧-correct (T.con true) t₂ t₃ {ρ} {c} {s} {k} {tc} s-ok c-ok = exec ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c , val (comp-val (T.con true)) ∷ s , comp-env ρ ⟩ ≳⟨⟩ exec ⟨ comp tc t₂ [] ++ c , s , comp-env ρ ⟩ ≡⟨ By.by (comp-++ _ t₂) ⟩ exec ⟨ comp tc t₂ c , s , comp-env ρ ⟩ ≈⟨ ⟦⟧-correct t₂ _ s-ok c-ok ⟩∼ ⟦ t₂ ⟧ ρ >>= k ∼⟨⟩ ⟦if⟧ (T.con true) t₂ t₃ ρ >>= k ∎ ⟦if⟧-correct (T.con false) t₂ t₃ {ρ} {c} {s} {k} {tc} s-ok c-ok = exec ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c , val (comp-val (T.con false)) ∷ s , comp-env ρ ⟩ ≳⟨⟩ exec ⟨ comp tc t₃ [] ++ c , s , comp-env ρ ⟩ ≡⟨ By.by (comp-++ _ t₃) ⟩ exec ⟨ comp tc t₃ c , s , comp-env ρ ⟩ ≈⟨ ⟦⟧-correct t₃ _ s-ok c-ok ⟩∼ ⟦ t₃ ⟧ ρ >>= k ∼⟨⟩ ⟦if⟧ (T.con false) t₂ t₃ ρ >>= k ∎ -- Compiler correctness. Note that the equality that is used here is -- syntactic. correct : (t : Tm 0) → exec ⟨ comp₀ t , [] , [] ⟩ ≈ ⟦ t ⟧ [] >>= λ v → return (comp-val v) correct t = exec ⟨ comp false t [] , [] , [] ⟩ ∼⟨⟩ exec ⟨ comp false t [] , [] , comp-env [] ⟩ ≈⟨ ⟦⟧-correct t [] unrestricted (λ v → laterˡ (return (comp-val v) ∎)) ⟩ (⟦ t ⟧ [] >>= λ v → return (comp-val v)) ∎
{ "alphanum_fraction": 0.3604299631, "avg_line_length": 36.7530864198, "ext": "agda", "hexsha": "0acae2c4bca4e2ae4972b3c85d5f5130ddee1e69", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/definitional-interpreters", "max_forks_repo_path": "src/Lambda/Compiler-correctness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/definitional-interpreters", "max_issues_repo_path": "src/Lambda/Compiler-correctness.agda", "max_line_length": 143, "max_stars_count": null, "max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/definitional-interpreters", "max_stars_repo_path": "src/Lambda/Compiler-correctness.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4320, "size": 11908 }
{-# OPTIONS --cubical-compatible #-} data Bool : Set where true : Bool false : Bool data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ data Fin : ℕ → Set where zero : {n : ℕ} → Fin (suc n) suc : {n : ℕ} (i : Fin n) → Fin (suc n) infixr 5 _∷_ data Vec {a} (A : Set a) : ℕ → Set a where [] : Vec A zero _∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n) infix 4 _[_]=_ data _[_]=_ {a} {A : Set a} : {n : ℕ} → Vec A n → Fin n → A → Set a where here : ∀ {n} {x} {xs : Vec A n} → x ∷ xs [ zero ]= x there : ∀ {n} {i} {x y} {xs : Vec A n} (xs[i]=x : xs [ i ]= x) → y ∷ xs [ suc i ]= x Subset : ℕ → Set Subset = Vec Bool infix 4 _∈_ _∈_ : ∀ {n} → Fin n → Subset n → Set x ∈ p = p [ x ]= true drop-there : ∀ {s n x} {p : Subset n} → suc x ∈ s ∷ p → x ∈ p drop-there (there x∈p) = x∈p _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = λ x → f (g x) data ⊥ : Set where infix 3 ¬_ ¬_ : ∀ {ℓ} → Set ℓ → Set ℓ ¬ P = P → ⊥ data Dec {p} (P : Set p) : Set p where yes : ( p : P) → Dec P no : (¬p : ¬ P) → Dec P infix 4 _∈?_ _∈?_ : ∀ {n} x (p : Subset n) → Dec (x ∈ p) zero ∈? true ∷ p = yes here zero ∈? false ∷ p = no λ() suc n ∈? s ∷ p with n ∈? p ... | yes n∈p = yes (there n∈p) ... | no n∉p = no (n∉p ∘ drop-there)
{ "alphanum_fraction": 0.4156293223, "avg_line_length": 22.2461538462, "ext": "agda", "hexsha": "b5716ecd8123ec3bcaf576ae9d5ee63e27bf6666", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue1775.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue1775.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue1775.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 668, "size": 1446 }
module STLC1.Kovacs.Soundness where open import STLC1.Kovacs.Convertibility public open import STLC1.Kovacs.PresheafRefinement public -------------------------------------------------------------------------------- infix 3 _≈_ _≈_ : ∀ {A Γ} → Γ ⊩ A → Γ ⊩ A → Set _≈_ {⎵} {Γ} M₁ M₂ = M₁ ≡ M₂ _≈_ {A ⇒ B} {Γ} f₁ f₂ = ∀ {Γ′} → (η : Γ′ ⊇ Γ) {a₁ a₂ : Γ′ ⊩ A} → (p : a₁ ≈ a₂) (u₁ : 𝒰 a₁) (u₂ : 𝒰 a₂) → f₁ η a₁ ≈ f₂ η a₂ _≈_ {A ⩕ B} {Γ} s₁ s₂ = proj₁ s₁ ≈ proj₁ s₂ × proj₂ s₁ ≈ proj₂ s₂ _≈_ {⫪} {Γ} s₁ s₂ = ⊤ -- (≈ᶜ ; ∙ ; _,_) infix 3 _≈⋆_ data _≈⋆_ : ∀ {Γ Ξ} → Γ ⊩⋆ Ξ → Γ ⊩⋆ Ξ → Set where ∅ : ∀ {Γ} → ∅ {Γ} ≈⋆ ∅ _,_ : ∀ {Γ Ξ A} → {ρ₁ ρ₂ : Γ ⊩⋆ Ξ} {M₁ M₂ : Γ ⊩ A} → (χ : ρ₁ ≈⋆ ρ₂) (p : M₁ ≈ M₂) → ρ₁ , M₁ ≈⋆ ρ₂ , M₂ -- (_≈⁻¹) _⁻¹≈ : ∀ {A Γ} → {a₁ a₂ : Γ ⊩ A} → a₁ ≈ a₂ → a₂ ≈ a₁ _⁻¹≈ {⎵} p = p ⁻¹ _⁻¹≈ {A ⇒ B} F = λ η p u₁ u₂ → F η (p ⁻¹≈) u₂ u₁ ⁻¹≈ _⁻¹≈ {A ⩕ B} p = proj₁ p ⁻¹≈ , proj₂ p ⁻¹≈ _⁻¹≈ {⫪} p = tt -- (_≈ᶜ⁻¹) _⁻¹≈⋆ : ∀ {Γ Ξ} → {ρ₁ ρ₂ : Γ ⊩⋆ Ξ} → ρ₁ ≈⋆ ρ₂ → ρ₂ ≈⋆ ρ₁ ∅ ⁻¹≈⋆ = ∅ (χ , p) ⁻¹≈⋆ = χ ⁻¹≈⋆ , p ⁻¹≈ -- (_≈◾_) _⦙≈_ : ∀ {A Γ} → {a₁ a₂ a₃ : Γ ⊩ A} → a₁ ≈ a₂ → a₂ ≈ a₃ → a₁ ≈ a₃ _⦙≈_ {⎵} p q = p ⦙ q _⦙≈_ {A ⇒ B} F G = λ η p u₁ u₂ → F η (p ⦙≈ (p ⁻¹≈)) u₁ u₁ ⦙≈ G η p u₁ u₂ _⦙≈_ {A ⩕ B} p q = proj₁ p ⦙≈ proj₁ q , proj₂ p ⦙≈ proj₂ q _⦙≈_ {⫪} p q = tt -- (_≈ᶜ◾_) _⦙≈⋆_ : ∀ {Γ Ξ} → {ρ₁ ρ₂ ρ₃ : Γ ⊩⋆ Ξ} → ρ₁ ≈⋆ ρ₂ → ρ₂ ≈⋆ ρ₃ → ρ₁ ≈⋆ ρ₃ ∅ ⦙≈⋆ ∅ = ∅ (χ₁ , p) ⦙≈⋆ (χ₂ , q) = χ₁ ⦙≈⋆ χ₂ , p ⦙≈ q instance per≈ : ∀ {Γ A} → PER (Γ ⊩ A) _≈_ per≈ = record { _⁻¹ = _⁻¹≈ ; _⦙_ = _⦙≈_ } instance per≈⋆ : ∀ {Γ Ξ} → PER (Γ ⊩⋆ Ξ) _≈⋆_ per≈⋆ = record { _⁻¹ = _⁻¹≈⋆ ; _⦙_ = _⦙≈⋆_ } -------------------------------------------------------------------------------- -- (≈ₑ) acc≈ : ∀ {A Γ Γ′} → {a₁ a₂ : Γ ⊩ A} → (η : Γ′ ⊇ Γ) → a₁ ≈ a₂ → acc η a₁ ≈ acc η a₂ acc≈ {⎵} η p = renⁿᶠ η & p acc≈ {A ⇒ B} η F = λ η′ → F (η ○ η′) acc≈ {A ⩕ B} η p = acc≈ η (proj₁ p) , acc≈ η (proj₂ p) acc≈ {⫪} η p = tt -- (≈ᶜₑ) _⬖≈_ : ∀ {Γ Γ′ Ξ} → {ρ₁ ρ₂ : Γ ⊩⋆ Ξ} → ρ₁ ≈⋆ ρ₂ → (η : Γ′ ⊇ Γ) → ρ₁ ⬖ η ≈⋆ ρ₂ ⬖ η ∅ ⬖≈ η = ∅ (χ , p) ⬖≈ η = χ ⬖≈ η , acc≈ η p -- (∈≈) get≈ : ∀ {Γ Ξ A} → {ρ₁ ρ₂ : Γ ⊩⋆ Ξ} → ρ₁ ≈⋆ ρ₂ → (i : Ξ ∋ A) → getᵥ ρ₁ i ≈ getᵥ ρ₂ i get≈ (χ , p) zero = p get≈ (χ , p) (suc i) = get≈ χ i -- (Tm≈) eval≈ : ∀ {Γ Ξ A} → {ρ₁ ρ₂ : Γ ⊩⋆ Ξ} → ρ₁ ≈⋆ ρ₂ → 𝒰⋆ ρ₁ → 𝒰⋆ ρ₂ → (M : Ξ ⊢ A) → eval ρ₁ M ≈ eval ρ₂ M eval≈ χ υ₁ υ₂ (𝓋 i) = get≈ χ i eval≈ χ υ₁ υ₂ (ƛ M) = λ η p u₁ u₂ → eval≈ (χ ⬖≈ η , p) (υ₁ ⬖𝒰 η , u₁) (υ₂ ⬖𝒰 η , u₂) M eval≈ χ υ₁ υ₂ (M ∙ N) = eval≈ χ υ₁ υ₂ M idₑ (eval≈ χ υ₁ υ₂ N) (eval𝒰 υ₁ N) (eval𝒰 υ₂ N) eval≈ χ υ₁ υ₂ (M , N) = eval≈ χ υ₁ υ₂ M , eval≈ χ υ₁ υ₂ N eval≈ χ υ₁ υ₂ (π₁ M) = proj₁ (eval≈ χ υ₁ υ₂ M) eval≈ χ υ₁ υ₂ (π₂ M) = proj₂ (eval≈ χ υ₁ υ₂ M) eval≈ χ υ₁ υ₂ τ = tt -------------------------------------------------------------------------------- -- (Subᴺᴾ) -- NOTE: _◆𝒰_ = eval𝒰⋆ _◆𝒰_ : ∀ {Γ Ξ Φ} → {ρ : Γ ⊩⋆ Ξ} → (σ : Ξ ⊢⋆ Φ) → 𝒰⋆ ρ → 𝒰⋆ (σ ◆ ρ) ∅ ◆𝒰 υ = ∅ (σ , M) ◆𝒰 υ = σ ◆𝒰 υ , eval𝒰 υ M -- (Subᴺ≈ᶜ) -- NOTE: _◆≈_ = eval≈⋆ _◆≈_ : ∀ {Γ Ξ Φ} → {ρ₁ ρ₂ : Γ ⊩⋆ Ξ} → (σ : Ξ ⊢⋆ Φ) → ρ₁ ≈⋆ ρ₂ → 𝒰⋆ ρ₁ → 𝒰⋆ ρ₂ → σ ◆ ρ₁ ≈⋆ σ ◆ ρ₂ (∅ ◆≈ χ) υ₁ υ₂ = ∅ ((σ , M) ◆≈ χ) υ₁ υ₂ = (σ ◆≈ χ) υ₁ υ₂ , eval≈ χ υ₁ υ₂ M -------------------------------------------------------------------------------- -- (Tmₛᴺ) eval◆ : ∀ {Γ Ξ Φ A} → {ρ : Γ ⊩⋆ Ξ} → ρ ≈⋆ ρ → 𝒰⋆ ρ → (σ : Ξ ⊢⋆ Φ) (M : Φ ⊢ A) → eval ρ (sub σ M) ≈ eval (σ ◆ ρ) M eval◆ {ρ = ρ} χ υ σ (𝓋 i) rewrite get◆ ρ σ i = eval≈ χ υ υ (getₛ σ i) eval◆ {ρ = ρ} χ υ σ (ƛ M) η {a₁} {a₂} p u₁ u₂ rewrite comp◆⬖ η υ σ = let υ′ = υ ⬖𝒰 η in eval◆ {ρ = ρ ⬖ η , a₁} ((χ ⬖≈ η) , (p ⦙ p ⁻¹)) (υ ⬖𝒰 η , u₁) (liftₛ σ) M ⦙ coe ((λ ρ′ → eval (ρ′ , a₁) M ≈ _) & ( comp◆⬗ (ρ ⬖ η , a₁) (wkₑ idₑ) σ ⦙ (σ ◆_) & lid⬗ (ρ ⬖ η) ) ⁻¹) (eval≈ ((σ ◆≈ (χ ⬖≈ η)) υ′ υ′ , p) (σ ◆𝒰 υ′ , u₁) (σ ◆𝒰 υ′ , u₂) M) eval◆ {ρ = ρ} χ υ σ (M ∙ N) = eval◆ χ υ σ M idₑ (eval◆ χ υ σ N) (eval𝒰 υ (sub σ N)) (eval𝒰 (σ ◆𝒰 υ) N) eval◆ {ρ = ρ} χ υ σ (M , N) = eval◆ χ υ σ M , eval◆ χ υ σ N eval◆ {ρ = ρ} χ υ σ (π₁ M) = proj₁ (eval◆ χ υ σ M) eval◆ {ρ = ρ} χ υ σ (π₂ M) = proj₂ (eval◆ χ υ σ M) eval◆ {ρ = ρ} χ υ σ τ = tt -------------------------------------------------------------------------------- -- (~≈) eval∼ : ∀ {Γ Ξ A} → {ρ₁ ρ₂ : Γ ⊩⋆ Ξ} → ρ₁ ≈⋆ ρ₂ → 𝒰⋆ ρ₁ → 𝒰⋆ ρ₂ → {M₁ M₂ : Ξ ⊢ A} → M₁ ∼ M₂ → eval ρ₁ M₁ ≈ eval ρ₂ M₂ eval∼ χ υ₁ υ₂ {M} refl∼ = eval≈ χ υ₁ υ₂ M eval∼ χ υ₁ υ₂ (p ⁻¹∼) = eval∼ (χ ⁻¹) υ₂ υ₁ p ⁻¹ eval∼ χ υ₁ υ₂ (p ⦙∼ q) = eval∼ (χ ⦙ χ ⁻¹) υ₁ υ₁ p ⦙ eval∼ χ υ₁ υ₂ q eval∼ χ υ₁ υ₂ (ƛ∼ p) = λ η q u₁ u₂ → eval∼ (χ ⬖≈ η , q) (υ₁ ⬖𝒰 η , u₁) (υ₂ ⬖𝒰 η , u₂) p eval∼ χ υ₁ υ₂ (_∙∼_ {N₁ = N₁} {N₂} p q) = eval∼ χ υ₁ υ₂ p idₑ (eval∼ χ υ₁ υ₂ q) (eval𝒰 υ₁ N₁) (eval𝒰 υ₂ N₂) eval∼ χ υ₁ υ₂ (p ,∼ q) = eval∼ χ υ₁ υ₂ p , eval∼ χ υ₁ υ₂ q eval∼ χ υ₁ υ₂ (π₁∼ p ) = proj₁ (eval∼ χ υ₁ υ₂ p) eval∼ χ υ₁ υ₂ (π₂∼ p ) = proj₂ (eval∼ χ υ₁ υ₂ p) eval∼ {ρ₁ = ρ₁} {ρ₂} χ υ₁ υ₂ (red⇒ M N) = coe ((λ ρ₁′ ρ₂′ → eval (ρ₁′ , eval ρ₁ N) M ≈ eval (ρ₂′ , eval ρ₂ N) M) & (lid⬖ ρ₁ ⁻¹) ⊗ (lid◆ ρ₂ ⁻¹)) (eval≈ (χ , eval≈ χ υ₁ υ₂ N) (υ₁ , eval𝒰 υ₁ N) (υ₂ , eval𝒰 υ₂ N) M) ⦙ eval◆ (χ ⁻¹ ⦙ χ) υ₂ (idₛ , N) M ⁻¹ eval∼ χ υ₁ υ₂ (red⩕₁ M N) = eval≈ χ υ₁ υ₂ M eval∼ χ υ₁ υ₂ (red⩕₂ M N) = eval≈ χ υ₁ υ₂ N eval∼ {ρ₂ = ρ₂} χ υ₁ υ₂ (exp⇒ M) η {a₂ = a₂} p u₁ u₂ rewrite eval⬗ (ρ₂ ⬖ η , a₂) (wkₑ idₑ) M ⁻¹ | lid⬗ (ρ₂ ⬖ η) | eval⬖ η υ₂ M | rid○ η = eval≈ χ υ₁ υ₂ M η p u₁ u₂ eval∼ χ υ₁ υ₂ (exp⩕ M) = eval≈ χ υ₁ υ₂ M eval∼ χ υ₁ υ₂ (exp⫪ M) = tt -------------------------------------------------------------------------------- mutual -- (q≈) reify≈ : ∀ {A Γ} → {a₁ a₂ : Γ ⊩ A} → a₁ ≈ a₂ → reify a₁ ≡ reify a₂ reify≈ {⎵} p = p reify≈ {A ⇒ B} F = ƛ & reify≈ (F (wkₑ {A = A} idₑ) (reflect≈ refl) (reflect𝒰 {A} 0) (reflect𝒰 {A} 0)) reify≈ {A ⩕ B} p = _,_ & reify≈ (proj₁ p) ⊗ reify≈ (proj₂ p) reify≈ {⫪} p = refl -- (u≈) reflect≈ : ∀ {A Γ} → {M₁ M₂ : Γ ⊢ⁿᵉ A} → M₁ ≡ M₂ → reflect M₁ ≈ reflect M₂ reflect≈ {⎵} p = ne & p reflect≈ {A ⇒ B} p = λ η q u₁ u₂ → reflect≈ (_∙_ & (renⁿᵉ η & p) ⊗ reify≈ q) reflect≈ {A ⩕ B} p = reflect≈ (π₁ & p) , reflect≈ (π₂ & p) reflect≈ {⫪} p = tt -- (uᶜ≈) id≈ : ∀ {Γ} → idᵥ {Γ} ≈⋆ idᵥ id≈ {∅} = ∅ id≈ {Γ , A} = id≈ ⬖≈ wkₑ idₑ , reflect≈ refl sound : ∀ {Γ A} → {M₁ M₂ : Γ ⊢ A} → M₁ ∼ M₂ → nf M₁ ≡ nf M₂ sound p = reify≈ (eval∼ id≈ id𝒰 id𝒰 p) --------------------------------------------------------------------------------
{ "alphanum_fraction": 0.3078169804, "avg_line_length": 26.7366666667, "ext": "agda", "hexsha": "8e830d3a3330328d95993e2466615c755c157347", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/coquand-kovacs", "max_forks_repo_path": "src/STLC1/Kovacs/Soundness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/coquand-kovacs", "max_issues_repo_path": "src/STLC1/Kovacs/Soundness.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/coquand-kovacs", "max_stars_repo_path": "src/STLC1/Kovacs/Soundness.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4501, "size": 8021 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Decision procedures for finite sets and subsets of finite sets -- -- This module is DEPRECATED. Please use the Data.Fin.Properties -- and Data.Fin.Subset.Properties directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Fin.Dec where open import Data.Fin.Properties public using (decFinSubset; any?; all?; ¬∀⟶∃¬-smallest; ¬∀⟶∃¬) open import Data.Fin.Subset.Properties public using (_∈?_; _⊆?_; nonempty?; anySubset?) renaming (Lift? to decLift)
{ "alphanum_fraction": 0.5485893417, "avg_line_length": 31.9, "ext": "agda", "hexsha": "57d48fda9d0aef6f692a88e6b96d13defe2f1a72", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Dec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Dec.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Dec.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 148, "size": 638 }
module ial where open import ial-datatypes public open import logic public open import thms public open import termination public open import error public open import io public
{ "alphanum_fraction": 0.8370786517, "avg_line_length": 19.7777777778, "ext": "agda", "hexsha": "b182d10bc1854e45861b2a58951c7b8abce23c67", "lang": "Agda", "max_forks_count": 34, "max_forks_repo_forks_event_max_datetime": "2022-02-20T18:33:16.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-17T11:51:36.000Z", "max_forks_repo_head_hexsha": "75f72bf2e41ac4042efc3128fa9958d4cd69b947", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mudathirmahgoub/cedille", "max_forks_repo_path": "src/ial.agda", "max_issues_count": 123, "max_issues_repo_head_hexsha": "75f72bf2e41ac4042efc3128fa9958d4cd69b947", "max_issues_repo_issues_event_max_datetime": "2022-01-12T03:51:28.000Z", "max_issues_repo_issues_event_min_datetime": "2018-09-17T10:53:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mudathirmahgoub/cedille", "max_issues_repo_path": "src/ial.agda", "max_line_length": 32, "max_stars_count": 328, "max_stars_repo_head_hexsha": "75f72bf2e41ac4042efc3128fa9958d4cd69b947", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mudathirmahgoub/cedille", "max_stars_repo_path": "src/ial.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T10:33:07.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-14T20:06:09.000Z", "num_tokens": 39, "size": 178 }
------------------------------------------------------------------------ -- Values ------------------------------------------------------------------------ open import Atom module Values (atoms : χ-atoms) where open import Equality.Propositional open import Prelude hiding (const) open import Chi atoms open import Deterministic atoms open χ-atoms atoms -- Values. mutual infixr 5 _∷_ data Value : Exp → Type where lambda : ∀ x e → Value (lambda x e) const : ∀ c {es} → Values es → Value (const c es) data Values : List Exp → Type where [] : Values [] _∷_ : ∀ {e es} → Value e → Values es → Values (e ∷ es) -- Constructor applications. data Consts : Type where const : Const → List Consts → Consts mutual data Constructor-application : Exp → Type where const : ∀ c {es} → Constructor-applications es → Constructor-application (const c es) data Constructor-applications : List Exp → Type where [] : Constructor-applications [] _∷_ : ∀ {e es} → Constructor-application e → Constructor-applications es → Constructor-applications (e ∷ es) -- Constructor applications are values. mutual const→value : ∀ {e} → Constructor-application e → Value e const→value (const c cs) = const c (consts→values cs) consts→values : ∀ {es} → Constructor-applications es → Values es consts→values [] = [] consts→values (c ∷ cs) = const→value c ∷ consts→values cs -- The second argument of _⇓_ is always a Value. mutual ⇓-Value : ∀ {e v} → e ⇓ v → Value v ⇓-Value (apply _ _ p) = ⇓-Value p ⇓-Value (case _ _ _ p) = ⇓-Value p ⇓-Value (rec p) = ⇓-Value p ⇓-Value lambda = lambda _ _ ⇓-Value (const ps) = const _ (⇓⋆-Values ps) ⇓⋆-Values : ∀ {es vs} → es ⇓⋆ vs → Values vs ⇓⋆-Values [] = [] ⇓⋆-Values (p ∷ ps) = ⇓-Value p ∷ ⇓⋆-Values ps mutual values-compute-to-themselves : ∀ {v} → Value v → v ⇓ v values-compute-to-themselves (lambda _ _) = lambda values-compute-to-themselves (const _ ps) = const (values-compute-to-themselves⋆ ps) values-compute-to-themselves⋆ : ∀ {vs} → Values vs → vs ⇓⋆ vs values-compute-to-themselves⋆ [] = [] values-compute-to-themselves⋆ (p ∷ ps) = values-compute-to-themselves p ∷ values-compute-to-themselves⋆ ps values-only-compute-to-themselves : ∀ {v₁ v₂} → Value v₁ → v₁ ⇓ v₂ → v₁ ≡ v₂ values-only-compute-to-themselves p q = ⇓-deterministic (values-compute-to-themselves p) q values-only-compute-to-themselves⋆ : ∀ {vs₁ vs₂} → Values vs₁ → vs₁ ⇓⋆ vs₂ → vs₁ ≡ vs₂ values-only-compute-to-themselves⋆ ps qs = ⇓⋆-deterministic (values-compute-to-themselves⋆ ps) qs
{ "alphanum_fraction": 0.5975336323, "avg_line_length": 27.875, "ext": "agda", "hexsha": "f560dda2deca2e883320020403faa05040f3efdc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/chi", "max_forks_repo_path": "src/Values.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z", "max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/chi", "max_issues_repo_path": "src/Values.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/chi", "max_stars_repo_path": "src/Values.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z", "num_tokens": 856, "size": 2676 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Semigroup.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Function using (_∘_; id) open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Logic using (_≡ₚ_) open import Cubical.Functions.Embedding open import Cubical.Data.Nat open import Cubical.Data.NatPlusOne open import Cubical.Algebra open import Cubical.Algebra.Properties open import Cubical.Algebra.Semigroup.Morphism open import Cubical.Algebra.Magma.Properties using (isPropIsMagma) open import Cubical.Relation.Binary open import Cubical.Relation.Binary.Reasoning.Equality open import Cubical.HITs.PropositionalTruncation open import Cubical.Algebra.Semigroup.MorphismProperties public using (SemigroupPath; uaSemigroup; carac-uaSemigroup; Semigroup≡; caracSemigroup≡) private variable ℓ ℓ′ : Level isPropIsSemigroup : ∀ {S : Type ℓ} {_•_} → isProp (IsSemigroup S _•_) isPropIsSemigroup {_} {_} {_•_} (issemigroup aMagma aAssoc) (issemigroup bMagma bAssoc) = cong₂ issemigroup (isPropIsMagma aMagma bMagma) (isPropAssociative (IsMagma.is-set aMagma) _•_ aAssoc bAssoc) module SemigroupLemmas (S : Semigroup ℓ) where open Semigroup S ^-suc : ∀ x n → x ^ suc₊₁ n ≡ x ^ n • x ^-suc x one = refl ^-suc x (2+ n) = x ^ suc₊₁ (2+ n) ≡⟨⟩ x ^ 1+ suc (suc n) ≡⟨⟩ x • (x • x ^ 1+ n) ≡⟨⟩ x • x ^ suc₊₁ (1+ n) ≡⟨ cong (x •_) (^-suc x (1+ n)) ⟩ x • (x ^ 1+ n • x) ≡˘⟨ assoc x (x ^ 1+ n) x ⟩ x • x ^ 1+ n • x ≡⟨⟩ x ^ 2+ n • x ∎ ^-plus : ∀ x → Homomorphic₂ (x ^_) _+₊₁_ _•_ ^-plus _ one _ = refl ^-plus x (2+ m) n = x ^ (1+ (suc m) +₊₁ n) ≡⟨⟩ x • (x ^ (1+ m +₊₁ n)) ≡⟨ cong (x •_) (^-plus x (1+ m) n) ⟩ x • (x ^ 1+ m • x ^ n) ≡˘⟨ assoc x (x ^ 1+ m) (x ^ n) ⟩ x • x ^ 1+ m • x ^ n ≡⟨⟩ x ^ 2+ m • x ^ n ∎ module Kernel {S : Semigroup ℓ} {T : Semigroup ℓ′} (hom : SemigroupHom S T) where private module S = Semigroup S module T = Semigroup T open SemigroupHom hom renaming (fun to f) Kernel′ : RawRel ⟨ S ⟩ ℓ′ Kernel′ x y = f x ≡ f y isPropKernel : isPropValued Kernel′ isPropKernel x y = T.is-set (f x) (f y) Kernel : Rel ⟨ S ⟩ ℓ′ Kernel = fromRaw Kernel′ isPropKernel ker-reflexive : Reflexive Kernel ker-reflexive = refl ker-fromEq : FromEq Kernel ker-fromEq = rec (isPropKernel _ _) (cong f) ker-symmetric : Symmetric Kernel ker-symmetric = sym ker-transitive : Transitive Kernel ker-transitive = _∙_ ker-isPreorder : IsPreorder Kernel ker-isPreorder = record { reflexive = ker-reflexive ; transitive = ker-transitive } ker-isPartialEquivalence : IsPartialEquivalence Kernel ker-isPartialEquivalence = record { symmetric = ker-symmetric ; transitive = ker-transitive } ker-isEquivalence : IsEquivalence Kernel ker-isEquivalence = record { isPartialEquivalence = ker-isPartialEquivalence ; reflexive = ker-reflexive } ker⇒id→emb : Kernel ⇒ _≡ₚ_ → isEmbedding f ker⇒id→emb ker⇒id = injEmbedding S.is-set T.is-set (λ p → rec (S.is-set _ _) id (ker⇒id p)) emb→ker⇒id : isEmbedding f → Kernel ⇒ _≡ₚ_ emb→ker⇒id isemb {x} {y} = ∣_∣ ∘ invIsEq (isemb x y)
{ "alphanum_fraction": 0.6538688718, "avg_line_length": 29.701754386, "ext": "agda", "hexsha": "85938894b37d708e3d91428e204b5150c16ff791", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Algebra/Semigroup/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Algebra/Semigroup/Properties.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Algebra/Semigroup/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1254, "size": 3386 }
{-# OPTIONS --prop #-} data _≡_ {A : Set} (a : A) : A → Set where refl : a ≡ a postulate funextP : {A : Prop} {B : A → Set} {f g : (a : A) → B a} (h : (x : A) → f x ≡ g x) → f ≡ g test : {A : Prop} {B : A → Set} {f g : (a : A) → B a} (h : (x : A) → f x ≡ g x) → f ≡ g test h = funextP h
{ "alphanum_fraction": 0.4046822742, "avg_line_length": 27.1818181818, "ext": "agda", "hexsha": "959917b76d2067211e62068da39a39be6aa7f916", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue4122-yellow.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4122-yellow.agda", "max_line_length": 92, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4122-yellow.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 147, "size": 299 }
------------------------------------------------------------------------------ -- Parametrized preorder reasoning ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Common.Relation.Binary.PreorderReasoning {D : Set} (_∼_ : D → D → Set) (refl : ∀ {x} → x ∼ x) (trans : ∀ {x y z} → x ∼ y → y ∼ z → x ∼ z) where infix 3 _∎ infixr 2 _∼⟨_⟩_ ------------------------------------------------------------------------------ -- From (Mu, S.-C., Ko, H.-S. and Jansson, P. (2009)). -- -- N.B. Unlike Ulf's thesis (and the Agda standard library 0.8.1) this -- set of combinators do not use a wrapper data type. _∼⟨_⟩_ : ∀ x {y z} → x ∼ y → y ∼ z → x ∼ z _ ∼⟨ x∼y ⟩ y∼z = trans x∼y y∼z _∎ : ∀ x → x ∼ x _∎ _ = refl ------------------------------------------------------------------------------ -- References -- -- Mu, S.-C., Ko, H.-S. and Jansson, P. (2009). Algebra of programming -- in Agda: Dependent types for relational program derivation. Journal -- of Functional Programming 19.5, pp. 545–579.
{ "alphanum_fraction": 0.412633306, "avg_line_length": 32.0789473684, "ext": "agda", "hexsha": "b7aac86af89d08b837a8f41e7aaddfb9aaceacd2", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/Common/Relation/Binary/PreorderReasoning.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/Common/Relation/Binary/PreorderReasoning.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/Common/Relation/Binary/PreorderReasoning.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 346, "size": 1219 }
{-# OPTIONS --without-K #-} module SubstLemmas where open import Level using (Level) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; cong₂) open import Data.Nat using (ℕ; _+_; _*_) ------------------------------------------------------------------------------ -- Lemmas about subst (and a couple about trans) subst-dist : {a b : Level} {A : Set a} {B : A → Set b} (f : {x : A} → B x → B x → B x) → {x₁ x₂ : A} → (x₂≡x₁ : x₂ ≡ x₁) → (v₁ v₂ : B x₂) → subst B x₂≡x₁ (f v₁ v₂) ≡ f (subst B x₂≡x₁ v₁) (subst B x₂≡x₁ v₂) subst-dist f refl v₁ v₂ = refl subst-trans : {a b : Level} {A : Set a} {B : A → Set b} {x₁ x₂ x₃ : A} → (x₂≡x₁ : x₂ ≡ x₁) → (x₃≡x₂ : x₃ ≡ x₂) → (v : B x₃) → subst B x₂≡x₁ (subst B x₃≡x₂ v) ≡ subst B (trans x₃≡x₂ x₂≡x₁) v subst-trans refl refl v = refl subst₂+ : {b : Level} {B : ℕ → Set b} {x₁ x₂ x₃ x₄ : ℕ} → (x₂≡x₁ : x₂ ≡ x₁) → (x₄≡x₃ : x₄ ≡ x₃) → (v₁ : B x₂) → (v₂ : B x₄) → (f : {x₁ x₂ : ℕ} → B x₁ → B x₂ → B (x₁ + x₂)) → subst B (cong₂ _+_ x₂≡x₁ x₄≡x₃) (f v₁ v₂) ≡ f (subst B x₂≡x₁ v₁) (subst B x₄≡x₃ v₂) subst₂+ refl refl v₁ v₂ f = refl subst₂* : {b : Level} {B : ℕ → Set b} {x₁ x₂ x₃ x₄ : ℕ} → (x₂≡x₁ : x₂ ≡ x₁) → (x₄≡x₃ : x₄ ≡ x₃) → (v₁ : B x₂) → (v₂ : B x₄) → (f : {x₁ x₂ : ℕ} → B x₁ → B x₂ → B (x₁ * x₂)) → subst B (cong₂ _*_ x₂≡x₁ x₄≡x₃) (f v₁ v₂) ≡ f (subst B x₂≡x₁ v₁) (subst B x₄≡x₃ v₂) subst₂* refl refl v₁ v₂ f = refl trans-syml : {A : Set} {x y : A} → (p : x ≡ y) → trans (sym p) p ≡ refl trans-syml refl = refl trans-symr : {A : Set} {x y : A} → (p : x ≡ y) → trans p (sym p) ≡ refl trans-symr refl = refl subst-subst : {a b : Level} {A : Set a} {B : A → Set b} {x y : A} → (eq : x ≡ y) → (eq' : y ≡ x) → (irr : sym eq ≡ eq') → (v : B y) → subst B eq (subst B eq' v) ≡ v subst-subst refl .refl refl v = refl
{ "alphanum_fraction": 0.4991869919, "avg_line_length": 36.1764705882, "ext": "agda", "hexsha": "0b9f1c284565ff4bae82b4696351fe1a6c9b4c95", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/SubstLemmas.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/SubstLemmas.agda", "max_line_length": 79, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/SubstLemmas.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 928, "size": 1845 }
-- Andreas, 2015-12-29 -- with-clause stripping for record patterns -- {-# OPTIONS -v tc.with.strip:60 #-} record R : Set1 where field f : Set test : R → Set1 test record{ f = a } with a ... | x = R test1 : R → Set1 test1 record{ f = a } with a test1 record{ f = a } | _ = R test2 : R → Set1 test2 record{ f = a } with a test2 record{ f = _ } | _ = R -- Visible fields may be missing. test3 : R → Set1 test3 record{ f = a } with a test3 record{} | _ = R -- With-clauses may specify more fields than the parent test4 : R → Set1 test4 record{} with R test4 record{ f = _ } | _ = R -- all should pass
{ "alphanum_fraction": 0.612745098, "avg_line_length": 18.5454545455, "ext": "agda", "hexsha": "60b2af46afb2ae53fbe65897a30f6206c371bafa", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1751.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1751.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1751.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 214, "size": 612 }
{-# OPTIONS --without-K --safe #-} module TypeTheory.HoTT.Data.Sum.Properties where -- agda-stdlib open import Level open import Data.Empty open import Data.Product open import Data.Sum open import Function.Base open import Relation.Binary.PropositionalEquality open import Relation.Nullary -- agda-misc open import TypeTheory.HoTT.Base private variable a b : Level A : Set a B : Set b isProp-⊎ : ¬ (A × B) → isProp A → isProp B → isProp (A ⊎ B) isProp-⊎ ¬[A×B] A-isP B-isP (inj₁ x₁) (inj₁ x₂) = cong inj₁ (A-isP x₁ x₂) isProp-⊎ ¬[A×B] A-isP B-isP (inj₁ x₁) (inj₂ y₂) = ⊥-elim $ ¬[A×B] (x₁ , y₂) isProp-⊎ ¬[A×B] A-isP B-isP (inj₂ y₁) (inj₁ x₂) = ⊥-elim $ ¬[A×B] (x₂ , y₁) isProp-⊎ ¬[A×B] A-isP B-isP (inj₂ y₁) (inj₂ y₂) = cong inj₂ (B-isP y₁ y₂)
{ "alphanum_fraction": 0.6496732026, "avg_line_length": 27.3214285714, "ext": "agda", "hexsha": "f84ff447909834f882286219dee2a237e3923918", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "TypeTheory/HoTT/Data/Sum/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "TypeTheory/HoTT/Data/Sum/Properties.agda", "max_line_length": 75, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "TypeTheory/HoTT/Data/Sum/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 324, "size": 765 }
module Proofs where open import Agda.Builtin.Equality open import Relation.Binary.PropositionalEquality.Core open import Data.Nat open ≡-Reasoning open import Classes data Vec : ℕ → Set → Set where Nil : ∀ {a} → Vec 0 a Cons : ∀ {n A} → (a : A) → Vec n A → Vec (suc n) A cons-cong : ∀ {n A} {a c : A} {b d : Vec n A} → a ≡ c → b ≡ d → Cons a b ≡ Cons c d cons-cong {_} {_} {a} {c} {b} {d} p q = begin Cons a b ≡⟨ cong (λ x → Cons a x) q ⟩ Cons a d ≡⟨ cong (λ x → Cons x d) p ⟩ Cons c d ∎ instance VecF : {n : ℕ} → Functor (Vec n) VecF = record { fmap = fmap' ; F-id = id' ; F-∘ = comp' } where fmap' : ∀ {n A B} → (A → B) → Vec n A → Vec n B fmap' f Nil = Nil fmap' f (Cons a v) = Cons (f a) (fmap' f v) id' : ∀ {n A} → (a : Vec n A) → fmap' id a ≡ a id' Nil = refl id' (Cons a v) = cong (λ w → Cons a w) (id' v) comp' : ∀ {n A B C} → (g : B → C) (f : A → B) (a : Vec n A) → fmap' (g ∘ f) a ≡ (fmap' g ∘ fmap' f) a comp' g f Nil = refl comp' g f (Cons a v) = cons-cong refl (comp' g f v) full : ∀ {A} → A → (n : ℕ) → Vec n A full x zero = Nil full x (suc n) = Cons x (full x n) zipWith : ∀ {n A B C} → (A → B → C) → Vec n A → Vec n B → Vec n C zipWith _ Nil Nil = Nil zipWith f (Cons a v) (Cons b w) = Cons (f a b) (zipWith f v w) instance VecA : {n : ℕ} → Applicative (Vec n) VecA {n} = record { pure = λ x → full x n ; _<*>_ = ap' ; A-id = id' ; A-∘ = comp' ; A-hom = hom' ; A-ic = ic' } where ap' : ∀ {n A B} (v : Vec n (A → B)) (w : Vec n A) → Vec n B ap' Nil Nil = Nil ap' (Cons a v) (Cons b w) = Cons (a b) (ap' v w) id' : ∀ {n A} (v : Vec n A) → ap' (full id n) v ≡ v id' Nil = refl id' (Cons a v) = cons-cong refl (id' v) comp' : ∀ {n A B C} → (u : Vec n (B → C)) (v : Vec n (A → B)) (w : Vec n A) → ap' (ap' (ap' (full _∘_ n) u) v) w ≡ ap' u (ap' v w) comp' Nil Nil Nil = refl comp' (Cons a u) (Cons b v) (Cons c w) = cons-cong refl (comp' u v w) hom' : ∀ {n A B} (f : A → B) (x : A) → ap' (full f n) (full x n) ≡ full (f x) n hom' {zero} f x = refl hom' {suc n} f x = cons-cong refl (hom' {n} f x) ic' : ∀ {n A B} (u : Vec n (A → B)) (y : A) → ap' u (full y n) ≡ ap' (full (_$ y) n) u ic' Nil y = refl ic' (Cons a u) y = cons-cong refl (ic' u y) tail : ∀ {n A} → Vec (suc n) A → Vec n A tail (Cons x v) = v diag : ∀ {n A} → Vec n (Vec n A) → Vec n A diag Nil = Nil diag (Cons (Cons a w) v) = Cons a (diag (fmap tail v)) fmap-pure : ∀ {A B F} {{aF : Applicative F}} (f : A → B) (x : A) → fmap f (Applicative.pure aF x) ≡ Applicative.pure aF (f x) fmap-pure f x = begin fmap f (pure x) ≡⟨ sym (appFun f (pure x)) ⟩ pure f <*> pure x ≡⟨ A-hom f x ⟩ pure (f x) ∎ diag-full : ∀ {A} (n : ℕ) (v : Vec n A) → diag (full v n) ≡ v diag-full _ Nil = refl diag-full (suc n) (Cons a v) = cons-cong refl (begin diag (fmap tail (full (Cons a v) n)) ≡⟨ cong diag (fmap-pure tail (Cons a v)) ⟩ diag (full v n) ≡⟨ diag-full n v ⟩ v ∎) instance VecM : {n : ℕ} → Monad (Vec n) VecM = record { _>>=_ = bind' ; left-1 = left' ; right-1 = {!!} ; assoc = {!!} } where bind' : ∀ {n A B} → Vec n A → (A → Vec n B) → Vec n B bind' v f = diag (fmap f v) left' : ∀ {n A B} (a : A) (k : A → Vec n B) → bind' (pure a) k ≡ k a left' {n} a k = begin diag (fmap k (full a n)) ≡⟨ cong diag (fmap-pure k a) ⟩ diag (full (k a) n) ≡⟨ diag-full n (k a) ⟩ k a ∎ right' : ∀ {n A} (m : Vec n A) → bind' m pure ≡ m right' Nil = refl right' (Cons a m) = begin bind' (Cons a m) pure ≡⟨ refl ⟩ diag (fmap pure (Cons a m)) ≡⟨ cons-cong refl {!!} ⟩ -- :( Cons a m ∎
{ "alphanum_fraction": 0.4563329928, "avg_line_length": 30.8346456693, "ext": "agda", "hexsha": "242472bf2ad9b61901fc002512b5897cfaf4ff13", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b019ce3d7b978c369fcc82c97ccafdde8f7fd02", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "samuelhklumpers/strong-vector", "max_forks_repo_path": "proofs/Proofs.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "1b019ce3d7b978c369fcc82c97ccafdde8f7fd02", "max_issues_repo_issues_event_max_datetime": "2022-03-10T10:24:40.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-09T10:24:33.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "samuelhklumpers/strong-vector", "max_issues_repo_path": "proofs/Proofs.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b019ce3d7b978c369fcc82c97ccafdde8f7fd02", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "samuelhklumpers/strong-vector", "max_stars_repo_path": "proofs/Proofs.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1632, "size": 3916 }
{-# OPTIONS --without-K #-} module Model.Term where open import Cats.Category open import Model.Size as MS using (_<_ ; ⟦_⟧Δ ; ⟦_⟧n ; ⟦_⟧σ) open import Model.Type as MT open import Util.HoTT.Equiv open import Util.Prelude hiding (id ; _∘_ ; _×_) open import Source.Size as SS using (v0 ; v1 ; ⋆) open import Source.Size.Substitution.Theory open import Source.Size.Substitution.Universe as SU using (Sub⊢ᵤ) open import Source.Term import Model.RGraph as RG import Source.Type as ST open Category._≅_ open MS.Size open MS._<_ open MS._≤_ open RG._⇒_ open SS.Size open SS.Ctx open ST.Ctx ⟦_⟧x : ∀ {Δ Γ x T} → Δ , Γ ⊢ₓ x ∶ T → ⟦ Γ ⟧Γ ⇒ ⟦ T ⟧T ⟦_⟧x {Γ = Γ ∙ T} zero = π₂ ⟦ Γ ⟧Γ ⟦ suc {U = U} x ⟧x = ⟦ x ⟧x ∘ π₁ ⟦ U ⟧T ⟦abs⟧ : ∀ Δ (Γ : ST.Ctx Δ) T U → ⟦ Γ ∙ T ⟧Γ ⇒ ⟦ U ⟧T → ⟦ Γ ⟧Γ ⇒ ⟦ T ⟧T ↝ ⟦ U ⟧T ⟦abs⟧ Δ Γ T U t = curry ⟦ Γ ⟧Γ ⟦ T ⟧T ⟦ U ⟧T t ⟦app⟧ : ∀ Δ (Γ : ST.Ctx Δ) T U → ⟦ Γ ⟧Γ ⇒ ⟦ T ⟧T ↝ ⟦ U ⟧T → ⟦ Γ ⟧Γ ⇒ ⟦ T ⟧T → ⟦ Γ ⟧Γ ⇒ ⟦ U ⟧T ⟦app⟧ Δ Γ T U t u = eval ⟦ T ⟧T ⟦ U ⟧T ∘ ⟨ t , u ⟩ ⟦absₛ⟧ : ∀ Δ n (Γ : ST.Ctx Δ) (T : ST.Type (Δ ∙ n)) → ⟦ Γ [ SU.Wk ]ᵤ ⟧Γ ⇒ ⟦ T ⟧T → ⟦ Γ ⟧Γ ⇒ ⟦ ST.Π n , T ⟧T ⟦absₛ⟧ Δ n Γ T t = MT.absₛ (t ∘ ⟦subΓ⟧ SU.Wk Γ .back) ⟦appₛ⟧ : ∀ Δ m n (Γ : ST.Ctx Δ) T → ⟦ Γ ⟧Γ ⇒ ⟦ ST.Π n , T ⟧T → m SS.< n → ⟦ Γ ⟧Γ ⇒ ⟦ T [ SU.Sing m ]ᵤ ⟧T ⟦appₛ⟧ Δ m n Γ T t m<n = ⟦subT⟧ (SU.Sing m<n) T .back ∘ MT.appₛ m<n t ⟦zero⟧ : ∀ Δ (Γ : ST.Ctx Δ) n → ⟦ Γ ⟧Γ ⇒ ⟦ ST.Nat n ⟧T ⟦zero⟧ Δ Γ n = record { fobj = λ {δ} γ → zero≤ (⟦ n ⟧n .fobj δ) ; feq = λ δ≈δ′ x≈y → refl } ⟦suc⟧ : ∀ Δ (Γ : ST.Ctx Δ) {m n} → m SS.< n → ⟦ Γ ⟧Γ ⇒ ⟦ ST.Nat m ⟧T → ⟦ Γ ⟧Γ ⇒ ⟦ ST.Nat n ⟧T ⟦suc⟧ Δ Γ m<n i = record { fobj = λ γ → suc≤ _ _ (MS.⟦<⟧ m<n) (i .fobj γ) ; feq = λ δ≈δ′ x≈y → cong suc (i .feq _ x≈y) } ⟦caseNat⟧ : ∀ Δ (Γ : ST.Ctx Δ) n T → ⟦ Γ ⟧Γ ⇒ ⟦ ST.Nat n ⟧T → ⟦ Γ ⟧Γ ⇒ ⟦ T ⟧T → ⟦ Γ ⟧Γ ⇒ ⟦ ST.Π n , ST.Nat v0 ST.⇒ T [ SU.Wk ]ᵤ ⟧T → ⟦ Γ ⟧Γ ⇒ ⟦ T ⟧T ⟦caseNat⟧ Δ Γ n T i z s = record { fobj = λ γ → caseℕ≤ (i .fobj γ) (z .fobj γ) λ m m<n i → ⟦subT⟧ SU.Wk T .forth .fobj (s .fobj γ .arr m m<n .fobj i) ; feq = λ {δ δ′} δ≈δ′ {γ γ′} γ≈γ′ → caseℕ≤-pres (⟦ T ⟧T .eq δ≈δ′) (i .fobj γ) (i .fobj γ′) (z .fobj γ) (z .fobj γ′) _ _ (i .feq _ γ≈γ′) (z .feq _ γ≈γ′) λ m m<n m′ m′<n′ j j′ j≡j′ → ⟦subT⟧ SU.Wk T .forth .feq _ (s .feq _ γ≈γ′ m m<n m′ m′<n′ j≡j′) } ⟦cons⟧ : ∀ Δ (Γ : ST.Ctx Δ) n → ⟦ Γ ⟧Γ ⇒ ⟦ ST.Nat ∞ ⟧T → ⟦ Γ ⟧Γ ⇒ ⟦ ST.Π n , ST.Stream v0 ⟧T → ⟦ Γ ⟧Γ ⇒ ⟦ ST.Stream n ⟧T ⟦cons⟧ Δ Γ n i is = record { fobj = λ γ → MT.cons (i .fobj γ .proj₁) (is .fobj γ .arr) ; feq = λ δ≈δ′ γ≈γ′ k k≤nδ k≤nδ′ → cons-≡⁺ (i .feq _ γ≈γ′) (λ m m<n m<n′ k k≤m → is .feq _ γ≈γ′ m m<n m m<n′ k k≤m k≤m) k k≤nδ k≤nδ′ } ⟦head⟧ : ∀ Δ (Γ : ST.Ctx Δ) n → ⟦ Γ ⟧Γ ⇒ ⟦ ST.Stream n ⟧T → ⟦ Γ ⟧Γ ⇒ ⟦ ST.Nat ∞ ⟧T ⟦head⟧ Δ Γ n is = record { fobj = λ γ → MT.head (is .fobj γ) , MS.<→≤ MS.zero<∞ ; feq = λ δ≈δ′ γ≈γ′ → head-≡⁺ (is .feq _ γ≈γ′) } ⟦tail⟧ : ∀ Δ (Γ : ST.Ctx Δ) {m n} → m SS.< n → ⟦ Γ ⟧Γ ⇒ ⟦ ST.Stream n ⟧T → ⟦ Γ ⟧Γ ⇒ ⟦ ST.Stream m ⟧T ⟦tail⟧ Δ Γ m<n is = record { fobj = λ γ → MT.tail (is .fobj γ) _ (MS.⟦<⟧ m<n) ; feq = λ δ≈δ′ γ≈γ′ i i≤mδ i≤mδ′ → tail-≡⁺ (is .feq _ γ≈γ′) _ _ (MS.⟦<⟧ m<n) (MS.⟦<⟧ m<n) i i≤mδ i≤mδ′ } ⟦fix⟧ : ∀ Δ (Γ : ST.Ctx Δ) n T → n SS.< ⋆ → ⟦ Γ ⟧Γ ⇒ ⟦ ST.Π ⋆ , (ST.Π v0 , T [ SU.Skip ]ᵤ) ST.⇒ T ⟧T → ⟦ Γ ⟧Γ ⇒ ⟦ T [ SU.Sing n ]ᵤ ⟧T ⟦fix⟧ Δ Γ n T n<⋆ t = ⟦subT⟧ (SU.Sing n<⋆) T .back ∘ term⇒ module ⟦fix⟧ where go : Σ[ f ∈ (∀ n n<⋆ δ → ⟦ Γ ⟧Γ .Obj δ → ⟦ T ⟧T .Obj (δ , n , n<⋆)) ] Σ[ f-param ∈ (∀ n n′ n<⋆ n′<⋆ δ δ′ (γ : ⟦ Γ ⟧Γ .Obj δ) (γ′ : ⟦ Γ ⟧Γ .Obj δ′) → ⟦ Γ ⟧Γ .eq _ γ γ′ → ⟦ T ⟧T .eq _ (f n n<⋆ δ γ) (f n′ n′<⋆ δ′ γ′)) ] (∀ {n} → f n ≡ _) go = MS.<-indΣ′ (λ n → ∀ n<⋆ δ (γ : ⟦ Γ ⟧Γ .Obj δ) → ⟦ T ⟧T .Obj (δ , n , n<⋆)) (λ n m f g → ∀ n<⋆ m<⋆ δ δ′ γ γ′ (γ≈γ′ : ⟦ Γ ⟧Γ .eq _ γ γ′) → ⟦ T ⟧T .eq _ (f n<⋆ δ γ) (g m<⋆ δ′ γ′)) (λ n rec rec-resp n<⋆ δ γ → t .fobj γ .arr n n<⋆ .fobj (⟦∀⟧′-resp-≈⟦Type⟧ (⟦subT⟧ SU.Skip T) .back record { arr = λ m m<n → rec m m<n (MS.<-trans m<n n<⋆) δ γ ; param = λ m m<n m′ m′<n → rec-resp m m<n m′ m′<n _ _ δ δ γ γ (⟦ Γ ⟧Γ .eq-refl γ) })) λ n g g-resp m h h-resp g≈h n<⋆ m<⋆ δ δ′ γ γ′ γ≈γ′ → t .feq _ γ≈γ′ n n<⋆ m m<⋆ λ k k<n k′ k′<m → ⟦subT⟧ SU.Skip T .back .feq _ (g≈h k k<n k′ k′<m _ _ δ δ′ γ γ′ γ≈γ′) term : ∀ n n<⋆ δ → ⟦ Γ ⟧Γ .Obj δ → ⟦ T ⟧T .Obj (δ , n , n<⋆) term = go .proj₁ term-param : ∀ n n′ n<⋆ n′<⋆ δ δ′ (γ : ⟦ Γ ⟧Γ .Obj δ) (γ′ : ⟦ Γ ⟧Γ .Obj δ′) → ⟦ Γ ⟧Γ .eq _ γ γ′ → ⟦ T ⟧T .eq _ (term n n<⋆ δ γ) (term n′ n′<⋆ δ′ γ′) term-param = go .proj₂ .proj₁ term⇒ : ⟦ Γ ⟧Γ ⇒ subT ⟦ SU.Sing n<⋆ ⟧σ ⟦ T ⟧T term⇒ = record { fobj = term _ _ _ ; feq = λ δ≈δ′ → term-param _ _ _ _ _ _ _ _ } term-unfold₀ : ∀ {n} → term n ≡ λ n<⋆ δ γ → t .fobj γ .arr n n<⋆ .fobj (⟦∀⟧′-resp-≈⟦Type⟧ (⟦subT⟧ SU.Skip T) .back record { arr = λ m m<n → term m (MS.<-trans m<n n<⋆) δ γ ; param = λ m m<n m′ m′<n → term-param _ _ _ _ _ _ _ _ (⟦ Γ ⟧Γ .eq-refl γ) }) term-unfold₀ = go .proj₂ .proj₂ term-unfold : ∀ {n n<⋆ δ γ} → term n n<⋆ δ γ ≡ t .fobj γ .arr n n<⋆ .fobj (⟦∀⟧′-resp-≈⟦Type⟧ (⟦subT⟧ SU.Skip T) .back record { arr = λ m m<n → term m (MS.<-trans m<n n<⋆) δ γ ; param = λ m m<n m′ m′<n → term-param _ _ _ _ _ _ _ _ (⟦ Γ ⟧Γ .eq-refl γ) }) term-unfold {n} {n<⋆} {δ} {γ} = cong (λ f → f n<⋆ δ γ) term-unfold₀ ⟦_⟧t : ∀ {Δ Γ t T} → Δ , Γ ⊢ t ∶ T → ⟦ Γ ⟧Γ ⇒ ⟦ T ⟧T ⟦ var ⊢x ⟧t = ⟦ ⊢x ⟧x ⟦ abs {Δ = Δ} {Γ} {T} {t} {U} ⊢t ⟧t = ⟦abs⟧ Δ Γ T U ⟦ ⊢t ⟧t ⟦ app {Δ} {Γ} {T = T} {U = U} ⊢t ⊢u ⟧t = ⟦app⟧ Δ Γ T U ⟦ ⊢t ⟧t ⟦ ⊢u ⟧t ⟦ absₛ {Δ} {n} {T = T} ⊢t refl ⟧t = ⟦absₛ⟧ Δ n _ T ⟦ ⊢t ⟧t ⟦ appₛ {Δ} {m} {n} {Γ} {T = T} m<n ⊢t refl ⟧t = ⟦appₛ⟧ Δ m n Γ T ⟦ ⊢t ⟧t m<n ⟦ zero {Δ} {n} {Γ} n<⋆ ⟧t = ⟦zero⟧ Δ Γ n ⟦ suc {Δ} {Γ = Γ} n<⋆ m<n ⊢i ⟧t = ⟦suc⟧ Δ Γ m<n ⟦ ⊢i ⟧t ⟦ cons {Δ} {n} {Γ} n<⋆ ⊢i ⊢is ⟧t = ⟦cons⟧ Δ Γ n ⟦ ⊢i ⟧t ⟦ ⊢is ⟧t ⟦ head {Δ} {n} {Γ} n<⋆ ⊢is ⟧t = ⟦head⟧ Δ Γ n ⟦ ⊢is ⟧t ⟦ tail {Δ} {n} {m} {Γ} n<⋆ m<n ⊢is ⟧t = ⟦tail⟧ Δ Γ m<n ⟦ ⊢is ⟧t ⟦ caseNat {Δ} {n} {Γ} {T = T} n<⋆ ⊢i ⊢z ⊢s refl ⟧t = ⟦caseNat⟧ Δ Γ n T ⟦ ⊢i ⟧t ⟦ ⊢z ⟧t ⟦ ⊢s ⟧t ⟦ fix {Δ} {n} {Γ} {T = T} n<⋆ ⊢t refl refl ⟧t = ⟦fix⟧ Δ Γ n T n<⋆ ⟦ ⊢t ⟧t ⟦_⟧ν : ∀ {Δ} {Γ Ψ : ST.Ctx Δ} {ν} → ν ∶ Γ ⇛ Ψ → ⟦ Γ ⟧Γ ⇒ ⟦ Ψ ⟧Γ ⟦ [] ⟧ν = ! _ ⟦ Snoc ⊢ν ⊢t ⟧ν = ⟨ ⟦ ⊢ν ⟧ν , ⟦ ⊢t ⟧t ⟩
{ "alphanum_fraction": 0.4089958159, "avg_line_length": 30.9814814815, "ext": "agda", "hexsha": "a3ede21980057aff9a36a7724df6ce55cc9ff09e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Model/Term.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Model/Term.agda", "max_line_length": 84, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Model/Term.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 3976, "size": 6692 }
------------------------------------------------------------------------------ -- Co-inductive natural numbers ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Conat where open import FOTC.Base open import FOTC.Data.Conat.Type public ------------------------------------------------------------------------------ postulate ∞ : D ∞-eq : ∞ ≡ succ₁ ∞ {-# ATP axiom ∞-eq #-}
{ "alphanum_fraction": 0.3438538206, "avg_line_length": 28.6666666667, "ext": "agda", "hexsha": "9d035f3509db48a06050c1b21b97f73051e83f43", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/Conat.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/Conat.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/Conat.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 105, "size": 602 }
------------------------------------------------------------------------ -- The Agda standard library -- -- An equality postulate which evaluates ------------------------------------------------------------------------ module Relation.Binary.PropositionalEquality.TrustMe where open import Relation.Binary.PropositionalEquality private primitive primTrustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y -- trustMe {x = x} {y = y} evaluates to refl if x and y are -- definitionally equal. -- -- For an example of the use of trustMe, see Data.String._≟_. trustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y trustMe = primTrustMe
{ "alphanum_fraction": 0.5232744783, "avg_line_length": 28.3181818182, "ext": "agda", "hexsha": "5c85b4645cb030e3428d078201bda12103ea437c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/PropositionalEquality/TrustMe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/PropositionalEquality/TrustMe.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/PropositionalEquality/TrustMe.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 151, "size": 623 }
{-# OPTIONS --safe #-} module Cubical.Categories.Instances.Semilattice where open import Cubical.Foundations.Prelude open import Cubical.Algebra.Semilattice open import Cubical.Categories.Category open import Cubical.Categories.Instances.Poset open Category module _ {ℓ} (L : Semilattice ℓ) where -- more convenient than working with meet-semilattices -- as joins are limits open JoinSemilattice L SemilatticeCategory : Category ℓ ℓ SemilatticeCategory = PosetCategory IndPoset
{ "alphanum_fraction": 0.7955465587, "avg_line_length": 24.7, "ext": "agda", "hexsha": "61c03c677dbaf2646a7af0987547a06948de1285", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lpw25/cubical", "max_forks_repo_path": "Cubical/Categories/Instances/Semilattice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lpw25/cubical", "max_issues_repo_path": "Cubical/Categories/Instances/Semilattice.agda", "max_line_length": 56, "max_stars_count": null, "max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lpw25/cubical", "max_stars_repo_path": "Cubical/Categories/Instances/Semilattice.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 128, "size": 494 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Functions.Definition open import Setoids.Setoids open import Setoids.Subset open import Graphs.Definition open import Sets.FinSet.Definition open import Sets.FinSet.Lemmas open import Numbers.Naturals.Semiring open import Sets.EquivalenceRelations module Graphs.PathGraph where nNotSucc : {n : ℕ} → (n ≡ succ n) → False nNotSucc {zero} () nNotSucc {succ n} pr = nNotSucc (succInjective pr) PathGraph : (n : ℕ) → Graph _ (reflSetoid (FinSet (succ n))) Graph._<->_ (PathGraph n) x y = (toNat x ≡ succ (toNat y)) || (toNat y ≡ succ (toNat x)) Graph.noSelfRelation (PathGraph n) x (inl bad) = nNotSucc bad Graph.noSelfRelation (PathGraph n) x (inr bad) = nNotSucc bad Graph.symmetric (PathGraph n) (inl x) = inr x Graph.symmetric (PathGraph n) (inr x) = inl x Graph.wellDefined (PathGraph n) refl refl i = i
{ "alphanum_fraction": 0.735908142, "avg_line_length": 35.4814814815, "ext": "agda", "hexsha": "2fd0a393fb0e200bbd1c1853a94bcd299233a4d4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Graphs/PathGraph.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Graphs/PathGraph.agda", "max_line_length": 88, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Graphs/PathGraph.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 312, "size": 958 }
-- Care needs to be taken to distinguish between instance solutions with and -- without leftover constraints. module _ where _∘_ : ∀ {A B C : Set} → (B → C) → (A → B) → A → C (f ∘ g) x = f (g x) postulate Functor : (Set → Set) → Set₁ fmap : ∀ {F} {{_ : Functor F}} {A B} → (A → B) → F A → F B List : Set → Set map : ∀ {A B} → (A → B) → List A → List B Term : Set Arg : Set → Set instance FunArg : Functor Arg postulate SafeTerm : Set safe-term : SafeTerm → Term DeBruijn : Set → Set₁ weaken : ∀ {A} {{_ : DeBruijn A}} → A → A instance DBTerm : DeBruijn Term DBArg : ∀ {A} {{_ : DeBruijn A}} → DeBruijn (Arg A) toArgs : List (Arg SafeTerm) → List (Arg Term) toArgs = map (weaken ∘ fmap safe-term)
{ "alphanum_fraction": 0.5741496599, "avg_line_length": 24.5, "ext": "agda", "hexsha": "66acf1b683ad2ae1288669bb857a66ed2bdf3854", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2025.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2025.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2025.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 276, "size": 735 }
-- There was a problem with reordering telescopes. module Issue234 where postulate A : Set P : A → Set data List : Set where _∷ : A → List data _≅_ {x : A}(p : P x) : ∀ {y} → P y → Set where refl : p ≅ p data _≡_ (x : A) : A → Set where refl : x ≡ x data Any (x : A) : Set where here : P x → Any x it : ∀ {x : A} → Any x → A it {x} (here _) = x prf : ∀ {x : A}(p : Any x) → P (it p) prf (here px) = px foo : (x : A) (p : Any x) → (f : ∀ {y} → it p ≡ y → P y) → f refl ≅ prf p → Set₁ foo x (here ._) f refl = Set
{ "alphanum_fraction": 0.4872727273, "avg_line_length": 17.7419354839, "ext": "agda", "hexsha": "8148604431638cec72c8817668b87256c47c9eb0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue234.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue234.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue234.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 238, "size": 550 }
{-# OPTIONS --without-K #-} open import HoTT module lib.Quaternions where data Sign : Type₀ where plus : Sign minus : Sign opposite : Sign → Sign opposite plus = minus opposite minus = plus _·_ : Sign → Sign → Sign plus · x = x minus · x = opposite x ·unitr : (x : Sign) → x · plus == x ·unitr plus = idp ·unitr minus = idp ·assoc : (x y z : Sign) → (x · y) · z == x · (y · z) ·assoc plus y z = idp ·assoc minus plus z = idp ·assoc minus minus plus = idp ·assoc minus minus minus = idp ·cohl : {x y : Sign} → x == y → (z : Sign) → x · z == y · z ·cohl idp z = idp ·cohr : (x : Sign) → {y z : Sign} → y == z → x · y == x · z ·cohr x idp = idp ·comm : (x y : Sign) → x · y == y · x ·comm plus plus = idp ·comm plus minus = idp ·comm minus plus = idp ·comm minus minus = idp data Dir : Type₀ where i : Dir j : Dir k : Dir shift : Dir → Dir shift i = j shift j = k shift k = i data QU : Type₀ where one : QU dir : Dir → QU Q : Type₀ Q = Σ Sign λ _ → QU multWithSign : Dir → Dir → Q multWithSign i i = minus , one multWithSign i j = plus , dir k multWithSign i k = minus , dir j multWithSign j i = minus , dir k multWithSign j j = minus , one multWithSign j k = plus , dir i multWithSign k i = plus , dir j multWithSign k j = minus , dir i multWithSign k k = minus , one _⊙_ : Q → Q → Q (s , one) ⊙ (t , u) = s · t , u (s , dir d) ⊙ (t , one) = s · t , dir d (s , dir d) ⊙ (t , dir e) with multWithSign d e ... | (x , u) = (s · t) · x , u inv : Q → Q inv (x , one) = x , one inv (x , dir d) = opposite x , dir d unitl : (a : Q) → (plus , one) ⊙ a == a unitl (x , u) = idp unitr : (a : Q) → a ⊙ (plus , one) == a unitr (x , one) = pair×= (·unitr x) idp unitr (x , dir d) = pair×= (·unitr x) idp assoc : (a b c : Q) → (a ⊙ b) ⊙ c == a ⊙ (b ⊙ c) assoc (x , one) (y , one) (z , w) = pair×= (·assoc x y z) idp assoc (x , one) (y , dir d) (z , one) = pair×= (·assoc x y z) idp assoc (x , one) (y , dir d) (z , dir e) with multWithSign d e ... | (w , u) = pair×= lemma idp where lemma : ((x · y) · z) · w == x · ((y · z) · w) lemma = ((x · y) · z) · w =⟨ ·assoc (x · y) z w ⟩ (x · y) · (z · w) =⟨ ·assoc x y (z · w) ⟩ x · (y · (z · w)) =⟨ ·cohr x (! (·assoc y z w)) ⟩ x · ((y · z) · w) ∎ assoc (x , dir d) (y , one) (z , one) = pair×= (·assoc x y z) idp assoc (x , dir d) (y , one) (z , dir f) with multWithSign d f ... | (w , u) = pair×= lemma idp where lemma : ((x · y) · z) · w == (x · (y · z)) · w lemma = ((x · y) · z) · w =⟨ ·cohl (·assoc x y z) w ⟩ (x · (y · z)) · w ∎ assoc (x , dir d) (y , dir e) (z , one) with multWithSign d e assoc (x , dir d) (y , dir e) (z , one) | (w , one) = pair×= lemma idp where lemma : ((x · y) · w) · z == (x · (y · z)) · w lemma = ((x · y) · w) · z =⟨ ·assoc (x · y) w z ⟩ (x · y) · (w · z) =⟨ ·cohr (x · y) (·comm w z) ⟩ (x · y) · (z · w) =⟨ ! (·assoc (x · y) z w) ⟩ ((x · y) · z) · w =⟨ ·cohl (·assoc x y z) w ⟩ (x · (y · z)) · w ∎ assoc (x , dir d) (y , dir e) (z , one) | (w , dir g) = pair×= lemma idp where lemma : ((x · y) · w) · z == (x · (y · z)) · w lemma = ((x · y) · w) · z =⟨ ·assoc (x · y) w z ⟩ (x · y) · (w · z) =⟨ ·cohr (x · y) (·comm w z) ⟩ (x · y) · (z · w) =⟨ ! (·assoc (x · y) z w) ⟩ ((x · y) · z) · w =⟨ ·cohl (·assoc x y z) w ⟩ (x · (y · z)) · w ∎ assoc (x , dir d) (y , dir e) (z , dir f) with multWithSign d e | multWithSign e f assoc (x , dir d) (y , dir e) (z , dir f) | a , one | b , v = {!!} assoc (x₁ , dir d) (y , dir e) (z , dir f) | a , dir x | b , v = {!!}
{ "alphanum_fraction": 0.4552360282, "avg_line_length": 29.7258064516, "ext": "agda", "hexsha": "44bd212a839c42baf4cdd0a727a68d755c25599b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_forks_repo_path": "lib/Quaternions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_issues_repo_path": "lib/Quaternions.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "lib/Quaternions.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1607, "size": 3686 }
open import SOAS.Metatheory.Syntax -- Initial (⅀, 𝔛)-meta-algebra 𝕋 𝔛 is the free ⅀-monoid on 𝔛 module SOAS.Metatheory.FreeMonoid {T : Set} (Syn : Syntax {T}) where open Syntax Syn open import SOAS.Common open import SOAS.Families.Core {T} open import SOAS.Context {T} open import SOAS.Variable {T} open import SOAS.Construction.Structure as Structure open import SOAS.Abstract.Hom {T} import SOAS.Abstract.Coalgebra {T} as →□ ; open →□.Sorted import SOAS.Abstract.Box {T} as □ ; open □.Sorted open import Categories.Monad open import SOAS.Abstract.Monoid open import SOAS.Coalgebraic.Map open import SOAS.Coalgebraic.Monoid open import SOAS.Coalgebraic.Strength open import SOAS.Metatheory Syn private variable α β : T Γ Δ : Ctx module _ (𝔛 : Familyₛ) where open Theory 𝔛 -- 𝕋 is a Σ-monoid Σ𝕋ᵐ : ΣMon 𝕋 Σ𝕋ᵐ = record { ᵐ = 𝕋ᵐ ; 𝑎𝑙𝑔 = 𝕒𝕝𝕘 ; μ⟨𝑎𝑙𝑔⟩ = λ{ {σ = σ} t → begin 𝕤𝕦𝕓 (𝕒𝕝𝕘 t) σ ≡⟨ Substitution.𝕥⟨𝕒⟩ ⟩ 𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (⅀₁ 𝕤𝕦𝕓 t) σ) ≡⟨ cong 𝕒𝕝𝕘 (CoalgMon.str-eq 𝕋ᴹ 𝕋 ⅀:Str (⅀₁ 𝕤𝕦𝕓 t) σ) ⟩ 𝕒𝕝𝕘 (str (Mon.ᴮ 𝕋ᵐ) 𝕋 (⅀₁ 𝕤𝕦𝕓 t) σ) ∎ } } where open ≡-Reasoning -- Given a ⅀-monoid ℳ and interpretation ω : 𝔛 ⇾̣ ℳ, -- there is a unique homomorphic extension 𝕋 𝔛 ⇾̣ ℳ module FΣM {ℳ : Familyₛ}(Σℳᵐ : ΣMon ℳ) (ω : 𝔛 ⇾̣ ℳ) where open ΣMon Σℳᵐ renaming (𝑎𝑙𝑔 to ℳ𝑎𝑙𝑔 ; ᴮ to ℳᴮ ; ᵐ to ℳᵐ) public private module ℳ = ΣMon Σℳᵐ -- Metavariable operator of ℳ using ω and monoid multiplication, making -- ℳ into a meta-algebra χ : 𝔛 ⇾̣ 〖 ℳ , ℳ 〗 χ 𝔪 ε = μ (ω 𝔪) ε ℳᵃ : MetaAlg ℳ ℳᵃ = record { 𝑎𝑙𝑔 = ℳ.𝑎𝑙𝑔 ; 𝑣𝑎𝑟 = η ; 𝑚𝑣𝑎𝑟 = χ } open Semantics ℳᵃ public renaming (𝕤𝕖𝕞 to 𝕖𝕩𝕥) open MetaAlg ℳᵃ open Coalgebraic μᶜ -- Extension is pointed coalgebra hommorphism 𝕖𝕩𝕥ᵇ⇒ : Coalg⇒ 𝕋ᵇ ℳ.ᵇ 𝕖𝕩𝕥 𝕖𝕩𝕥ᵇ⇒ = 𝕤𝕖𝕞ᵇ⇒ ℳ.ᵇ ℳᵃ record { ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → dext (λ ρ → begin μ (𝑎𝑙𝑔 t) (η ∘ ρ) ≡⟨ μ⟨𝑎𝑙𝑔⟩ t ⟩ 𝑎𝑙𝑔 (str ℳ.ᴮ ℳ (⅀₁ μ t) (η ∘ ρ)) ≡⟨ cong 𝑎𝑙𝑔 (str-nat₁ (ηᴮ⇒ ℳᴮ) (⅀₁ ℳ.μ t) ρ) ⟩ 𝑎𝑙𝑔 (str ℐᴮ ℳ (⅀.F₁ (λ { h ς → h (λ v → η (ς v)) }) (⅀₁ ℳ.μ t)) ρ) ≡˘⟨ congr ⅀.homomorphism (λ - → 𝑎𝑙𝑔 (str ℐᴮ ℳ - ρ)) ⟩ 𝑎𝑙𝑔 (str ℐᴮ ℳ (⅀.F₁ (λ{ t ρ → μ t (η ∘ ρ)}) t) ρ) ∎) } ; ⟨𝑣𝑎𝑟⟩ = dext′ ℳ.lunit ; ⟨𝑚𝑣𝑎𝑟⟩ = dext′ ℳ.assoc } where open ≡-Reasoning 𝕖𝕩𝕥ᴮ⇒ : Coalgₚ⇒ 𝕋ᴮ ℳ.ᴮ 𝕖𝕩𝕥 𝕖𝕩𝕥ᴮ⇒ = record { ᵇ⇒ = 𝕖𝕩𝕥ᵇ⇒ ; ⟨η⟩ = ⟨𝕧⟩ } -- Extension is monoid homomorphims μ∘𝕖𝕩𝕥 : MapEq₁ 𝕋ᴮ ℳ.𝑎𝑙𝑔 (λ t σ → 𝕖𝕩𝕥 (𝕤𝕦𝕓 t σ)) (λ t σ → μ (𝕖𝕩𝕥 t) (𝕖𝕩𝕥 ∘ σ)) μ∘𝕖𝕩𝕥 = record { φ = 𝕖𝕩𝕥 ; χ = χ ; f⟨𝑣⟩ = cong 𝕖𝕩𝕥 Substitution.𝕥⟨𝕧⟩ ; f⟨𝑚⟩ = trans (cong 𝕖𝕩𝕥 Substitution.𝕥⟨𝕞⟩) ⟨𝕞⟩ ; f⟨𝑎⟩ = λ{ {σ = σ}{t} → begin 𝕖𝕩𝕥 (𝕤𝕦𝕓 (𝕒𝕝𝕘 t) σ) ≡⟨ cong 𝕖𝕩𝕥 Substitution.𝕥⟨𝕒⟩ ⟩ 𝕖𝕩𝕥 (𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (⅀₁ 𝕤𝕦𝕓 t) σ)) ≡⟨ ⟨𝕒⟩ ⟩ 𝑎𝑙𝑔 (⅀₁ 𝕖𝕩𝕥 (str 𝕋ᴮ 𝕋 (⅀₁ 𝕤𝕦𝕓 t) σ)) ≡˘⟨ cong 𝑎𝑙𝑔 (str-nat₂ 𝕖𝕩𝕥 (⅀₁ 𝕤𝕦𝕓 t) σ) ⟩ 𝑎𝑙𝑔 (str 𝕋ᴮ ℳ (⅀.F₁ (λ { h ς → 𝕖𝕩𝕥 (h ς) }) (⅀₁ 𝕤𝕦𝕓 t)) σ) ≡˘⟨ congr ⅀.homomorphism (λ - → 𝑎𝑙𝑔 (str 𝕋ᴮ ℳ - σ)) ⟩ 𝑎𝑙𝑔 (str 𝕋ᴮ ℳ (⅀₁ (λ{ t σ → 𝕖𝕩𝕥 (𝕤𝕦𝕓 t σ)}) t) σ) ∎ } ; g⟨𝑣⟩ = trans (μ≈₁ ⟨𝕧⟩) (Mon.lunit ℳ.ᵐ) ; g⟨𝑚⟩ = trans (μ≈₁ ⟨𝕞⟩) (Mon.assoc ℳ.ᵐ) ; g⟨𝑎⟩ = λ{ {σ = σ}{t} → begin μ (𝕖𝕩𝕥 (𝕒𝕝𝕘 t)) (𝕖𝕩𝕥 ∘ σ) ≡⟨ μ≈₁ ⟨𝕒⟩ ⟩ μ (𝑎𝑙𝑔 (⅀₁ 𝕖𝕩𝕥 t)) (𝕖𝕩𝕥 ∘ σ) ≡⟨ μ⟨𝑎𝑙𝑔⟩ _ ⟩ 𝑎𝑙𝑔 (str ℳᴮ ℳ (⅀₁ μ (⅀₁ 𝕖𝕩𝕥 t)) (𝕖𝕩𝕥 ∘ σ)) ≡˘⟨ congr ⅀.homomorphism (λ - → 𝑎𝑙𝑔 (str ℳᴮ ℳ - (𝕖𝕩𝕥 ∘ σ))) ⟩ 𝑎𝑙𝑔 (str ℳᴮ ℳ (⅀₁ (μ ∘ 𝕖𝕩𝕥) t) (𝕖𝕩𝕥 ∘ σ)) ≡⟨ cong 𝑎𝑙𝑔 (str-nat₁ 𝕖𝕩𝕥ᴮ⇒ ((⅀₁ (μ ∘ 𝕖𝕩𝕥) t)) σ) ⟩ 𝑎𝑙𝑔 (str 𝕋ᴮ ℳ (⅀.F₁ (λ { h′ ς → h′ (𝕖𝕩𝕥 ∘ ς) }) (⅀₁ (μ ∘ 𝕖𝕩𝕥) t)) σ) ≡˘⟨ congr ⅀.homomorphism (λ - → ℳ𝑎𝑙𝑔 (str 𝕋ᴮ ℳ - σ)) ⟩ 𝑎𝑙𝑔 (str 𝕋ᴮ ℳ (⅀₁ (λ{ t σ → μ (𝕖𝕩𝕥 t) (𝕖𝕩𝕥 ∘ σ)}) t) σ) ∎ } } where open ≡-Reasoning 𝕖𝕩𝕥ᵐ⇒ : ΣMon⇒ Σ𝕋ᵐ Σℳᵐ 𝕖𝕩𝕥 𝕖𝕩𝕥ᵐ⇒ = record { ᵐ⇒ = record { ⟨η⟩ = ⟨𝕧⟩ ; ⟨μ⟩ = λ{ {t = t} → MapEq₁.≈ μ∘𝕖𝕩𝕥 t } } ; ⟨𝑎𝑙𝑔⟩ = ⟨𝕒⟩ } module 𝕖𝕩𝕥ᵐ⇒ = ΣMon⇒ 𝕖𝕩𝕥ᵐ⇒ -- Interpretation map is equal to any homomorphism that factors through 𝔛 ⇾ ℳ module _ {g : 𝕋 ⇾̣ ℳ} (gᵐ⇒ : ΣMon⇒ Σ𝕋ᵐ Σℳᵐ g) (p : ∀{α Π}{𝔪 : 𝔛 α Π} → g (𝕞𝕧𝕒𝕣 𝔪 𝕧𝕒𝕣) ≡ ω 𝔪) where open ΣMon⇒ gᵐ⇒ renaming (⟨𝑎𝑙𝑔⟩ to g⟨𝑎𝑙𝑔⟩) gᵃ⇒ : MetaAlg⇒ 𝕋ᵃ ℳᵃ g gᵃ⇒ = record { ⟨𝑎𝑙𝑔⟩ = g⟨𝑎𝑙𝑔⟩ ; ⟨𝑣𝑎𝑟⟩ = ⟨η⟩ ; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{ε} → begin g (𝕞𝕧𝕒𝕣 𝔪 ε) ≡˘⟨ cong g (cong (𝕞𝕧𝕒𝕣 𝔪) (dext′ Substitution.𝕥⟨𝕧⟩)) ⟩ g (𝕞𝕧𝕒𝕣 𝔪 (λ v → 𝕤𝕦𝕓 (𝕧𝕒𝕣 v) ε)) ≡˘⟨ cong g Substitution.𝕥⟨𝕞⟩ ⟩ g (𝕤𝕦𝕓 (𝕞𝕧𝕒𝕣 𝔪 𝕧𝕒𝕣) ε) ≡⟨ ⟨μ⟩ ⟩ μ (g (𝕞𝕧𝕒𝕣 𝔪 𝕧𝕒𝕣)) (g ∘ ε) ≡⟨ μ≈₁ p ⟩ μ (ω 𝔪) (λ x → g (ε x)) ∎ } } where open ≡-Reasoning 𝕖𝕩𝕥ᵐ! : {α : T}{Γ : Ctx}(t : 𝕋 α Γ) → 𝕖𝕩𝕥 t ≡ g t 𝕖𝕩𝕥ᵐ! = 𝕤𝕖𝕞! gᵃ⇒ -- Free Σ-monoid functor Famₛ→ΣMon : Familyₛ → ΣMonoid Famₛ→ΣMon 𝔛 = Theory.𝕋 𝔛 ⋉ (Σ𝕋ᵐ 𝔛) open ΣMonoidStructure.Free Free-ΣMon-Mapping : FreeΣMonoid.FreeMapping Famₛ→ΣMon Free-ΣMon-Mapping = record { embed = λ {𝔛} 𝔪 → let open Theory 𝔛 in 𝕞𝕧𝕒𝕣 𝔪 𝕧𝕒𝕣 ; univ = λ{ 𝔛 (ℳ ⋉ Σℳᵐ) ω → let open FΣM 𝔛 Σℳᵐ ω in record { extend = 𝕖𝕩𝕥 ⋉ 𝕖𝕩𝕥ᵐ⇒ ; factor = trans ⟨𝕞⟩ (trans (μ≈₂ ⟨𝕧⟩) runit) ; unique = λ{ (g ⋉ gᵐ⇒) p {x = t} → sym (𝕖𝕩𝕥ᵐ! gᵐ⇒ p t) } }} } Free:𝔽amₛ⟶Σ𝕄on : Functor 𝔽amiliesₛ Σ𝕄onoids Free:𝔽amₛ⟶Σ𝕄on = FreeΣMonoid.FreeMapping.Free Free-ΣMon-Mapping -- Σ-monoid monad on families ΣMon:Monad : Monad 𝔽amiliesₛ ΣMon:Monad = FreeΣMonoid.FreeMapping.FreeMonad Free-ΣMon-Mapping 𝕋F : Functor 𝔽amiliesₛ 𝔽amiliesₛ 𝕋F = Monad.F ΣMon:Monad open Theory open Monad ΣMon:Monad -- Functorial action of 𝕋 𝕋₁ : {𝔛 𝔜 : Familyₛ} → (𝔛 ⇾̣ 𝔜) → 𝕋 𝔛 ⇾̣ 𝕋 𝔜 𝕋₁ f t = Functor.₁ 𝕋F f t -- Functorial action preserves variables 𝕋₁∘𝕧𝕒𝕣 : {𝔛 𝔜 : Familyₛ}(f : 𝔛 ⇾̣ 𝔜)(v : ℐ α Γ) → 𝕋₁ f (𝕧𝕒𝕣 𝔛 v) ≡ 𝕧𝕒𝕣 𝔜 v 𝕋₁∘𝕧𝕒𝕣 {𝔛 = 𝔛}{𝔜} f v = FΣM.⟨𝕧⟩ 𝔛 (Σ𝕋ᵐ 𝔜) (λ 𝔪 → 𝕞𝕧𝕒𝕣 𝔜 (f 𝔪) (𝕧𝕒𝕣 𝔜)) -- Functorial action preserves metavariables 𝕋₁∘𝕞𝕧𝕒𝕣 : {𝔛 𝔜 : Familyₛ}(f : 𝔛 ⇾̣ 𝔜)(𝔪 : 𝔛 α Γ)(ε : Γ ~[ 𝕋 𝔛 ]↝ Δ) → 𝕋₁ f (𝕞𝕧𝕒𝕣 𝔛 𝔪 ε) ≡ 𝕞𝕧𝕒𝕣 𝔜 (f 𝔪) (𝕋₁ f ∘ ε) 𝕋₁∘𝕞𝕧𝕒𝕣 {𝔛 = 𝔛}{𝔜} f 𝔪 ε = begin 𝕋₁ f (𝕞𝕧𝕒𝕣 𝔛 𝔪 ε) ≡⟨⟩ FΣM.𝕖𝕩𝕥 𝔛 (Σ𝕋ᵐ 𝔜) (λ 𝔪 → 𝕞𝕧𝕒𝕣 𝔜 (f 𝔪) (𝕧𝕒𝕣 𝔜)) (𝕞𝕧𝕒𝕣 𝔛 𝔪 ε) ≡⟨ FΣM.⟨𝕞⟩ 𝔛 (Σ𝕋ᵐ 𝔜) (λ 𝔪 → 𝕞𝕧𝕒𝕣 𝔜 (f 𝔪) (𝕧𝕒𝕣 𝔜)) ⟩ 𝕤𝕦𝕓 𝔜 (𝕞𝕧𝕒𝕣 𝔜 (f 𝔪) (𝕧𝕒𝕣 𝔜)) (𝕋₁ f ∘ ε) ≡⟨ Substitution.𝕥⟨𝕞⟩ 𝔜 ⟩ 𝕞𝕧𝕒𝕣 𝔜 (f 𝔪) (λ 𝔫 → 𝕤𝕦𝕓 𝔜 (𝕧𝕒𝕣 𝔜 𝔫) (𝕋₁ f ∘ ε)) ≡⟨ cong (𝕞𝕧𝕒𝕣 𝔜 (f 𝔪)) (dext (λ 𝔫 → lunit 𝔜)) ⟩ 𝕞𝕧𝕒𝕣 𝔜 (f 𝔪) (𝕋₁ f ∘ ε) ∎ where open ≡-Reasoning -- Corollary fo the above two 𝕋₁∘𝕞𝕧𝕒𝕣[𝕧𝕒𝕣] : {𝔛 𝔜 : Familyₛ}(f : 𝔛 ⇾̣ 𝔜)(𝔪 : 𝔛 α Γ)(ρ : Γ ↝ Δ) → 𝕋₁ f (𝕞𝕧𝕒𝕣 𝔛 𝔪 (𝕧𝕒𝕣 𝔛 ∘ ρ)) ≡ 𝕞𝕧𝕒𝕣 𝔜 (f 𝔪) (𝕧𝕒𝕣 𝔜 ∘ ρ) 𝕋₁∘𝕞𝕧𝕒𝕣[𝕧𝕒𝕣] {𝔛 = 𝔛}{𝔜} f 𝔪 ρ = begin 𝕋₁ f (𝕞𝕧𝕒𝕣 𝔛 𝔪 (𝕧𝕒𝕣 𝔛 ∘ ρ)) ≡⟨ 𝕋₁∘𝕞𝕧𝕒𝕣 f 𝔪 (𝕧𝕒𝕣 𝔛 ∘ ρ) ⟩ 𝕞𝕧𝕒𝕣 𝔜 (f 𝔪) (𝕋₁ f ∘ 𝕧𝕒𝕣 𝔛 ∘ ρ) ≡⟨ cong (𝕞𝕧𝕒𝕣 𝔜 (f 𝔪)) (dext λ v → 𝕋₁∘𝕧𝕒𝕣 f (ρ v)) ⟩ 𝕞𝕧𝕒𝕣 𝔜 (f 𝔪) (𝕧𝕒𝕣 𝔜 ∘ ρ) ∎ where open ≡-Reasoning
{ "alphanum_fraction": 0.5027554048, "avg_line_length": 32.9162790698, "ext": "agda", "hexsha": "ccf7304bbf319cef2da49bfeb3083884c044f103", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "SOAS/Metatheory/FreeMonoid.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "SOAS/Metatheory/FreeMonoid.agda", "max_line_length": 99, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "SOAS/Metatheory/FreeMonoid.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 5389, "size": 7077 }
{- Name: Bowornmet (Ben) Hudson --Type safety and meaning functions for L{⇒,+,×,unit}-- -} open import Preliminaries open import Preorder open import Preorder-repackage module L where -- => and + and × and unit data Typ : Set where _⇒_ : Typ → Typ → Typ _×'_ : Typ → Typ → Typ _+'_ : Typ → Typ → Typ unit : Typ ------------------------------------------ -- represent a context as a list of types Ctx = List Typ -- de Bruijn indices (for free variables) data _∈_ : Typ → Ctx → Set where i0 : ∀ {Γ τ} → τ ∈ (τ :: Γ) iS : ∀ {Γ τ τ1} → τ ∈ Γ → τ ∈ (τ1 :: Γ) ------------------------------------------ -- static semantics data _|-_ : Ctx → Typ → Set where var : ∀ {Γ τ} → (x : τ ∈ Γ) → Γ |- τ lam : ∀ {Γ τ ρ} → (x : (ρ :: Γ) |- τ) → Γ |- (ρ ⇒ τ) app : ∀ {Γ τ1 τ2} → (e1 : Γ |- (τ2 ⇒ τ1)) → (e2 : Γ |- τ2) → Γ |- τ1 unit : ∀ {Γ} → Γ |- unit prod : ∀ {Γ τ1 τ2} → (e1 : Γ |- τ1) → (e2 : Γ |- τ2) → Γ |- (τ1 ×' τ2) l-proj : ∀ {Γ τ1 τ2} → (e : Γ |- (τ1 ×' τ2)) → Γ |- τ1 r-proj : ∀ {Γ τ1 τ2} → (e : Γ |- (τ1 ×' τ2)) → Γ |- τ2 inl : ∀ {Γ τ1 τ2} → (e : Γ |- τ1) → Γ |- (τ1 +' τ2) inr : ∀ {Γ τ1 τ2} → (e : Γ |- τ2) → Γ |- (τ1 +' τ2) case` : ∀ {Γ τ1 τ2 τ} → (e : Γ |- (τ1 +' τ2)) → (e1 : (τ1 :: Γ) |- τ) → (e2 : (τ2 :: Γ) |- τ) → Γ |- τ ------------------------------------------ -- renaming rctx : Ctx → Ctx → Set rctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → τ ∈ Γ -- re: transferring variables in contexts lem1 : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ') lem1 d i0 = i0 lem1 d (iS x) = iS (d x) -- renaming lemma ren : ∀ {Γ Γ' τ} → Γ' |- τ → rctx Γ Γ' → Γ |- τ ren (var x) d = var (d x) ren (lam e) d = lam (ren e (lem1 d)) ren (app e1 e2) d = app (ren e1 d) (ren e2 d) ren unit d = unit ren (prod e1 e2) d = prod (ren e1 d) (ren e2 d) ren (l-proj e) d = l-proj (ren e d) ren (r-proj e) d = r-proj (ren e d) ren (inl x) d = inl (ren x d) ren (inr x) d = inr (ren x d) ren (case` e e1 e2) d = case` (ren e d) (ren e1 (lem1 d)) (ren e2 (lem1 d)) ------------------------------------------ -- substitution sctx : Ctx → Ctx → Set sctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → Γ |- τ -- weakening (didn't need this later on. Oh well) wkn : ∀ {Γ τ1 τ2} → Γ |- τ2 → (τ1 :: Γ) |- τ2 wkn e = ren e iS -- lem2 (need a lemma for subst like we did for renaming) lem2 : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) (τ :: Γ') lem2 d i0 = var i0 lem2 d (iS i0) = ren (d i0) iS lem2 d (iS (iS i)) = ren (d (iS i)) iS -- another substitution lemma lem3 : ∀ {Γ τ} → Γ |- τ → sctx Γ (τ :: Γ) lem3 d i0 = d lem3 d (iS i) = var i -- one final lemma needed for the last stepping rule. Thank you Professor Licata! lem4 : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ)) lem4 x y i0 = x lem4 x y (iS i0) = y lem4 x y (iS (iS i)) = var i -- the 'real' substitution lemma subst : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ' |- τ → Γ |- τ subst d (var x) = d x subst d (lam e) = lam (subst (lem2 d) e) subst d (app e1 e2) = app (subst d e1) (subst d e2) subst d unit = unit subst d (prod e1 e2) = prod (subst d e1) (subst d e2) subst d (l-proj e) = l-proj (subst d e) subst d (r-proj e) = r-proj (subst d e) subst d (inl x) = inl (subst d x) subst d (inr x) = inr (subst d x) subst d (case` e e1 e2) = case` (subst d e) (subst (lem2 d) e1) (subst (lem2 d) e2) ------------------------------------------ -- closed values of L (when something is a value) -- recall that we use empty contexts when we work with dynamic semantics data val : ∀ {τ} → [] |- τ → Set where unit-isval : val unit lam-isval : ∀ {ρ τ} (e : (ρ :: []) |- τ) → val (lam e) prod-isval : ∀ {τ1 τ2} → (e1 : [] |- τ1) → (e2 : [] |- τ2) → val e1 → val e2 → val (prod e1 e2) inl-isval : ∀ {τ1 τ2} → (e : [] |- τ1) → val e → val (inl {_} {_} {τ2} e) inr-isval : ∀ {τ1 τ2} → (e : [] |- τ2) → val e → val (inr {_} {τ1} {_} e) ------------------------------------------ -- stepping rules (preservation is folded into this) -- Preservation: if e:τ and e=>e', then e':τ data _>>_ : ∀ {τ} → [] |- τ → [] |- τ → Set where app-steps : ∀ {τ1 τ2} → (e1 e1' : [] |- (τ2 ⇒ τ1)) → (e2 : [] |- τ2) → e1 >> e1' → (app e1 e2) >> (app e1' e2) app-steps-2 : ∀ {τ1 τ2} → (e1 : [] |- (τ2 ⇒ τ1)) → (e2 e2' : [] |- τ2) → val e1 → e2 >> e2' → (app e1 e2) >> (app e1 e2') app-steps-3 : ∀ {τ1 τ2} → (e1 : (τ1 :: []) |- τ2) → (e2 : [] |- τ1) → (app (lam e1) e2) >> subst (lem3 e2) e1 prod-steps : ∀ {τ1 τ2} → (e1 e1' : [] |- τ1) → (e2 : [] |- τ2) → e1 >> e1' → (prod e1 e2) >> (prod e1' e2) prod-steps-2 : ∀ {τ1 τ2} → (e1 : [] |- τ1) → (e2 e2' : [] |- τ2) → val e1 → e2 >> e2' → (prod e1 e2) >> (prod e1 e2') l-proj-steps : ∀ {τ1 τ2} → (e e' : [] |- (τ1 ×' τ2)) → e >> e' → (l-proj e) >> (l-proj e') l-proj-steps-2 : ∀ {τ1 τ2} → (e1 : [] |- τ1) → (e2 : [] |- τ2) → val e1 → val e2 → (l-proj (prod e1 e2)) >> e1 r-proj-steps : ∀ {τ1 τ2} → (e e' : [] |- (τ1 ×' τ2)) → e >> e' → (r-proj e) >> (r-proj e') r-proj-steps-2 : ∀ {τ1 τ2} → (e1 : [] |- τ1) → (e2 : [] |- τ2) → val e1 → val e2 → (r-proj (prod e1 e2)) >> e2 inl-steps : ∀ {τ1 τ2} → (e e' : [] |- τ1) → e >> e' → inl {_} {_} {τ2} e >> inl e' inr-steps : ∀ {τ1 τ2} → (e e' : [] |- τ2) → e >> e' → inr {_} {τ1} {_} e >> inr e' case`-steps : ∀ {τ1 τ2 τ} → (e e' : [] |- (τ1 +' τ2)) → (e1 : (τ1 :: []) |- τ) → (e2 : (τ2 :: []) |- τ) → e >> e' → (case` e e1 e2) >> (case` e' e1 e2) case`-steps-2 : ∀ {τ1 τ2 τ} → (e : [] |- τ1) → (e1 : (τ1 :: []) |- τ) → (e2 : (τ2 :: []) |- τ) → val e → (case` (inl e) e1 e2) >> subst (lem3 e) e1 case`-steps-3 : ∀ {τ1 τ2 τ} → (e : [] |- τ2) → (e1 : (τ1 :: []) |- τ) → (e2 : (τ2 :: []) |- τ) → val e → (case` (inr e) e1 e2) >> subst (lem3 e) e2 ------------------------------------------ -- Proof of progress! -- Progress: if e:τ, then either e val or ∃e' such that e=>e' progress : ∀ {τ} (e : [] |- τ) → Either (val e) (Σ (λ e' → (e >> e'))) progress (var ()) progress (lam x) = Inl (lam-isval x) progress (app e1 e2) with progress e1 progress (app .(lam e) e2) | Inl (lam-isval e) = Inr (_ , app-steps-3 e e2) progress (app e1 e2) | Inr (x , d) = Inr (_ , app-steps e1 x e2 d) progress unit = Inl unit-isval progress (prod e1 e2) with progress e1 progress (prod e1 e2) | Inl d with progress e2 progress (prod e1 e2) | Inl d | Inl x = Inl (prod-isval e1 e2 d x) progress (prod e1 e2) | Inl d | Inr (x , k) = Inr (_ , prod-steps-2 e1 e2 x d k) progress (prod e1 e2) | Inr (x , d) = Inr (_ , prod-steps e1 x e2 d) progress (l-proj e) with progress e progress (l-proj .(prod e1 e2)) | Inl (prod-isval e1 e2 d d₁) = Inr (_ , l-proj-steps-2 e1 e2 d d₁) progress (l-proj e) | Inr (x , d) = Inr (_ , l-proj-steps e x d) progress (r-proj e) with progress e progress (r-proj .(prod e1 e2)) | Inl (prod-isval e1 e2 d d₁) = Inr (_ , r-proj-steps-2 e1 e2 d d₁) progress (r-proj e) | Inr (x , d) = Inr (_ , r-proj-steps e x d) progress (inl e) with progress e progress (inl e) | Inl x = Inl (inl-isval e x) progress (inl e) | Inr (x , d) = Inr (_ , inl-steps e x d) progress (inr e) with progress e progress (inr e) | Inl x = Inl (inr-isval e x) progress (inr e) | Inr (x , d) = Inr (_ , inr-steps e x d) progress (case` e e1 e2) with progress e progress (case` .(inl e) e1 e2) | Inl (inl-isval e x) = Inr (_ , case`-steps-2 e e1 e2 x) progress (case` .(inr e) e1 e2) | Inl (inr-isval e x) = Inr (_ , case`-steps-3 e e1 e2 x) progress (case` e e1 e2) | Inr (x , d) = Inr (_ , case`-steps e x e1 e2 d) ------------------------------------------ -- how to interpret types in L as preorders interp : Typ → PREORDER interp (A ⇒ B) = interp A ->p interp B interp (A ×' B) = interp A ×p interp B interp (A +' B) = interp A +p interp B interp unit = unit-p interpC : Ctx → PREORDER interpC [] = unit-p interpC (A :: Γ) = interpC Γ ×p interp A -- look up a variable in context lookup : ∀{Γ τ} → τ ∈ Γ → el (interpC Γ ->p interp τ) lookup (i0 {Γ} {τ}) = snd' {interpC (τ :: Γ)} {interpC Γ} {_} id lookup (iS {Γ} {τ} {τ1} x) = comp {interpC (τ1 :: Γ)} {_} {_} (fst' {interpC (τ1 :: Γ)} {_} {interp τ1} id) (lookup x) interpE : ∀{Γ τ} → Γ |- τ → el (interpC Γ ->p interp τ) interpE (var x) = lookup x interpE (lam e) = lam' (interpE e) interpE (app e1 e2) = app' (interpE e1) (interpE e2) interpE unit = monotone (λ _ → <>) (λ x y _ → <>) interpE (prod e1 e2) = pair' (interpE e1) (interpE e2) interpE (l-proj {Γ} {τ1} {τ2} e) = fst' {_} {_} {interp τ2} (interpE e) interpE (r-proj {Γ} {τ1} {τ2} e) = snd' {_} {interp τ1} {_} (interpE e) interpE (inl e) = inl' (interpE e) interpE (inr e) = inr' (interpE e) interpE (case` e e1 e2) = case' (interpE e1) (interpE e2) (interpE e)
{ "alphanum_fraction": 0.4231692677, "avg_line_length": 35.1971830986, "ext": "agda", "hexsha": "01155eaf198f8d301a5e1d11358ec1b1183cd64c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "benhuds/Agda", "max_forks_repo_path": "ug/L.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "benhuds/Agda", "max_issues_repo_path": "ug/L.agda", "max_line_length": 120, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "benhuds/Agda", "max_stars_repo_path": "ug/L.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z", "num_tokens": 3926, "size": 9996 }
{-# OPTIONS --cubical --safe #-} module Data.Nat where open import Data.Nat.Base public
{ "alphanum_fraction": 0.7, "avg_line_length": 15, "ext": "agda", "hexsha": "d84f77e551aa04d941bf1495a2687eb36edc36f9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Data/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Data/Nat.agda", "max_line_length": 32, "max_stars_count": 4, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Data/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 23, "size": 90 }
open import Common.Prelude open import Common.Reflection open import Common.Equality open import Agda.Builtin.Sigma magic₁ : ⊥ → Nat magic₁ = λ () magic₂ : ⊥ → Nat magic₂ = λ { () } magic₃ : ⊥ → Nat magic₃ () data Wrap (A : Set) : Set where wrap : A → Wrap A magic₄ : Wrap ⊥ → Nat magic₄ (wrap ()) data OK : Set where ok : OK bad : String bad = "not good" macro checkDefinition : (Definition → Bool) → QName → Tactic checkDefinition isOk f hole = bindTC (getDefinition f) λ def → give (if isOk def then quoteTerm ok else quoteTerm bad) hole pattern `Nat = def (quote Nat) [] pattern _`→_ a b = pi (vArg a) (abs "_" b) pattern `Wrap a = def (quote Wrap) (vArg a ∷ []) pattern `⊥ = def (quote ⊥) [] pattern expected₄ = funDef (absurdClause (("()" , vArg `⊥) ∷ []) (vArg (con (quote wrap) (vArg absurd ∷ [])) ∷ []) ∷ []) check₄ : OK check₄ = checkDefinition (λ { expected₄ → true; _ → false }) magic₄ expected = extLam (absurdClause (("()" , vArg `⊥) ∷ []) (arg (argInfo visible relevant) absurd ∷ []) ∷ []) [] macro quoteTermNormalised : Term → Term → TC ⊤ quoteTermNormalised t hole = bindTC (normalise t) λ t → bindTC (quoteTC t) λ t → unify hole t check₁ : quoteTermNormalised magic₁ ≡ expected check₁ = refl check₂ : quoteTermNormalised magic₂ ≡ expected check₂ = refl pattern expectedDef = funDef (absurdClause (("()" , vArg `⊥) ∷ []) (vArg absurd ∷ []) ∷ []) check₃ : OK check₃ = checkDefinition (λ { expectedDef → true; _ → false }) magic₃
{ "alphanum_fraction": 0.6333998669, "avg_line_length": 22.4328358209, "ext": "agda", "hexsha": "032317840273fb6fb6eb4007db76ed2f69caeddc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/QuoteExtLam.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/QuoteExtLam.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/QuoteExtLam.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 508, "size": 1503 }
import cedille-options open import general-util module untyped-spans (options : cedille-options.options) {F : Set → Set} {{monadF : monad F}} where open import lib open import ctxt open import cedille-types open import spans options {F} open import syntax-util open import to-string options untyped-term-spans : term → spanM ⊤ untyped-type-spans : type → spanM ⊤ untyped-kind-spans : kind → spanM ⊤ untyped-tk-spans : tk → spanM ⊤ untyped-liftingType-spans : liftingType → spanM ⊤ untyped-optTerm-spans : optTerm → spanM (posinfo → posinfo) untyped-optType-spans : optType → spanM ⊤ untyped-optGuide-spans : optGuide → spanM ⊤ untyped-lterms-spans : lterms → spanM ⊤ untyped-optClass-spans : optClass → spanM ⊤ untyped-defTermOrType-spans : defTermOrType → spanM (spanM ⊤ → spanM ⊤) untyped-var-spans : posinfo → var → (ctxt → posinfo → var → checking-mode → 𝕃 tagged-val → err-m → span) → spanM ⊤ → spanM ⊤ untyped-var-spans pi x f m = get-ctxt λ Γ → with-ctxt (ctxt-var-decl-loc pi x Γ) (get-ctxt λ Γ → spanM-add (f Γ pi x untyped [] nothing) ≫span m) untyped-term-spans (App t me t') = untyped-term-spans t ≫span untyped-term-spans t' ≫span spanM-add (App-span ff t t' untyped [] nothing) untyped-term-spans (AppTp t T) = untyped-term-spans t ≫span untyped-type-spans T ≫span spanM-add (AppTp-span t T untyped [] nothing) untyped-term-spans (Beta pi ot ot') = untyped-optTerm-spans ot ≫=span λ f → untyped-optTerm-spans ot' ≫=span λ f' → spanM-add (Beta-span pi (f' (f (posinfo-plus pi 1))) untyped [] nothing) untyped-term-spans (Chi pi mT t) = untyped-optType-spans mT ≫span untyped-term-spans t ≫span get-ctxt λ Γ → spanM-add (Chi-span Γ pi mT t untyped [] nothing) untyped-term-spans (Delta pi mT t) = untyped-optType-spans mT ≫span untyped-term-spans t ≫span get-ctxt λ Γ → spanM-add (Delta-span Γ pi mT t untyped [] nothing) untyped-term-spans (Epsilon pi lr mm t) = untyped-term-spans t ≫span spanM-add (Epsilon-span pi lr mm t untyped [] nothing) untyped-term-spans (Hole pi) = get-ctxt λ Γ → spanM-add (hole-span Γ pi nothing []) untyped-term-spans (IotaPair pi t t' og pi') = untyped-term-spans t ≫span untyped-term-spans t' ≫span untyped-optGuide-spans og ≫span spanM-add (IotaPair-span pi pi' untyped [] nothing) untyped-term-spans (IotaProj t n pi) = untyped-term-spans t ≫span spanM-add (IotaProj-span t pi untyped [] nothing) untyped-term-spans (Lam pi l pi' x oc t) = untyped-optClass-spans oc ≫span get-ctxt λ Γ → spanM-add (Lam-span Γ untyped pi l x oc t [] nothing) ≫span untyped-var-spans pi' x Var-span (untyped-term-spans t) untyped-term-spans (Let pi d t) = untyped-defTermOrType-spans d ≫=span λ f → f (untyped-term-spans t) ≫span get-ctxt λ Γ → spanM-add (Let-span Γ untyped pi d t [] nothing) untyped-term-spans (Open pi x t) = untyped-term-spans t ≫span spanM-add (mk-span "Open" pi (term-end-pos t) [] nothing) untyped-term-spans (Parens pi t pi') = untyped-term-spans t untyped-term-spans (Phi pi t t' t'' pi') = untyped-term-spans t ≫span untyped-term-spans t' ≫span untyped-term-spans t'' ≫span spanM-add (Phi-span pi pi' untyped [] nothing) untyped-term-spans (Rho pi op on t og t') = untyped-term-spans t ≫span untyped-term-spans t' ≫span spanM-add (mk-span "Rho" pi (term-end-pos t') (ll-data-term :: [ checking-data untyped ]) nothing) untyped-term-spans (Sigma pi t) = untyped-term-spans t ≫span get-ctxt λ Γ → spanM-add (mk-span "Sigma" pi (term-end-pos t) (ll-data-term :: [ checking-data untyped ]) nothing) untyped-term-spans (Theta pi θ t ls) = untyped-term-spans t ≫span untyped-lterms-spans ls ≫span get-ctxt λ Γ → spanM-add (Theta-span Γ pi θ t ls untyped [] nothing) untyped-term-spans (Var pi x) = get-ctxt λ Γ → spanM-add (Var-span Γ pi x untyped [] (if ctxt-binds-var Γ x then nothing else just "This variable is not currently in scope.")) untyped-term-spans (Mu pi x t ot pi' cs pi'') = spanM-add (Mu-span t [] nothing) untyped-term-spans (Mu' pi t ot pi' cs pi'') = spanM-add (Mu-span t [] nothing) untyped-type-spans (Abs pi b pi' x atk T) = untyped-tk-spans atk ≫span spanM-add (TpQuant-span (me-unerased b) pi x atk T untyped [] nothing) ≫span untyped-var-spans pi' x (if tk-is-type atk then Var-span else TpVar-span) (untyped-type-spans T) untyped-type-spans (Iota pi pi' x T T') = untyped-type-spans T ≫span spanM-add (Iota-span pi T' untyped [] nothing) ≫span untyped-var-spans pi' x TpVar-span (untyped-type-spans T') untyped-type-spans (Lft pi pi' x t lT) = untyped-liftingType-spans lT ≫span spanM-add (Lft-span pi x t untyped [] nothing) ≫span untyped-var-spans pi' x Var-span (untyped-term-spans t) untyped-type-spans (NoSpans T pi) = spanMok untyped-type-spans (TpApp T T') = untyped-type-spans T ≫span untyped-type-spans T' ≫span spanM-add (TpApp-span T T' untyped [] nothing) untyped-type-spans (TpAppt T t) = untyped-type-spans T ≫span untyped-term-spans t ≫span spanM-add (TpAppt-span T t untyped [] nothing) untyped-type-spans (TpArrow T a T') = untyped-type-spans T ≫span untyped-type-spans T' ≫span spanM-add (TpArrow-span T T' untyped [] nothing) untyped-type-spans (TpEq pi t t' pi') = untyped-term-spans t ≫span untyped-term-spans t' ≫span spanM-add (TpEq-span pi t t' pi' untyped [] nothing) untyped-type-spans (TpHole pi) = get-ctxt λ Γ → spanM-add (tp-hole-span Γ pi nothing []) untyped-type-spans (TpLambda pi pi' x atk T) = untyped-tk-spans atk ≫span spanM-add (TpLambda-span pi pi' atk T untyped [] nothing) ≫span untyped-var-spans pi' x TpVar-span (untyped-type-spans T) untyped-type-spans (TpParens pi T pi') = untyped-type-spans T untyped-type-spans (TpVar pi x) = get-ctxt λ Γ → spanM-add (TpVar-span Γ pi x untyped [] (if ctxt-binds-var Γ x then nothing else just "This variable is not currently in scope.")) untyped-type-spans (TpLet pi d T) = untyped-defTermOrType-spans d ≫=span λ f → f (untyped-type-spans T) ≫span get-ctxt λ Γ → spanM-add (TpLet-span Γ untyped pi d T [] nothing) untyped-kind-spans (KndArrow k k') = untyped-kind-spans k ≫span untyped-kind-spans k' ≫span spanM-add (KndArrow-span k k' untyped nothing) untyped-kind-spans (KndParens pi k pi') = untyped-kind-spans k untyped-kind-spans (KndPi pi pi' x atk k) = untyped-tk-spans atk ≫span spanM-add (KndPi-span pi x atk k untyped nothing) ≫span untyped-var-spans pi' x (if tk-is-type atk then Var-span else TpVar-span) (untyped-kind-spans k) untyped-kind-spans (KndTpArrow T k) = untyped-type-spans T ≫span untyped-kind-spans k ≫span spanM-add (KndTpArrow-span T k untyped nothing) untyped-kind-spans (KndVar pi x as) = get-ctxt λ Γ → spanM-add (KndVar-span Γ (pi , x) (kvar-end-pos pi x as) ParamsNil untyped [] (if ctxt-binds-var Γ x then nothing else just "This variable is not currently in scope.")) untyped-kind-spans (Star pi) = spanM-add (Star-span pi untyped nothing) untyped-liftingType-spans lT = spanMok -- Unimplemented untyped-tk-spans (Tkt T) = untyped-type-spans T untyped-tk-spans (Tkk k) = untyped-kind-spans k untyped-optTerm-spans NoTerm = spanMr λ pi → pi untyped-optTerm-spans (SomeTerm t pi) = untyped-term-spans t ≫span spanMr λ _ → pi untyped-optType-spans NoType = spanMok untyped-optType-spans (SomeType T) = untyped-type-spans T untyped-optGuide-spans NoGuide = spanMok untyped-optGuide-spans (Guide pi x T) = untyped-var-spans pi x Var-span (untyped-type-spans T) untyped-lterms-spans (LtermsNil pi) = spanMok untyped-lterms-spans (LtermsCons me t ls) = untyped-term-spans t ≫span untyped-lterms-spans ls untyped-optClass-spans NoClass = spanMok untyped-optClass-spans (SomeClass atk) = untyped-tk-spans atk untyped-defTermOrType-spans (DefTerm pi x NoType t) = untyped-term-spans t ≫span get-ctxt λ Γ → with-ctxt (ctxt-var-decl-loc pi x Γ) (spanMr λ x → x) untyped-defTermOrType-spans (DefTerm pi x (SomeType T) t) = untyped-term-spans t ≫span untyped-type-spans T ≫span get-ctxt λ Γ → with-ctxt (ctxt-var-decl-loc pi x Γ) (spanMr λ x → x) untyped-defTermOrType-spans (DefType pi x k T) = untyped-kind-spans k ≫span untyped-type-spans T ≫span get-ctxt λ Γ → with-ctxt (ctxt-var-decl-loc pi x Γ) (spanMr λ x → x)
{ "alphanum_fraction": 0.7202343847, "avg_line_length": 82.6907216495, "ext": "agda", "hexsha": "3a765a565cd214eb5b264b7100a47a212253eb5d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/untyped-spans.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/untyped-spans.agda", "max_line_length": 244, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/untyped-spans.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2720, "size": 8021 }
data unit : Set where tt : unit record Y (A : Set) : Set where field y : A record Z (A : Set) : Set where field z : A instance -- Y[unit] : Y unit -- Y.y Y[unit] = tt Z[unit] : Z unit Z.z Z[unit] = tt foo : ∀ (A : Set) {{YA : Y A}} {{ZA : Z A}} → unit foo A = tt foo[unit] : unit foo[unit] = foo unit -- {{ZA = Z[unit]}}
{ "alphanum_fraction": 0.5299401198, "avg_line_length": 18.5555555556, "ext": "agda", "hexsha": "64378729628e7ed66d3b28fccaf357a8c96ef0d7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1955.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1955.agda", "max_line_length": 50, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1955.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 126, "size": 334 }
module L.Base.Empty where -- Reexport definitions open import L.Base.Empty.Core public
{ "alphanum_fraction": 0.7954545455, "avg_line_length": 17.6, "ext": "agda", "hexsha": "b34a648c8b7d3471ae27a797e567dfd586306acf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "borszag/smallib", "max_forks_repo_path": "src/L/Base/Empty.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "borszag/smallib", "max_issues_repo_path": "src/L/Base/Empty.agda", "max_line_length": 36, "max_stars_count": null, "max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "borszag/smallib", "max_stars_repo_path": "src/L/Base/Empty.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 19, "size": 88 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Base open import lib.Equivalence open import lib.PathGroupoid open import lib.NType open import lib.Univalence open import lib.path-seq.Concat open import lib.path-seq.Split module lib.path-seq.Reasoning where infix 30 _=↯=_ _=↯=_ : ∀ {i} {A : Type i} {a a' : A} → a =-= a' → a =-= a' → Type i _=↯=_ s t = (↯ s) == (↯ t) module _ {i} {A : Type i} {a a' : A} where =-=ₛ-equiv : (s t : a =-= a') → (s =↯= t) ≃ (s =ₛ t) =-=ₛ-equiv s t = equiv =ₛ-in =ₛ-out (λ _ → idp) (λ _ → idp) =ₛ-level : {s t : a =-= a'} {n : ℕ₋₂} → has-level (S (S n)) A → has-level n (s =ₛ t) =ₛ-level {s} {t} {n} A-level = transport (has-level n) (ua (=-=ₛ-equiv s t)) $ has-level-apply (has-level-apply A-level _ _) _ _ !ₛ : {s t : a =-= a'} → s =ₛ t → t =ₛ s !ₛ (=ₛ-in p) = =ₛ-in (! p) _∙ₛ_ : {s t u : a =-= a'} → s =ₛ t → t =ₛ u → s =ₛ u _∙ₛ_ (=ₛ-in p) (=ₛ-in q) = =ₛ-in (p ∙ q) expand : (s : a =-= a') → ↯ s ◃∎ =ₛ s expand s = =ₛ-in idp contract : {s : a =-= a'} → s =ₛ ↯ s ◃∎ contract = =ₛ-in idp abstract private infixr 10 _=↯=⟨_&_&_&_⟩_ _=↯=⟨_&_&_&_⟩_ : {q : a == a'} → (s : a =-= a') → (n : ℕ) (m : ℕ) → (t : point-from-start n s =-= point-from-start m (drop n s)) → take m (drop n s) =↯= t → ↯ (take n s ∙∙ t ∙∙ drop m (drop n s)) == q → ↯ s == q _=↯=⟨_&_&_&_⟩_ {q} s n m t p p' = ↯ s =⟨ =ₛ-out (take-drop-split n s) ⟩ ↯ (take n s) ∙ ↯ (drop n s) =⟨ ap (↯ (take n s) ∙_) (=ₛ-out (take-drop-split m (drop n s))) ⟩ ↯ (take n s) ∙ ↯ (take m (drop n s)) ∙ ↯ (drop m (drop n s)) =⟨ ap (λ v → ↯ (take n s) ∙ v ∙ ↯ (drop m (drop n s))) p ⟩ ↯ (take n s) ∙ ↯ t ∙ ↯ (drop m (drop n s)) =⟨ ap (λ v → ↯ (take n s) ∙ v) (! (↯-∙∙ t (drop m (drop n s)))) ⟩ ↯ (take n s) ∙ ↯ (t ∙∙ drop m (drop n s)) =⟨ ! (↯-∙∙ (take n s) (t ∙∙ drop m (drop n s))) ⟩ ↯ (take n s ∙∙ t ∙∙ drop m (drop n s)) =⟨ p' ⟩ q =∎ {- For making proofs more readable by making definitional equalities visible. Example: p ◃∙ ap f idp ◃∙ q ◃∎ =ₛ⟨id⟩ p ◃∙ idp ◃∙ q ◃∎ ∎ₛ -} infixr 10 _=ₛ⟨id⟩_ _=ₛ⟨id⟩_ : (s : a =-= a') {u : a =-= a'} → s =ₛ u → s =ₛ u _=ₛ⟨id⟩_ s e = e {- For rewriting everything using a [_=ₛ_] path. Example: ap f p ◃∙ h y ◃∎ =ₛ⟨ homotopy-naturality f g h p ⟩ h x ◃∙ ap g p ◃∎ ∎ₛ -} infixr 10 _=ₛ⟨_⟩_ _=ₛ⟨_⟩_ : (s : a =-= a') {t u : a =-= a'} → s =ₛ t → t =ₛ u → s =ₛ u _=ₛ⟨_⟩_ _ p q = p ∙ₛ q {- For rewriting a segment using a [_=ₛ_] path. Example: p ◃∙ ! (q ∙ r) ◃∙ s ◃∎ =ₛ⟨ 1 & 1 & !-∙-seq (q ◃∙ r ◃∎) ⟩ p ◃∙ ! r ◃∙ ! q ◃∙ s ◃∎ ∎ₛ -} infixr 10 _=ₛ⟨_&_&_⟩_ _=ₛ⟨_&_&_⟩_ : (s : a =-= a') {u : a =-= a'} → (m n : ℕ) → {r : point-from-start m s =-= point-from-start n (drop m s)} → take n (drop m s) =ₛ r → take m s ∙∙ r ∙∙ drop n (drop m s) =ₛ u → s =ₛ u _=ₛ⟨_&_&_⟩_ s m n {r} p p' = =ₛ-in (s =↯=⟨ m & n & r & =ₛ-out p ⟩ =ₛ-out p') {- For rewriting everything using a [_==_] path. Example: p ◃∙ idp ◃∎ =ₛ₁⟨ ∙-unit-r p ⟩ p ◃∎ ∎ₛ -} infixr 10 _=ₛ₁⟨_⟩_ _=ₛ₁⟨_⟩_ : (s : a =-= a') {u : a =-= a'} → {r : a == a'} → ↯ s == r → r ◃∎ =ₛ u → s =ₛ u _=ₛ₁⟨_⟩_ s {r} p p' = =ₛ-in p ∙ₛ p' {- For rewriting a segment using a [_==_] path. Example: p ◃∙ ! (ap f q) ◃∙ r ◃∎ =ₛ₁⟨ 1 & 1 & !-ap f q ⟩ p ◃∙ ap f (! q) ◃∙ r ◃∎ ∎ₛ -} infixr 10 _=ₛ₁⟨_&_&_⟩_ _=ₛ₁⟨_&_&_⟩_ : (s : a =-= a') {u : a =-= a'} → (m n : ℕ) → {r : point-from-start m s == point-from-start n (drop m s)} → ↯ (take n (drop m s)) == r → take m s ∙∙ r ◃∙ drop n (drop m s) =ₛ u → s =ₛ u _=ₛ₁⟨_&_&_⟩_ s m n {r} p p' = s =ₛ⟨ m & n & =ₛ-in {t = r ◃∎} p ⟩ p' infix 15 _∎ₛ _∎ₛ : (s : a =-= a') → s =ₛ s _∎ₛ _ = =ₛ-in idp
{ "alphanum_fraction": 0.4040079169, "avg_line_length": 28.2657342657, "ext": "agda", "hexsha": "4c243eb2f706ac125aadd0603bfee53a7b4b84c3", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/path-seq/Reasoning.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/path-seq/Reasoning.agda", "max_line_length": 80, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/path-seq/Reasoning.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 2021, "size": 4042 }
{-# OPTIONS --prop --rewriting #-} open import Examples.Sorting.Parallel.Comparable module Examples.Sorting.Parallel.MergeSortPar (M : Comparable) where open Comparable M open import Examples.Sorting.Parallel.Core M open import Calf costMonoid open import Calf.ParMetalanguage parCostMonoid open import Calf.Types.Nat open import Calf.Types.List open import Calf.Types.Bounded costMonoid open import Calf.Types.BigO costMonoid open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; module ≡-Reasoning) open import Data.Product using (_×_; _,_; ∃; proj₁; proj₂) open import Data.Nat as Nat using (ℕ; zero; suc; z≤n; s≤s; _+_; _*_; _^_; ⌊_/2⌋; ⌈_/2⌉; _⊔_) open import Data.Nat.Properties as N using (module ≤-Reasoning) open import Data.Nat.Log2 open import Data.Nat.Square open import Data.Nat.PredExp2 open import Examples.Sorting.Parallel.MergeSort.Split M public open import Examples.Sorting.Parallel.MergeSortPar.Merge M public sort/clocked : cmp (Π nat λ _ → Π (list A) λ _ → F (list A)) sort/clocked zero l = ret l sort/clocked (suc k) l = bind (F (list A)) (split l) λ (l₁ , l₂) → bind (F (list A)) (sort/clocked k l₁ & sort/clocked k l₂) merge sort/clocked/correct : ∀ k l → ⌈log₂ length l ⌉ Nat.≤ k → SortResult (sort/clocked k) l sort/clocked/correct zero l h u = l , refl , refl , short-sorted (⌈log₂n⌉≡0⇒n≤1 (N.n≤0⇒n≡0 h)) sort/clocked/correct (suc k) l h u = let (l₁ , l₂ , ≡ , length₁ , length₂ , ↭) = split/correct l u in let (l₁' , ≡₁ , ↭₁ , sorted₁) = sort/clocked/correct k l₁ ( let open ≤-Reasoning in begin ⌈log₂ length l₁ ⌉ ≡⟨ Eq.cong ⌈log₂_⌉ length₁ ⟩ ⌈log₂ ⌊ length l /2⌋ ⌉ ≤⟨ log₂-mono (N.⌊n/2⌋≤⌈n/2⌉ (length l)) ⟩ ⌈log₂ ⌈ length l /2⌉ ⌉ ≤⟨ log₂-suc (length l) h ⟩ k ∎ ) u in let (l₂' , ≡₂ , ↭₂ , sorted₂) = sort/clocked/correct k l₂ ( let open ≤-Reasoning in begin ⌈log₂ length l₂ ⌉ ≡⟨ Eq.cong ⌈log₂_⌉ length₂ ⟩ ⌈log₂ ⌈ length l /2⌉ ⌉ ≤⟨ log₂-suc (length l) h ⟩ k ∎ ) u in let (l' , ≡' , h-sorted) = merge/correct l₁' l₂' u (↭' , sorted) = h-sorted sorted₁ sorted₂ in l' , ( let open ≡-Reasoning in begin sort/clocked (suc k) l ≡⟨⟩ (bind (F (list A)) (split l) λ (l₁ , l₂) → bind (F (list A)) (sort/clocked k l₁ & sort/clocked k l₂) merge) ≡⟨ Eq.cong (λ e → bind (F (list A)) e _) ≡ ⟩ bind (F (list A)) (sort/clocked k l₁ & sort/clocked k l₂) merge ≡⟨ Eq.cong (λ e → bind (F (list A)) e merge) (Eq.cong₂ _&_ ≡₁ ≡₂) ⟩ merge (l₁' , l₂') ≡⟨ ≡' ⟩ ret l' ∎ ) , ( let open PermutationReasoning in begin l ↭⟨ ↭ ⟩ l₁ ++ l₂ ↭⟨ ++⁺-↭ ↭₁ ↭₂ ⟩ l₁' ++ l₂' ↭⟨ ↭' ⟩ l' ∎ ) , sorted sort/clocked/cost : cmp (Π nat λ _ → Π (list A) λ _ → cost) sort/clocked/cost zero l = 𝟘 sort/clocked/cost (suc k) l = bind cost (split l) λ (l₁ , l₂) → split/cost l ⊕ bind cost (sort/clocked k l₁ & sort/clocked k l₂) λ (l₁' , l₂') → (sort/clocked/cost k l₁ ⊗ sort/clocked/cost k l₂) ⊕ merge/cost/closed (l₁' , l₂') sort/clocked/cost/closed : cmp (Π nat λ _ → Π (list A) λ _ → cost) sort/clocked/cost/closed k l = k * length l * ⌈log₂ suc ⌈ length l /2⌉ ⌉ , k * ⌈log₂ suc ⌈ length l /2⌉ ⌉ ² sort/clocked/cost≤sort/clocked/cost/closed : ∀ k l → ⌈log₂ length l ⌉ Nat.≤ k → ◯ (sort/clocked/cost k l ≤ₚ sort/clocked/cost/closed k l) sort/clocked/cost≤sort/clocked/cost/closed zero l h u = z≤n , z≤n sort/clocked/cost≤sort/clocked/cost/closed (suc k) l h u = let (l₁ , l₂ , ≡ , length₁ , length₂ , ↭) = split/correct l u in let h₁ : ⌈log₂ length l₁ ⌉ Nat.≤ k h₁ = let open ≤-Reasoning in begin ⌈log₂ length l₁ ⌉ ≡⟨ Eq.cong ⌈log₂_⌉ length₁ ⟩ ⌈log₂ ⌊ length l /2⌋ ⌉ ≤⟨ log₂-mono (N.⌊n/2⌋≤⌈n/2⌉ (length l)) ⟩ ⌈log₂ ⌈ length l /2⌉ ⌉ ≤⟨ log₂-suc (length l) h ⟩ k ∎ h₂ : ⌈log₂ length l₂ ⌉ Nat.≤ k h₂ = let open ≤-Reasoning in begin ⌈log₂ length l₂ ⌉ ≡⟨ Eq.cong ⌈log₂_⌉ length₂ ⟩ ⌈log₂ ⌈ length l /2⌉ ⌉ ≤⟨ log₂-suc (length l) h ⟩ k ∎ in let (l₁' , ≡₁ , ↭₁ , sorted₁) = sort/clocked/correct k l₁ h₁ u in let (l₂' , ≡₂ , ↭₂ , sorted₂) = sort/clocked/correct k l₂ h₂ u in let open ≤ₚ-Reasoning in begin sort/clocked/cost (suc k) l ≡⟨⟩ (bind cost (split l) λ (l₁ , l₂) → split/cost l ⊕ bind cost (sort/clocked k l₁ & sort/clocked k l₂) λ (l₁' , l₂') → (sort/clocked/cost k l₁ ⊗ sort/clocked/cost k l₂) ⊕ merge/cost/closed (l₁' , l₂')) ≡⟨ Eq.cong (λ e → bind cost e _) (≡) ⟩ (split/cost l ⊕ bind cost (sort/clocked k l₁ & sort/clocked k l₂) λ (l₁' , l₂') → (sort/clocked/cost k l₁ ⊗ sort/clocked/cost k l₂) ⊕ merge/cost/closed (l₁' , l₂')) ≡⟨⟩ (𝟘 ⊕ bind cost (sort/clocked k l₁ & sort/clocked k l₂) λ (l₁' , l₂') → (sort/clocked/cost k l₁ ⊗ sort/clocked/cost k l₂) ⊕ merge/cost/closed (l₁' , l₂')) ≡⟨ ⊕-identityˡ _ ⟩ (bind cost (sort/clocked k l₁ & sort/clocked k l₂) λ (l₁' , l₂') → (sort/clocked/cost k l₁ ⊗ sort/clocked/cost k l₂) ⊕ merge/cost/closed (l₁' , l₂')) ≡⟨ Eq.cong (λ e → bind cost e λ (l₁' , l₂') → (sort/clocked/cost k l₁ ⊗ sort/clocked/cost k l₂) ⊕ merge/cost/closed (l₁' , l₂')) ( Eq.cong₂ _&_ ≡₁ ≡₂ ) ⟩ (sort/clocked/cost k l₁ ⊗ sort/clocked/cost k l₂) ⊕ merge/cost/closed (l₁' , l₂') ≤⟨ ⊕-monoˡ-≤ (merge/cost/closed (l₁' , l₂')) ( ⊗-mono-≤ (sort/clocked/cost≤sort/clocked/cost/closed k l₁ h₁ u) (sort/clocked/cost≤sort/clocked/cost/closed k l₂ h₂ u) ) ⟩ (sort/clocked/cost/closed k l₁ ⊗ sort/clocked/cost/closed k l₂) ⊕ merge/cost/closed (l₁' , l₂') ≡⟨⟩ (sort/clocked/cost/closed k l₁ ⊗ sort/clocked/cost/closed k l₂) ⊕ (pred[2^ ⌈log₂ suc (length l₁') ⌉ ] * ⌈log₂ suc (length l₂') ⌉ , ⌈log₂ suc (length l₁') ⌉ * ⌈log₂ suc (length l₂') ⌉) ≡˘⟨ Eq.cong ((sort/clocked/cost/closed k l₁ ⊗ sort/clocked/cost/closed k l₂) ⊕_) ( Eq.cong₂ (λ n₁ n₂ → pred[2^ ⌈log₂ suc n₁ ⌉ ] * ⌈log₂ suc n₂ ⌉ , ⌈log₂ suc n₁ ⌉ * ⌈log₂ suc n₂ ⌉) (↭-length ↭₁) (↭-length ↭₂) ) ⟩ (sort/clocked/cost/closed k l₁ ⊗ sort/clocked/cost/closed k l₂) ⊕ (pred[2^ ⌈log₂ suc (length l₁) ⌉ ] * ⌈log₂ suc (length l₂) ⌉ , ⌈log₂ suc (length l₁) ⌉ * ⌈log₂ suc (length l₂) ⌉) ≡⟨⟩ ((k * length l₁ * ⌈log₂ suc ⌈ length l₁ /2⌉ ⌉ , k * ⌈log₂ suc ⌈ length l₁ /2⌉ ⌉ ²) ⊗ (k * length l₂ * ⌈log₂ suc ⌈ length l₂ /2⌉ ⌉ , k * ⌈log₂ suc ⌈ length l₂ /2⌉ ⌉ ²)) ⊕ (pred[2^ ⌈log₂ suc (length l₁) ⌉ ] * ⌈log₂ suc (length l₂) ⌉ , ⌈log₂ suc (length l₁) ⌉ * ⌈log₂ suc (length l₂) ⌉) ≡⟨ Eq.cong₂ ( λ n₁ n₂ → ((k * n₁ * ⌈log₂ suc ⌈ n₁ /2⌉ ⌉ , k * ⌈log₂ suc ⌈ n₁ /2⌉ ⌉ ²) ⊗ (k * n₂ * ⌈log₂ suc ⌈ n₂ /2⌉ ⌉ , k * ⌈log₂ suc ⌈ n₂ /2⌉ ⌉ ²)) ⊕ (pred[2^ ⌈log₂ suc (n₁) ⌉ ] * ⌈log₂ suc (n₂) ⌉ , ⌈log₂ suc (n₁) ⌉ * ⌈log₂ suc (n₂) ⌉) ) length₁ length₂ ⟩ ((k * ⌊ length l /2⌋ * ⌈log₂ suc ⌈ ⌊ length l /2⌋ /2⌉ ⌉ , k * ⌈log₂ suc ⌈ ⌊ length l /2⌋ /2⌉ ⌉ ²) ⊗ (k * ⌈ length l /2⌉ * ⌈log₂ suc ⌈ ⌈ length l /2⌉ /2⌉ ⌉ , k * ⌈log₂ suc ⌈ ⌈ length l /2⌉ /2⌉ ⌉ ²)) ⊕ (pred[2^ ⌈log₂ suc ⌊ length l /2⌋ ⌉ ] * ⌈log₂ suc ⌈ length l /2⌉ ⌉ , ⌈log₂ suc ⌊ length l /2⌋ ⌉ * ⌈log₂ suc ⌈ length l /2⌉ ⌉) ≤⟨ ⊕-mono-≤ ( let h-⌊n/2⌋ = log₂-mono (s≤s (N.⌈n/2⌉-mono (N.⌊n/2⌋≤n (length l)))) h-⌈n/2⌉ = log₂-mono (s≤s (N.⌈n/2⌉-mono (N.⌈n/2⌉≤n (length l)))) in ⊗-mono-≤ (N.*-monoʳ-≤ (k * ⌊ length l /2⌋) h-⌊n/2⌋ , N.*-monoʳ-≤ k (²-mono h-⌊n/2⌋)) (N.*-monoʳ-≤ (k * ⌈ length l /2⌉) h-⌈n/2⌉ , N.*-monoʳ-≤ k (²-mono h-⌈n/2⌉)) ) ( let h = log₂-mono (s≤s (N.⌊n/2⌋≤⌈n/2⌉ (length l))) in N.*-monoˡ-≤ ⌈log₂ suc ⌈ length l /2⌉ ⌉ (pred[2^]-mono h) , N.*-monoˡ-≤ ⌈log₂ suc ⌈ length l /2⌉ ⌉ h ) ⟩ ((k * ⌊ length l /2⌋ * ⌈log₂ suc ⌈ length l /2⌉ ⌉ , k * ⌈log₂ suc ⌈ length l /2⌉ ⌉ ²) ⊗ (k * ⌈ length l /2⌉ * ⌈log₂ suc ⌈ length l /2⌉ ⌉ , k * ⌈log₂ suc ⌈ length l /2⌉ ⌉ ²)) ⊕ (pred[2^ ⌈log₂ suc ⌈ length l /2⌉ ⌉ ] * ⌈log₂ suc ⌈ length l /2⌉ ⌉ , ⌈log₂ suc ⌈ length l /2⌉ ⌉ ²) ≤⟨ arithmetic/work (length l) , (N.≤-reflexive (arithmetic/span (⌈log₂ suc ⌈ length l /2⌉ ⌉ ²))) ⟩ suc k * length l * ⌈log₂ suc ⌈ length l /2⌉ ⌉ , suc k * ⌈log₂ suc ⌈ length l /2⌉ ⌉ ² ≡⟨⟩ sort/clocked/cost/closed (suc k) l ∎ where arithmetic/work : (n : ℕ) → (k * ⌊ n /2⌋ * ⌈log₂ suc ⌈ n /2⌉ ⌉ + k * ⌈ n /2⌉ * ⌈log₂ suc ⌈ n /2⌉ ⌉) + pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉ Nat.≤ suc k * n * ⌈log₂ suc ⌈ n /2⌉ ⌉ arithmetic/work n = begin (k * ⌊ n /2⌋ * ⌈log₂ suc ⌈ n /2⌉ ⌉ + k * ⌈ n /2⌉ * ⌈log₂ suc ⌈ n /2⌉ ⌉) + pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉ ≡⟨ Eq.cong (_+ pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉) (Eq.cong₂ _+_ (N.*-assoc k ⌊ n /2⌋ ⌈log₂ suc ⌈ n /2⌉ ⌉) (N.*-assoc k ⌈ n /2⌉ ⌈log₂ suc ⌈ n /2⌉ ⌉)) ⟩ (k * (⌊ n /2⌋ * ⌈log₂ suc ⌈ n /2⌉ ⌉) + k * (⌈ n /2⌉ * ⌈log₂ suc ⌈ n /2⌉ ⌉)) + pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉ ≡˘⟨ Eq.cong (_+ pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉) ( N.*-distribˡ-+ k (⌊ n /2⌋ * ⌈log₂ suc ⌈ n /2⌉ ⌉) (⌈ n /2⌉ * ⌈log₂ suc ⌈ n /2⌉ ⌉) ) ⟩ k * (⌊ n /2⌋ * ⌈log₂ suc ⌈ n /2⌉ ⌉ + ⌈ n /2⌉ * ⌈log₂ suc ⌈ n /2⌉ ⌉) + pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉ ≡˘⟨ Eq.cong (λ m → k * m + pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉) (N.*-distribʳ-+ ⌈log₂ suc ⌈ n /2⌉ ⌉ ⌊ n /2⌋ ⌈ n /2⌉) ⟩ k * ((⌊ n /2⌋ + ⌈ n /2⌉) * ⌈log₂ suc ⌈ n /2⌉ ⌉) + pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉ ≡⟨ Eq.cong (λ m → k * (m * ⌈log₂ suc ⌈ n /2⌉ ⌉) + pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉) (N.⌊n/2⌋+⌈n/2⌉≡n n) ⟩ k * (n * ⌈log₂ suc ⌈ n /2⌉ ⌉) + pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉ ≤⟨ N.+-monoʳ-≤ (k * (n * ⌈log₂ suc ⌈ n /2⌉ ⌉)) (N.*-monoˡ-≤ ⌈log₂ suc ⌈ n /2⌉ ⌉ (pred[2^log₂] n)) ⟩ k * (n * ⌈log₂ suc ⌈ n /2⌉ ⌉) + n * ⌈log₂ suc ⌈ n /2⌉ ⌉ ≡⟨ N.+-comm (k * (n * ⌈log₂ suc ⌈ n /2⌉ ⌉)) (n * ⌈log₂ suc ⌈ n /2⌉ ⌉) ⟩ n * ⌈log₂ suc ⌈ n /2⌉ ⌉ + k * (n * ⌈log₂ suc ⌈ n /2⌉ ⌉) ≡⟨⟩ suc k * (n * ⌈log₂ suc ⌈ n /2⌉ ⌉) ≡˘⟨ N.*-assoc (suc k) n ⌈log₂ suc ⌈ n /2⌉ ⌉ ⟩ suc k * n * ⌈log₂ suc ⌈ n /2⌉ ⌉ ∎ where open ≤-Reasoning arithmetic/span : (n : ℕ) → ((k * n) ⊔ (k * n)) + n ≡ suc k * n arithmetic/span n = begin ((k * n) ⊔ (k * n)) + n ≡⟨ Eq.cong (_+ n) (N.⊔-idem (k * n)) ⟩ k * n + n ≡⟨ N.+-comm (k * n) n ⟩ n + k * n ≡⟨⟩ suc k * n ∎ where open ≡-Reasoning sort/clocked≤sort/clocked/cost : ∀ k l → IsBounded (list A) (sort/clocked k l) (sort/clocked/cost k l) sort/clocked≤sort/clocked/cost zero l = bound/ret sort/clocked≤sort/clocked/cost (suc k) l = bound/bind (split/cost l) _ (split≤split/cost l) λ (l₁ , l₂) → bound/bind (sort/clocked/cost k l₁ ⊗ sort/clocked/cost k l₂) _ (bound/par (sort/clocked≤sort/clocked/cost k l₁) (sort/clocked≤sort/clocked/cost k l₂)) λ (l₁' , l₂') → merge≤merge/cost/closed l₁' l₂' sort/clocked≤sort/clocked/cost/closed : ∀ k l → ⌈log₂ length l ⌉ Nat.≤ k → IsBounded (list A) (sort/clocked k l) (sort/clocked/cost/closed k l) sort/clocked≤sort/clocked/cost/closed k l h = bound/relax (sort/clocked/cost≤sort/clocked/cost/closed k l h) (sort/clocked≤sort/clocked/cost k l) sort/depth : cmp (Π (list A) λ _ → meta ℕ) sort/depth l = ⌈log₂ length l ⌉ sort : cmp (Π (list A) λ _ → F (list A)) sort l = sort/clocked (sort/depth l) l sort/correct : IsSort sort sort/correct l = sort/clocked/correct (sort/depth l) l N.≤-refl sort/cost : cmp (Π (list A) λ _ → cost) sort/cost l = sort/clocked/cost (sort/depth l) l sort/cost/closed : cmp (Π (list A) λ _ → cost) sort/cost/closed l = sort/clocked/cost/closed (sort/depth l) l sort≤sort/cost : ∀ l → IsBounded (list A) (sort l) (sort/cost l) sort≤sort/cost l = sort/clocked≤sort/clocked/cost (sort/depth l) l sort≤sort/cost/closed : ∀ l → IsBounded (list A) (sort l) (sort/cost/closed l) sort≤sort/cost/closed l = sort/clocked≤sort/clocked/cost/closed (sort/depth l) l N.≤-refl sort/asymptotic : given (list A) measured-via length , sort ∈𝓞(λ n → n * ⌈log₂ n ⌉ ² , ⌈log₂ n ⌉ ^ 3) sort/asymptotic = 2 ≤n⇒f[n]≤g[n]via λ l h → bound/relax (λ u → let open ≤-Reasoning in ( begin ⌈log₂ length l ⌉ * length l * ⌈log₂ suc ⌈ length l /2⌉ ⌉ ≤⟨ N.*-monoʳ-≤ (⌈log₂ length l ⌉ * length l) (lemma (length l) h) ⟩ ⌈log₂ length l ⌉ * length l * ⌈log₂ length l ⌉ ≡⟨ N.*-assoc ⌈log₂ length l ⌉ (length l) ⌈log₂ length l ⌉ ⟩ ⌈log₂ length l ⌉ * (length l * ⌈log₂ length l ⌉) ≡⟨ N.*-comm ⌈log₂ length l ⌉ (length l * ⌈log₂ length l ⌉) ⟩ length l * ⌈log₂ length l ⌉ * ⌈log₂ length l ⌉ ≡⟨ N.*-assoc (length l) ⌈log₂ length l ⌉ ⌈log₂ length l ⌉ ⟩ length l * ⌈log₂ length l ⌉ ² ∎ ) , ( begin ⌈log₂ length l ⌉ * ⌈log₂ suc ⌈ length l /2⌉ ⌉ ² ≤⟨ N.*-monoʳ-≤ ⌈log₂ length l ⌉ (²-mono (lemma (length l) h)) ⟩ ⌈log₂ length l ⌉ * ⌈log₂ length l ⌉ ² ≡⟨⟩ ⌈log₂ length l ⌉ * (⌈log₂ length l ⌉ * ⌈log₂ length l ⌉) ≡˘⟨ Eq.cong (λ n → ⌈log₂ length l ⌉ * (⌈log₂ length l ⌉ * n)) (N.*-identityʳ _) ⟩ ⌈log₂ length l ⌉ * (⌈log₂ length l ⌉ * (⌈log₂ length l ⌉ * 1)) ≡⟨⟩ ⌈log₂ length l ⌉ ^ 3 ∎ ) ) (sort≤sort/cost/closed l) where lemma : ∀ n → 2 Nat.≤ n → ⌈log₂ suc ⌈ n /2⌉ ⌉ Nat.≤ ⌈log₂ n ⌉ lemma (suc (suc n)) (s≤s (s≤s h)) = log₂-mono (s≤s (s≤s (N.⌈n/2⌉≤n n)))
{ "alphanum_fraction": 0.4858346355, "avg_line_length": 42.5404624277, "ext": "agda", "hexsha": "f7a849455a46e9b1204b6773afab4960c6dd2f04", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples/Sorting/Parallel/MergeSortPar.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples/Sorting/Parallel/MergeSortPar.agda", "max_line_length": 170, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples/Sorting/Parallel/MergeSortPar.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 7167, "size": 14719 }
{-# OPTIONS --without-K #-} module Model.Exponential where open import Cats.Category open import Model.RGraph as RG using (RGraph) open import Model.Type.Core open import Model.Product open import Util.HoTT.HLevel open import Util.Prelude hiding (_×_ ; id ; _∘_) open RGraph open RG._⇒_ private variable Δ : RGraph infixr 9 _↝_ Ap : ⟦Type⟧ Δ → Δ .Obj → RGraph Ap {Δ} T δ = record { ObjHSet = T .ObjHSet δ ; eqHProp = eqHProp T (Δ .eq-refl _) ; eq-refl = λ x → T .eq-refl x } _↝_ : (T U : ⟦Type⟧ Δ) → ⟦Type⟧ Δ _↝_ T U = record { ObjHSet = λ γ → HLevel⁺ (Ap T γ RG.⇒ Ap U γ) (RG.⇒-IsSet {Ap T γ} {Ap U γ}) ; eqHProp = λ γ≈γ′ f g → ∀∙-HProp λ x → ∀∙-HProp λ y → T .eqHProp γ≈γ′ x y →-HProp′ U .eqHProp γ≈γ′ (f .RG.fobj x) (g .RG.fobj y) ; eq-refl = λ f → f .RG.feq } curry : (T U V : ⟦Type⟧ Δ) → T × U ⇒ V → T ⇒ U ↝ V curry {Δ} T U V f = record { fobj = λ {δ} t → record { fobj = λ u → f .fobj (t , u) ; feq = λ x≈y → f .feq (Δ .eq-refl δ) (T .eq-refl t , x≈y) } ; feq = λ γ≈γ′ x≈y v≈w → f .feq γ≈γ′ (x≈y , v≈w) } eval : (T U : ⟦Type⟧ Δ) → (T ↝ U) × T ⇒ U eval T U = record { fobj = λ { (f , x) → f .RG.fobj x } ; feq = λ { γ≈γ′ (f≈g , x≈y) → f≈g x≈y } } eval∘curry : (T U V : ⟦Type⟧ Δ) {f : T × U ⇒ V} → eval U V ∘ ⟨_×_⟩ {B = U} (curry T U V f) id ≈ f eval∘curry T U V = ≈⁺ λ γ x → refl instance hasExponentials : ∀ {Δ} → HasExponentials (⟦Types⟧ Δ) hasExponentials .HasExponentials.hasBinaryProducts = hasBinaryProducts hasExponentials .HasExponentials._↝′_ T U = record { Cᴮ = T ↝ U ; eval = eval T U ; curry′ = λ {A} f → record { arr = curry A T U f ; prop = eval∘curry A T U ; unique = λ {g} g-prop → ≈⁺ λ γ h → RG.≈→≡ (RG.≈⁺ λ x → sym (g-prop .≈⁻ γ (h , x))) } } module ⟦Types⟧↝ {Δ} = HasExponentials (hasExponentials {Δ}) ↝-resp-≈⟦Type⟧ : ∀ {Δ} (T T′ U U′ : ⟦Type⟧ Δ) → T ≈⟦Type⟧ T′ → U ≈⟦Type⟧ U′ → T ↝ U ≈⟦Type⟧ T′ ↝ U′ ↝-resp-≈⟦Type⟧ {Δ} T T′ U U′ T≈T′ U≈U′ = ⟦Types⟧↝.↝-resp-≅ {Δ} {T} {T′} {U} {U′} T≈T′ U≈U′ subT-↝ : ∀ {Γ Δ} (f : Γ RG.⇒ Δ) → (T U : ⟦Type⟧ Δ) → subT f T ↝ subT f U ≈⟦Type⟧ subT f (T ↝ U) subT-↝ {Γ} {Δ} f T U = record { forth = record { fobj = λ g → record { fobj = g .fobj ; feq = λ {x y} x≈y → transportEq U (g .feq (transportEq T x≈y)) } ; feq = λ γ≈γ′ f≈g x≈y → f≈g x≈y } ; back = record { fobj = λ g → record { fobj = g .fobj ; feq = λ {x y} x≈y → transportEq U (g .feq (transportEq T x≈y)) } ; feq = λ γ≈γ′ f≈g x≈y → f≈g x≈y } ; back-forth = ≈⁺ λ γ x → RG.≈→≡ (RG.≈⁺ λ y → refl) ; forth-back = ≈⁺ λ γ x → RG.≈→≡ (RG.≈⁺ λ y → refl) }
{ "alphanum_fraction": 0.493501671, "avg_line_length": 23.8318584071, "ext": "agda", "hexsha": "ea993be150317c2dca44d02cb7fc8a9e32f128c8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Model/Exponential.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Model/Exponential.agda", "max_line_length": 82, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Model/Exponential.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 1360, "size": 2693 }
------------------------------------------------------------------------ -- Simple expressions ------------------------------------------------------------------------ -- Several examples based on Matsuda and Wang's "FliPpr: A Prettier -- Invertible Printing System". {-# OPTIONS --guardedness #-} module Examples.Expression where open import Algebra open import Codata.Musical.Notation open import Data.List open import Data.List.Properties open import Data.Product open import Data.Unit open import Function open import Relation.Binary.PropositionalEquality as P using (_≡_; refl) private module LM {A : Set} = Monoid (++-monoid A) open import Examples.Identifier import Grammar.Infinite as Grammar import Pretty open import Renderer open import Utilities -- Very simple expressions. module Expression₁ where data Expr : Set where one : Expr sub : Expr → Expr → Expr module _ where open Grammar mutual expr : Grammar Expr expr = term ∣ sub <$> ♯ expr <⊛ whitespace ⋆ <⊛ string′ "-" <⊛ whitespace ⋆ ⊛ term term : Grammar Expr term = one <$ string′ "1" ∣ string′ "(" ⊛> whitespace ⋆ ⊛> ♯ expr <⊛ whitespace ⋆ <⊛ string′ ")" open Pretty one-doc : Doc term one one-doc = left (<$ text) mutual expr-printer : Pretty-printer expr expr-printer one = left one-doc expr-printer (sub e₁ e₂) = group (right (<$> expr-printer e₁ <⊛-tt nest 2 line⋆ <⊛ text <⊛ space ⊛ nest 2 (term-printer e₂))) term-printer : Pretty-printer term term-printer one = one-doc term-printer e = right (text ⊛> nil-⋆ ⊛> expr-printer e <⊛ nil-⋆ <⊛ text) example : Expr example = sub (sub one one) (sub one one) test₁ : render 80 (expr-printer example) ≡ "1 - 1 - (1 - 1)" test₁ = refl test₂ : render 11 (expr-printer example) ≡ "1 - 1\n - (1 - 1)" test₂ = refl test₃ : render 8 (expr-printer example) ≡ "1 - 1\n - (1\n - 1)" test₃ = refl -- Expression₁.expr does not accept final whitespace. The grammar -- below does. module Expression₂ where open Expression₁ using (Expr; one; sub; example) module _ where open Grammar mutual expr : Grammar Expr expr = term ∣ sub <$> ♯ expr <⊛ symbol′ "-" ⊛ term term : Grammar Expr term = one <$ symbol′ "1" ∣ symbol′ "(" ⊛> ♯ expr <⊛ symbol′ ")" private -- A manual proof of Trailing-whitespace expr (included for -- illustrative purposes; not used below). Trailing-whitespace″ : ∀ {A} → Grammar A → Set₁ Trailing-whitespace″ g = ∀ {x s s₁ s₂} → x ∈ g · s₁ → s ∈ whitespace ⋆ · s₂ → x ∈ g · s₁ ++ s₂ tw′-whitespace : Trailing-whitespace′ (whitespace ⋆) tw′-whitespace ⋆-[]-sem w = _ , w tw′-whitespace (⋆-+-sem (⊛-sem {s₁ = s₁} (<$>-sem p) q)) w with tw′-whitespace q w ... | _ , r = _ , cast (P.sym $ LM.assoc s₁ _ _) (⋆-+-sem (⊛-sem (<$>-sem p) r)) tw″-symbol : ∀ {s} → Trailing-whitespace″ (symbol s) tw″-symbol (<⊛-sem {s₁ = s₁} p q) w = cast (P.sym $ LM.assoc s₁ _ _) (<⊛-sem p (proj₂ (tw′-whitespace q w))) tw″-term : Trailing-whitespace″ term tw″-term (left-sem (<$-sem p)) w = left-sem (<$-sem (tw″-symbol p w)) tw″-term (right-sem (<⊛-sem {s₁ = s₁} p q)) w = cast (P.sym $ LM.assoc s₁ _ _) (right-sem (<⊛-sem p (tw″-symbol q w))) tw″-expr : Trailing-whitespace″ expr tw″-expr (left-sem p) w = left-sem (tw″-term p w) tw″-expr (right-sem (⊛-sem {s₁ = s₁} p q)) w = cast (P.sym $ LM.assoc s₁ _ _) (right-sem (⊛-sem p (tw″-term q w))) tw-expr : Trailing-whitespace expr tw-expr (<⊛-sem p w) = tw″-expr p w open Pretty one-doc : Doc term one one-doc = left (<$ symbol) mutual expr-printer : Pretty-printer expr expr-printer one = left one-doc expr-printer (sub e₁ e₂) = group (right (<$> final-line 6 (expr-printer e₁) 2 <⊛ symbol-space ⊛ nest 2 (term-printer e₂))) term-printer : Pretty-printer term term-printer one = one-doc term-printer e = right (symbol ⊛> expr-printer e <⊛ symbol) test₁ : render 80 (expr-printer example) ≡ "1 - 1 - (1 - 1)" test₁ = refl test₂ : render 11 (expr-printer example) ≡ "1 - 1\n - (1 - 1)" test₂ = refl test₃ : render 8 (expr-printer example) ≡ "1 - 1\n - (1\n - 1)" test₃ = refl -- A somewhat larger expression example. module Expression₃ where -- Expressions. data Expr : Set where one : Expr sub : Expr → Expr → Expr div : Expr → Expr → Expr var : Identifier → Expr -- Precedences. data Prec : Set where ′5 ′6 ′7 : Prec module _ where open Grammar -- One expression grammar for each precedence level. expr : Prec → Grammar Expr expr ′5 = ♯ expr ′6 ∣ sub <$> ♯ expr ′5 <⊛ symbol′ "-" ⊛ ♯ expr ′6 expr ′6 = ♯ expr ′7 ∣ div <$> ♯ expr ′6 <⊛ symbol′ "/" ⊛ ♯ expr ′7 expr ′7 = one <$ symbol′ "1" ∣ var <$> identifier-w ∣ symbol′ "(" ⊛> ♯ expr ′5 <⊛ symbol′ ")" open Pretty -- Document for one. one-doc : Doc (expr ′7) one one-doc = left (left (<$ symbol)) -- Documents for variables. var-doc : ∀ x → Doc (expr ′7) (var x) var-doc x = left (right (<$> identifier-w-printer x)) -- Adds parentheses to a document. parens : ∀ {e} → Doc (expr ′5) e → Doc (expr ′7) e parens d = right (symbol ⊛> d <⊛ symbol) -- Adds parentheses only when necessary (when p₁ < p₂). parens-if[_<_] : ∀ p₁ p₂ {e} → Doc (expr p₁) e → Doc (expr p₂) e parens-if[ ′5 < ′5 ] = id parens-if[ ′5 < ′6 ] = left ∘ parens parens-if[ ′5 < ′7 ] = parens parens-if[ ′6 < ′5 ] = left parens-if[ ′6 < ′6 ] = id parens-if[ ′6 < ′7 ] = parens ∘ left parens-if[ ′7 < ′5 ] = left ∘ left parens-if[ ′7 < ′6 ] = left parens-if[ ′7 < ′7 ] = id mutual -- Pretty-printers. expr-printer : ∀ p → Pretty-printer (expr p) expr-printer p (sub e₁ e₂) = parens-if[ ′5 < p ] (sub-printer e₁ e₂) expr-printer p (div e₁ e₂) = parens-if[ ′6 < p ] (div-printer e₁ e₂) expr-printer p one = parens-if[ ′7 < p ] one-doc expr-printer p (var x) = parens-if[ ′7 < p ] (var-doc x) sub-printer : ∀ e₁ e₂ → Doc (expr ′5) (sub e₁ e₂) sub-printer e₁ e₂ = group (right (<$> final-line 10 (expr-printer ′5 e₁) 2 <⊛ symbol-space ⊛ nest 2 (expr-printer ′6 e₂))) div-printer : ∀ e₁ e₂ → Doc (expr ′6) (div e₁ e₂) div-printer e₁ e₂ = group (right (<$> final-line 10 (expr-printer ′6 e₁) 2 <⊛ symbol-space ⊛ nest 2 (expr-printer ′7 e₂))) -- Unit tests. example : Expr example = sub (div (var (str⁺ "x")) one) (sub one (var (str⁺ "y"))) test₁ : render 80 (expr-printer ′5 example) ≡ "x / 1 - (1 - y)" test₁ = refl test₂ : render 11 (expr-printer ′5 example) ≡ "x / 1\n - (1 - y)" test₂ = refl test₃ : render 8 (expr-printer ′5 example) ≡ "x / 1\n - (1\n - y)" test₃ = refl test₄ : render 11 (expr-printer ′6 example) ≡ "(x / 1\n - (1\n - y))" test₄ = refl test₅ : render 12 (expr-printer ′6 example) ≡ "(x / 1\n - (1 - y))" test₅ = refl
{ "alphanum_fraction": 0.5317587403, "avg_line_length": 26.9568345324, "ext": "agda", "hexsha": "30435bded91d95ba8cd89facd35a5ddbce4d6e0f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/pretty", "max_forks_repo_path": "Examples/Expression.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/pretty", "max_issues_repo_path": "Examples/Expression.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/pretty", "max_stars_repo_path": "Examples/Expression.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2579, "size": 7494 }
open import Data.Empty using ( ⊥ ; ⊥-elim ) open import Data.Nat using ( ℕ ; zero ; suc ) open import Data.Product using ( ∃ ; _×_ ; _,_ ) open import FRP.LTL.RSet.Core using ( RSet ; _[_,_⟩ ; _[_,_] ; ⟦_⟧ ) open import FRP.LTL.RSet.Causal using ( _⊵_ ; identity ) open import FRP.LTL.RSet.Stateless using ( _⇒_ ) open import FRP.LTL.RSet.Globally using ( □ ) open import FRP.LTL.RSet.Product using ( _∧_ ; _&&&_ ; fst ; snd ) open import FRP.LTL.Time using ( Time ; _+_ ; _∸_ ; _≤_ ; _<_ ; ≤-refl ; _≤-trans_ ; <-impl-≤ ; <-impl-≱ ; _<-transˡ_ ; _<-transʳ_ ; ≡-impl-≤ ; +-unit ; _≮[_]_ ; <-wo ) module FRP.LTL.RSet.Decoupled where infixr 2 _▹_ infixr 3 _⋙ˡ_ _⋙ʳ_ _⋙ˡʳ_ -- Decoupled function space _▹_ : RSet → RSet → RSet (A ▹ B) t = ∀ {u} → (t ≤ u) → (A [ t , u ⟩) → B u -- Upcast a decoupled function to a causal function couple : ∀ {A B} → ⟦ (A ▹ B) ⇒ (A ⊵ B) ⟧ couple {A} {B} {s} f {u} s≤u σ = f s≤u σ′ where σ′ : A [ s , u ⟩ σ′ s≤t t<u = σ s≤t (<-impl-≤ t<u) -- Variants on composition which produce decoupled functions _beforeˡ_ : ∀ {A s u v} → (A [ s , v ⟩) → (u ≤ v) → (A [ s , u ⟩) (σ beforeˡ u≤v) s≤t t<u = σ s≤t (t<u <-transˡ u≤v) _$ˡ_ : ∀ {A B s u} → (A ▹ B) s → (A [ s , u ⟩) → (B [ s , u ]) (f $ˡ σ) s≤t t≤u = f s≤t (σ beforeˡ t≤u) _⋙ˡ_ : ∀ {A B C} → ⟦ (A ▹ B) ⇒ (B ⊵ C) ⇒ (A ▹ C) ⟧ (f ⋙ˡ g) s≤t σ = g s≤t (f $ˡ σ) _beforeʳ_ : ∀ {A s u v} → (A [ s , v ⟩) → (u < v) → (A [ s , u ]) (σ beforeʳ u<v) s≤t t≤u = σ s≤t (t≤u <-transʳ u<v) _$ʳ_ : ∀ {A B s u} → (A ⊵ B) s → (A [ s , u ⟩) → (B [ s , u ⟩) (f $ʳ σ) s≤t t<u = f s≤t (σ beforeʳ t<u) _⋙ʳ_ : ∀ {A B C} → ⟦ (A ⊵ B) ⇒ (B ▹ C) ⇒ (A ▹ C) ⟧ (f ⋙ʳ g) s≤t σ = g s≤t (f $ʳ σ) _⋙ˡʳ_ : ∀ {A B C} → ⟦ (A ▹ B) ⇒ (B ▹ C) ⇒ (A ▹ C) ⟧ (f ⋙ˡʳ g) = (f ⋙ˡ couple g) -- Fixed points -- The following type-checks, but fails to pass the termination -- checker, as the well-ordering on time is not made explicit: -- -- fix : ∀ {A} → ⟦ (A ▹ A) ⇒ □ A ⟧ -- fix {A} {s} f {u} s≤u = f s≤u (σ u) where -- -- σ : (u : Time) → A [ s , u ⟩ -- σ u {t} s≤t t<u = f s≤t (σ t) -- -- To get this to pass the termination checker, we have to -- be explicit about the induction scheme, which is -- over < being a well-ordering on an interval. fix : ∀ {A} → ⟦ (A ▹ A) ⇒ □ A ⟧ fix {A} {s} f {u} s≤u = f s≤u (σ (<-wo s≤u)) where σ : ∀ {u} → (∃ λ n → (s ≮[ n ] u)) → A [ s , u ⟩ σ (zero , ()) s≤t t<u σ (suc n , s≮ⁿ⁺¹u) s≤t t<u = f s≤t (σ (n , s≮ⁿ⁺¹u s≤t t<u)) -- Indexed fixed points are derivable from fixed points ifix : ∀ {A B} → ⟦ ((A ∧ B) ▹ A) ⇒ (B ▹ A) ⟧ ifix {A} {B} {s} f {v} s≤v τ = fix g s≤v ≤-refl where A′ : RSet A′ t = (t ≤ v) → A t g : (A′ ▹ A′) s g {u} s≤u σ u≤v = f s≤u ρ where ρ : (A ∧ B) [ s , u ⟩ ρ s≤t t<u = (σ s≤t t<u (<-impl-≤ t<u ≤-trans u≤v) , τ s≤t (t<u <-transˡ u≤v)) -- Loops are derivable from indexed fixed points loop : ∀ {A B C} → ⟦ ((A ∧ B) ▹ (A ∧ C)) ⇒ (B ▹ C) ⟧ loop f = (couple (ifix (f ⋙ˡ fst)) &&& identity) ⋙ʳ f ⋙ˡ snd
{ "alphanum_fraction": 0.4888211382, "avg_line_length": 31.0736842105, "ext": "agda", "hexsha": "693ee7e95077c9fffcb1603bf1213c2609433c22", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z", "max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-frp-ltl", "max_forks_repo_path": "src/FRP/LTL/RSet/Decoupled.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-frp-ltl", "max_issues_repo_path": "src/FRP/LTL/RSet/Decoupled.agda", "max_line_length": 81, "max_stars_count": 21, "max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-frp-ltl", "max_stars_repo_path": "src/FRP/LTL/RSet/Decoupled.agda", "max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z", "num_tokens": 1524, "size": 2952 }
-- Correctness conditions for the boolean AND gate f : Tensor Real [2] -> Tensor Real [1] f = evaluate _ _ truthy : Real -> Set truthy x = x >= 0.5 falsey : Real -> Set falsey x = x <= 0.5 validInput : Tensor Real [2] -> Set validInput x = All (λ xi -> 0 <= xi ∧ xi <= 1) x correctOutput : Tensor Real [2] -> Set correctOutput x = let y : Real y = f x ! 0 in (truthy x!0 and falsey x!1 => truthy y) and (truthy x!0 and truthy x!1 => truthy y) and (falsey x!0 and falsey x!1 => truthy y) and (falsey x!0 and truthy x!1 => truthy y) correct : ∀ x -> validInput x -> correctOutput x correct = prove _ _
{ "alphanum_fraction": 0.6085578447, "avg_line_length": 24.2692307692, "ext": "agda", "hexsha": "73cde6e07405de41d3135c9f4677ca9191c4b910", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "08e31d78d9f02f30e115311cb3bcff6269456023", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "bobatkey/vehicle", "max_forks_repo_path": "examples/andGate.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "08e31d78d9f02f30e115311cb3bcff6269456023", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "bobatkey/vehicle", "max_issues_repo_path": "examples/andGate.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "08e31d78d9f02f30e115311cb3bcff6269456023", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "bobatkey/vehicle", "max_stars_repo_path": "examples/andGate.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 223, "size": 631 }
{-# OPTIONS --allow-unsolved-metas #-} module Sequent where open import OscarPrelude open import Formula infix 15 _╱_ record Sequent : Set where constructor _╱_ field statement : Formula suppositions : List Formula open Sequent public instance EqSequent : Eq Sequent Eq._==_ EqSequent ( φᵗ₁ ╱ φˢs₁ ) ( φᵗ₂ ╱ φˢs₂ ) = decEq₂ (cong statement) (cong suppositions) (φᵗ₁ ≟ φᵗ₂) (φˢs₁ ≟ φˢs₂) open import HasNegation instance HasNegationSequent : HasNegation Sequent HasNegation.~ HasNegationSequent ( φᵗ ╱ φˢs ) = ~ φᵗ ╱ φˢs open import 𝓐ssertion instance 𝓐ssertionSequent : 𝓐ssertion Sequent 𝓐ssertionSequent = record {} open import HasSatisfaction instance HasSatisfactionSequent : HasSatisfaction Sequent HasSatisfaction._⊨_ HasSatisfactionSequent I (φᵗ ╱ φˢs) = I ⊨ φˢs → I ⊨ φᵗ open import HasDecidableValidation instance HasDecidableValidationSequent : HasDecidableValidation Sequent HasDecidableValidationSequent = {!!} open import HasSubstantiveDischarge instance HasSubstantiveDischargeSequentSequent : HasSubstantiveDischarge Sequent Sequent HasSubstantiveDischarge._≽_ HasSubstantiveDischargeSequentSequent (+ᵗ ╱ +ᵖs) (-ᵗ ╱ -ᵖs) = {!!} -- +ᵗ ≽ -ᵗ × +ᵖs ≽ -ᵖs -- use "unification into", from John's "Natural Deduction" open import HasDecidableSubstantiveDischarge instance HasDecidableSubstantiveDischargeSequentSequent : HasDecidableSubstantiveDischarge Sequent Sequent HasDecidableSubstantiveDischarge._≽?_ HasDecidableSubstantiveDischargeSequentSequent = {!!}
{ "alphanum_fraction": 0.790247161, "avg_line_length": 30.5510204082, "ext": "agda", "hexsha": "bbddbd206a872c09644452b678de227ff8a8631f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/Sequent.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/Sequent.agda", "max_line_length": 176, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/Sequent.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 524, "size": 1497 }
{-# OPTIONS --without-K --safe #-} module Dodo.Binary.Subtraction where -- Stdlib imports open import Level using (Level; _⊔_) open import Relation.Binary using (REL) -- Local imports open import Dodo.Binary.Empty using (¬₂_) open import Dodo.Binary.Intersection using (_∩₂_) -- # Definitions infixl 30 _\₂_ _\₂_ : {a b ℓ₀ ℓ₁ : Level} {A : Set a} {B : Set b} → REL A B ℓ₀ → REL A B ℓ₁ → REL A B (ℓ₀ ⊔ ℓ₁) _\₂_ R Q = R ∩₂ (¬₂ Q)
{ "alphanum_fraction": 0.6566820276, "avg_line_length": 22.8421052632, "ext": "agda", "hexsha": "83f659746d7cb766718d7c58ebc614ef567e4d29", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Binary/Subtraction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Binary/Subtraction.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Binary/Subtraction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 154, "size": 434 }
{-# OPTIONS --rewriting #-} module Properties.StrictMode where import Agda.Builtin.Equality.Rewrite open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Maybe using (Maybe; just; nothing) open import Luau.Heap using (Heap; Object; function_is_end; defn; alloc; ok; next; lookup-not-allocated) renaming (_≡_⊕_↦_ to _≡ᴴ_⊕_↦_; _[_] to _[_]ᴴ; ∅ to ∅ᴴ) open import Luau.StrictMode using (Warningᴱ; Warningᴮ; Warningᴼ; Warningᴴᴱ; Warningᴴᴮ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; app₁; app₂; BinOpWarning; BinOpMismatch₁; BinOpMismatch₂; bin₁; bin₂; BlockMismatch; block₁; return; LocalVarMismatch; local₁; local₂; FunctionDefnMismatch; function₁; function₂; heap; expr; block; addr; +; -; *; /; <; >; <=; >=; ··) open import Luau.Substitution using (_[_/_]ᴮ; _[_/_]ᴱ; _[_/_]ᴮunless_; var_[_/_]ᴱwhenever_) open import Luau.Syntax using (Expr; yes; var; val; var_∈_; _⟨_⟩∈_; _$_; addr; number; bool; string; binexp; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg; name; ==; ~=) open import Luau.Type using (Type; strict; nil; _⇒_; none; tgt; _≡ᵀ_; _≡ᴹᵀ_) open import Luau.TypeCheck(strict) using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; _⊢ᴴᴮ_▷_∈_; _⊢ᴴᴱ_▷_∈_; nil; var; addr; app; function; block; done; return; local; orNone; tgtBinOp) open import Luau.Var using (_≡ⱽ_) open import Luau.Addr using (_≡ᴬ_) open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_; ⊕-lookup-miss; ⊕-swap; ⊕-over) renaming (_[_] to _[_]ⱽ) open import Luau.VarCtxt using (VarCtxt; ∅) open import Properties.Remember using (remember; _,_) open import Properties.Equality using (_≢_; sym; cong; trans; subst₁) open import Properties.Dec using (Dec; yes; no) open import Properties.Contradiction using (CONTRADICTION) open import Properties.TypeCheck(strict) using (typeOfᴼ; typeOfᴹᴼ; typeOfⱽ; typeOfᴱ; typeOfᴮ; typeCheckᴱ; typeCheckᴮ; typeCheckᴼ; typeCheckᴴᴱ; typeCheckᴴᴮ; mustBeFunction; mustBeNumber; mustBeString) open import Luau.OpSem using (_⟦_⟧_⟶_; _⊢_⟶*_⊣_; _⊢_⟶ᴮ_⊣_; _⊢_⟶ᴱ_⊣_; app₁; app₂; function; beta; return; block; done; local; subst; binOp₀; binOp₁; binOp₂; refl; step; +; -; *; /; <; >; ==; ~=; <=; >=; ··) open import Luau.RuntimeError using (BinOpError; RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinOpMismatch₁; BinOpMismatch₂; UnboundVariable; SEGV; app₁; app₂; bin₁; bin₂; block; local; return; +; -; *; /; <; >; <=; >=; ··) open import Luau.RuntimeType using (valueType) src = Luau.Type.src strict data _⊑_ (H : Heap yes) : Heap yes → Set where refl : (H ⊑ H) snoc : ∀ {H′ a V} → (H′ ≡ᴴ H ⊕ a ↦ V) → (H ⊑ H′) rednᴱ⊑ : ∀ {H H′ M M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → (H ⊑ H′) rednᴮ⊑ : ∀ {H H′ B B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → (H ⊑ H′) rednᴱ⊑ (function a p) = snoc p rednᴱ⊑ (app₁ s) = rednᴱ⊑ s rednᴱ⊑ (app₂ p s) = rednᴱ⊑ s rednᴱ⊑ (beta O v p q) = refl rednᴱ⊑ (block s) = rednᴮ⊑ s rednᴱ⊑ (return v) = refl rednᴱ⊑ done = refl rednᴱ⊑ (binOp₀ p) = refl rednᴱ⊑ (binOp₁ s) = rednᴱ⊑ s rednᴱ⊑ (binOp₂ s) = rednᴱ⊑ s rednᴮ⊑ (local s) = rednᴱ⊑ s rednᴮ⊑ (subst v) = refl rednᴮ⊑ (function a p) = snoc p rednᴮ⊑ (return s) = rednᴱ⊑ s data LookupResult (H : Heap yes) a V : Set where just : (H [ a ]ᴴ ≡ just V) → LookupResult H a V nothing : (H [ a ]ᴴ ≡ nothing) → LookupResult H a V lookup-⊑-nothing : ∀ {H H′} a → (H ⊑ H′) → (H′ [ a ]ᴴ ≡ nothing) → (H [ a ]ᴴ ≡ nothing) lookup-⊑-nothing {H} a refl p = p lookup-⊑-nothing {H} a (snoc defn) p with a ≡ᴬ next H lookup-⊑-nothing {H} a (snoc defn) p | yes refl = refl lookup-⊑-nothing {H} a (snoc o) p | no q = trans (lookup-not-allocated o q) p data OrWarningᴱ {Γ M T} (H : Heap yes) (D : Γ ⊢ᴱ M ∈ T) A : Set where ok : A → OrWarningᴱ H D A warning : Warningᴱ H D → OrWarningᴱ H D A data OrWarningᴮ {Γ B T} (H : Heap yes) (D : Γ ⊢ᴮ B ∈ T) A : Set where ok : A → OrWarningᴮ H D A warning : Warningᴮ H D → OrWarningᴮ H D A data OrWarningᴴᴱ {Γ M T} H (D : Γ ⊢ᴴᴱ H ▷ M ∈ T) A : Set where ok : A → OrWarningᴴᴱ H D A warning : Warningᴴᴱ H D → OrWarningᴴᴱ H D A data OrWarningᴴᴮ {Γ B T} H (D : Γ ⊢ᴴᴮ H ▷ B ∈ T) A : Set where ok : A → OrWarningᴴᴮ H D A warning : Warningᴴᴮ H D → OrWarningᴴᴮ H D A heap-weakeningᴱ : ∀ H M {H′ Γ} → (H ⊑ H′) → OrWarningᴱ H (typeCheckᴱ H Γ M) (typeOfᴱ H Γ M ≡ typeOfᴱ H′ Γ M) heap-weakeningᴮ : ∀ H B {H′ Γ} → (H ⊑ H′) → OrWarningᴮ H (typeCheckᴮ H Γ B) (typeOfᴮ H Γ B ≡ typeOfᴮ H′ Γ B) heap-weakeningᴱ H (var x) h = ok refl heap-weakeningᴱ H (val nil) h = ok refl heap-weakeningᴱ H (val (addr a)) refl = ok refl heap-weakeningᴱ H (val (addr a)) (snoc {a = b} defn) with a ≡ᴬ b heap-weakeningᴱ H (val (addr a)) (snoc {a = a} defn) | yes refl = warning (UnallocatedAddress refl) heap-weakeningᴱ H (val (addr a)) (snoc {a = b} p) | no q = ok (cong orNone (cong typeOfᴹᴼ (lookup-not-allocated p q))) heap-weakeningᴱ H (val (number n)) h = ok refl heap-weakeningᴱ H (val (bool b)) h = ok refl heap-weakeningᴱ H (val (string x)) h = ok refl heap-weakeningᴱ H (binexp M op N) h = ok refl heap-weakeningᴱ H (M $ N) h with heap-weakeningᴱ H M h heap-weakeningᴱ H (M $ N) h | ok p = ok (cong tgt p) heap-weakeningᴱ H (M $ N) h | warning W = warning (app₁ W) heap-weakeningᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) h = ok refl heap-weakeningᴱ H (block var b ∈ T is B end) h = ok refl heap-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h with heap-weakeningᴮ H B h heap-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h | ok p = ok p heap-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h | warning W = warning (function₂ W) heap-weakeningᴮ H (local var x ∈ T ← M ∙ B) h with heap-weakeningᴮ H B h heap-weakeningᴮ H (local var x ∈ T ← M ∙ B) h | ok p = ok p heap-weakeningᴮ H (local var x ∈ T ← M ∙ B) h | warning W = warning (local₂ W) heap-weakeningᴮ H (return M ∙ B) h with heap-weakeningᴱ H M h heap-weakeningᴮ H (return M ∙ B) h | ok p = ok p heap-weakeningᴮ H (return M ∙ B) h | warning W = warning (return W) heap-weakeningᴮ H (done) h = ok refl none-not-obj : ∀ O → none ≢ typeOfᴼ O none-not-obj (function f ⟨ var x ∈ T ⟩∈ U is B end) () typeOf-val-not-none : ∀ {H Γ} v → OrWarningᴱ H (typeCheckᴱ H Γ (val v)) (none ≢ typeOfᴱ H Γ (val v)) typeOf-val-not-none nil = ok (λ ()) typeOf-val-not-none (number n) = ok (λ ()) typeOf-val-not-none (bool b) = ok (λ ()) typeOf-val-not-none (string x) = ok (λ ()) typeOf-val-not-none {H = H} (addr a) with remember (H [ a ]ᴴ) typeOf-val-not-none {H = H} (addr a) | (just O , p) = ok (λ q → none-not-obj O (trans q (cong orNone (cong typeOfᴹᴼ p)))) typeOf-val-not-none {H = H} (addr a) | (nothing , p) = warning (UnallocatedAddress p) substitutivityᴱ : ∀ {Γ T} H M v x → (just T ≡ typeOfⱽ H v) → (typeOfᴱ H (Γ ⊕ x ↦ T) M ≡ typeOfᴱ H Γ (M [ v / x ]ᴱ)) substitutivityᴱ-whenever-yes : ∀ {Γ T} H v x y (p : x ≡ y) → (just T ≡ typeOfⱽ H v) → (typeOfᴱ H (Γ ⊕ x ↦ T) (var y) ≡ typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever (yes p))) substitutivityᴱ-whenever-no : ∀ {Γ T} H v x y (p : x ≢ y) → (just T ≡ typeOfⱽ H v) → (typeOfᴱ H (Γ ⊕ x ↦ T) (var y) ≡ typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever (no p))) substitutivityᴮ : ∀ {Γ T} H B v x → (just T ≡ typeOfⱽ H v) → (typeOfᴮ H (Γ ⊕ x ↦ T) B ≡ typeOfᴮ H Γ (B [ v / x ]ᴮ)) substitutivityᴮ-unless-yes : ∀ {Γ Γ′ T} H B v x y (p : x ≡ y) → (just T ≡ typeOfⱽ H v) → (Γ′ ≡ Γ) → (typeOfᴮ H Γ′ B ≡ typeOfᴮ H Γ (B [ v / x ]ᴮunless (yes p))) substitutivityᴮ-unless-no : ∀ {Γ Γ′ T} H B v x y (p : x ≢ y) → (just T ≡ typeOfⱽ H v) → (Γ′ ≡ Γ ⊕ x ↦ T) → (typeOfᴮ H Γ′ B ≡ typeOfᴮ H Γ (B [ v / x ]ᴮunless (no p))) substitutivityᴱ H (var y) v x p with x ≡ⱽ y substitutivityᴱ H (var y) v x p | yes q = substitutivityᴱ-whenever-yes H v x y q p substitutivityᴱ H (var y) v x p | no q = substitutivityᴱ-whenever-no H v x y q p substitutivityᴱ H (val w) v x p = refl substitutivityᴱ H (binexp M op N) v x p = refl substitutivityᴱ H (M $ N) v x p = cong tgt (substitutivityᴱ H M v x p) substitutivityᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p = refl substitutivityᴱ H (block var b ∈ T is B end) v x p = refl substitutivityᴱ-whenever-yes H v x x refl q = cong orNone q substitutivityᴱ-whenever-no H v x y p q = cong orNone ( sym (⊕-lookup-miss x y _ _ p)) substitutivityᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p with x ≡ⱽ f substitutivityᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p | yes q = substitutivityᴮ-unless-yes H B v x f q p (⊕-over q) substitutivityᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p | no q = substitutivityᴮ-unless-no H B v x f q p (⊕-swap q) substitutivityᴮ H (local var y ∈ T ← M ∙ B) v x p with x ≡ⱽ y substitutivityᴮ H (local var y ∈ T ← M ∙ B) v x p | yes q = substitutivityᴮ-unless-yes H B v x y q p (⊕-over q) substitutivityᴮ H (local var y ∈ T ← M ∙ B) v x p | no q = substitutivityᴮ-unless-no H B v x y q p (⊕-swap q) substitutivityᴮ H (return M ∙ B) v x p = substitutivityᴱ H M v x p substitutivityᴮ H done v x p = refl substitutivityᴮ-unless-yes H B v x x refl q refl = refl substitutivityᴮ-unless-no H B v x y p q refl = substitutivityᴮ H B v x q binOpPreservation : ∀ H {op v w x} → (v ⟦ op ⟧ w ⟶ x) → (tgtBinOp op ≡ typeOfᴱ H ∅ (val x)) binOpPreservation H (+ m n) = refl binOpPreservation H (- m n) = refl binOpPreservation H (/ m n) = refl binOpPreservation H (* m n) = refl binOpPreservation H (< m n) = refl binOpPreservation H (> m n) = refl binOpPreservation H (<= m n) = refl binOpPreservation H (>= m n) = refl binOpPreservation H (== v w) = refl binOpPreservation H (~= v w) = refl binOpPreservation H (·· v w) = refl preservationᴱ : ∀ H M {H′ M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → OrWarningᴴᴱ H (typeCheckᴴᴱ H ∅ M) (typeOfᴱ H ∅ M ≡ typeOfᴱ H′ ∅ M′) preservationᴮ : ∀ H B {H′ B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → OrWarningᴴᴮ H (typeCheckᴴᴮ H ∅ B) (typeOfᴮ H ∅ B ≡ typeOfᴮ H′ ∅ B′) preservationᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) = ok refl preservationᴱ H (M $ N) (app₁ s) with preservationᴱ H M s preservationᴱ H (M $ N) (app₁ s) | ok p = ok (cong tgt p) preservationᴱ H (M $ N) (app₁ s) | warning (expr W) = warning (expr (app₁ W)) preservationᴱ H (M $ N) (app₁ s) | warning (heap W) = warning (heap W) preservationᴱ H (M $ N) (app₂ p s) with heap-weakeningᴱ H M (rednᴱ⊑ s) preservationᴱ H (M $ N) (app₂ p s) | ok q = ok (cong tgt q) preservationᴱ H (M $ N) (app₂ p s) | warning W = warning (expr (app₁ W)) preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) with remember (typeOfⱽ H v) preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (just U , q) with S ≡ᵀ U | T ≡ᵀ typeOfᴮ H (x ↦ S) B preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | yes refl = ok (cong tgt (cong orNone (cong typeOfᴹᴼ p))) preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | no r = warning (heap (addr a p (FunctionDefnMismatch r))) preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (just U , q) | no r | _ = warning (expr (FunctionCallMismatch (λ s → r (trans (trans (sym (cong src (cong orNone (cong typeOfᴹᴼ p)))) s) (cong orNone q))))) preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (nothing , q) with typeOf-val-not-none v preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (nothing , q) | ok r = CONTRADICTION (r (sym (cong orNone q))) preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (nothing , q) | warning W = warning (expr (app₂ W)) preservationᴱ H (block var b ∈ T is B end) (block s) = ok refl preservationᴱ H (block var b ∈ T is return M ∙ B end) (return v) with T ≡ᵀ typeOfᴱ H ∅ (val v) preservationᴱ H (block var b ∈ T is return M ∙ B end) (return v) | yes p = ok p preservationᴱ H (block var b ∈ T is return M ∙ B end) (return v) | no p = warning (expr (BlockMismatch p)) preservationᴱ H (block var b ∈ T is done end) (done) with T ≡ᵀ nil preservationᴱ H (block var b ∈ T is done end) (done) | yes p = ok p preservationᴱ H (block var b ∈ T is done end) (done) | no p = warning (expr (BlockMismatch p)) preservationᴱ H (binexp M op N) (binOp₀ s) = ok (binOpPreservation H s) preservationᴱ H (binexp M op N) (binOp₁ s) = ok refl preservationᴱ H (binexp M op N) (binOp₂ s) = ok refl preservationᴮ H (local var x ∈ T ← M ∙ B) (local s) with heap-weakeningᴮ H B (rednᴱ⊑ s) preservationᴮ H (local var x ∈ T ← M ∙ B) (local s) | ok p = ok p preservationᴮ H (local var x ∈ T ← M ∙ B) (local s) | warning W = warning (block (local₂ W)) preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) with remember (typeOfⱽ H v) preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (just U , p) with T ≡ᵀ U preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (just T , p) | yes refl = ok (substitutivityᴮ H B v x (sym p)) preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (just U , p) | no q = warning (block (LocalVarMismatch (λ r → q (trans r (cong orNone p))))) preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (nothing , p) with typeOf-val-not-none v preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (nothing , p) | ok q = CONTRADICTION (q (sym (cong orNone p))) preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (nothing , p) | warning W = warning (block (local₁ W)) preservationᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) with heap-weakeningᴮ H B (snoc defn) preservationᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) | ok r = ok (trans r (substitutivityᴮ _ B (addr a) f refl)) preservationᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) | warning W = warning (block (function₂ W)) preservationᴮ H (return M ∙ B) (return s) with preservationᴱ H M s preservationᴮ H (return M ∙ B) (return s) | ok p = ok p preservationᴮ H (return M ∙ B) (return s) | warning (expr W) = warning (block (return W)) preservationᴮ H (return M ∙ B) (return s) | warning (heap W) = warning (heap W) reflect-substitutionᴱ : ∀ {Γ T} H M v x → (just T ≡ typeOfⱽ H v) → Warningᴱ H (typeCheckᴱ H Γ (M [ v / x ]ᴱ)) → Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) M) reflect-substitutionᴱ-whenever-yes : ∀ {Γ T} H v x y (p : x ≡ y) → (just T ≡ typeOfⱽ H v) → Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever yes p)) → Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) (var y)) reflect-substitutionᴱ-whenever-no : ∀ {Γ T} H v x y (p : x ≢ y) → (just T ≡ typeOfⱽ H v) → Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever no p)) → Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) (var y)) reflect-substitutionᴮ : ∀ {Γ T} H B v x → (just T ≡ typeOfⱽ H v) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮ)) → Warningᴮ H (typeCheckᴮ H (Γ ⊕ x ↦ T) B) reflect-substitutionᴮ-unless-yes : ∀ {Γ Γ′ T} H B v x y (r : x ≡ y) → (just T ≡ typeOfⱽ H v) → (Γ′ ≡ Γ) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless yes r)) → Warningᴮ H (typeCheckᴮ H Γ′ B) reflect-substitutionᴮ-unless-no : ∀ {Γ Γ′ T} H B v x y (r : x ≢ y) → (just T ≡ typeOfⱽ H v) → (Γ′ ≡ Γ ⊕ x ↦ T) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless no r)) → Warningᴮ H (typeCheckᴮ H Γ′ B) reflect-substitutionᴱ H (var y) v x p W with x ≡ⱽ y reflect-substitutionᴱ H (var y) v x p W | yes r = reflect-substitutionᴱ-whenever-yes H v x y r p W reflect-substitutionᴱ H (var y) v x p W | no r = reflect-substitutionᴱ-whenever-no H v x y r p W reflect-substitutionᴱ H (val (addr a)) v x p (UnallocatedAddress r) = UnallocatedAddress r reflect-substitutionᴱ H (M $ N) v x p (FunctionCallMismatch q) = FunctionCallMismatch (λ s → q (trans (cong src (sym (substitutivityᴱ H M v x p))) (trans s (substitutivityᴱ H N v x p)))) reflect-substitutionᴱ H (M $ N) v x p (app₁ W) = app₁ (reflect-substitutionᴱ H M v x p W) reflect-substitutionᴱ H (M $ N) v x p (app₂ W) = app₂ (reflect-substitutionᴱ H N v x p W) reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (FunctionDefnMismatch q) with (x ≡ⱽ y) reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (FunctionDefnMismatch q) | yes r = FunctionDefnMismatch (λ s → q (trans s (substitutivityᴮ-unless-yes H B v x y r p (⊕-over r)))) reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (FunctionDefnMismatch q) | no r = FunctionDefnMismatch (λ s → q (trans s (substitutivityᴮ-unless-no H B v x y r p (⊕-swap r)))) reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ W) with (x ≡ⱽ y) reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ W) | yes r = function₁ (reflect-substitutionᴮ-unless-yes H B v x y r p (⊕-over r) W) reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ W) | no r = function₁ (reflect-substitutionᴮ-unless-no H B v x y r p (⊕-swap r) W) reflect-substitutionᴱ H (block var b ∈ T is B end) v x p (BlockMismatch q) = BlockMismatch (λ r → q (trans r (substitutivityᴮ H B v x p))) reflect-substitutionᴱ H (block var b ∈ T is B end) v x p (block₁ W) = block₁ (reflect-substitutionᴮ H B v x p W) reflect-substitutionᴱ H (binexp M op N) x v p (BinOpMismatch₁ q) = BinOpMismatch₁ (subst₁ (BinOpWarning op) (sym (substitutivityᴱ H M x v p)) q) reflect-substitutionᴱ H (binexp M op N) x v p (BinOpMismatch₂ q) = BinOpMismatch₂ (subst₁ (BinOpWarning op) (sym (substitutivityᴱ H N x v p)) q) reflect-substitutionᴱ H (binexp M op N) x v p (bin₁ W) = bin₁ (reflect-substitutionᴱ H M x v p W) reflect-substitutionᴱ H (binexp M op N) x v p (bin₂ W) = bin₂ (reflect-substitutionᴱ H N x v p W) reflect-substitutionᴱ-whenever-no H v x y p q (UnboundVariable r) = UnboundVariable (trans (sym (⊕-lookup-miss x y _ _ p)) r) reflect-substitutionᴱ-whenever-yes H (addr a) x x refl p (UnallocatedAddress q) with trans p (cong typeOfᴹᴼ q) reflect-substitutionᴱ-whenever-yes H (addr a) x x refl p (UnallocatedAddress q) | () reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (FunctionDefnMismatch q) with (x ≡ⱽ y) reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (FunctionDefnMismatch q) | yes r = FunctionDefnMismatch (λ s → q (trans s (substitutivityᴮ-unless-yes H C v x y r p (⊕-over r)))) reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (FunctionDefnMismatch q) | no r = FunctionDefnMismatch (λ s → q (trans s (substitutivityᴮ-unless-no H C v x y r p (⊕-swap r)))) reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ W) with (x ≡ⱽ y) reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ W) | yes r = function₁ (reflect-substitutionᴮ-unless-yes H C v x y r p (⊕-over r) W) reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ W) | no r = function₁ (reflect-substitutionᴮ-unless-no H C v x y r p (⊕-swap r) W) reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₂ W) with (x ≡ⱽ f) reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₂ W)| yes r = function₂ (reflect-substitutionᴮ-unless-yes H B v x f r p (⊕-over r) W) reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₂ W)| no r = function₂ (reflect-substitutionᴮ-unless-no H B v x f r p (⊕-swap r) W) reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x p (LocalVarMismatch q) = LocalVarMismatch (λ r → q (trans r (substitutivityᴱ H M v x p))) reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x p (local₁ W) = local₁ (reflect-substitutionᴱ H M v x p W) reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x p (local₂ W) with (x ≡ⱽ y) reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x p (local₂ W) | yes r = local₂ (reflect-substitutionᴮ-unless-yes H B v x y r p (⊕-over r) W) reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x p (local₂ W) | no r = local₂ (reflect-substitutionᴮ-unless-no H B v x y r p (⊕-swap r) W) reflect-substitutionᴮ H (return M ∙ B) v x p (return W) = return (reflect-substitutionᴱ H M v x p W) reflect-substitutionᴮ-unless-yes H B v x y r p refl W = W reflect-substitutionᴮ-unless-no H B v x y r p refl W = reflect-substitutionᴮ H B v x p W reflect-weakeningᴱ : ∀ H M {H′ Γ} → (H ⊑ H′) → Warningᴱ H′ (typeCheckᴱ H′ Γ M) → Warningᴱ H (typeCheckᴱ H Γ M) reflect-weakeningᴮ : ∀ H B {H′ Γ} → (H ⊑ H′) → Warningᴮ H′ (typeCheckᴮ H′ Γ B) → Warningᴮ H (typeCheckᴮ H Γ B) reflect-weakeningᴱ H (var x) h (UnboundVariable p) = (UnboundVariable p) reflect-weakeningᴱ H (val (addr a)) h (UnallocatedAddress p) = UnallocatedAddress (lookup-⊑-nothing a h p) reflect-weakeningᴱ H (M $ N) h (FunctionCallMismatch p) with heap-weakeningᴱ H M h | heap-weakeningᴱ H N h reflect-weakeningᴱ H (M $ N) h (FunctionCallMismatch p) | ok q₁ | ok q₂ = FunctionCallMismatch (λ r → p (trans (cong src (sym q₁)) (trans r q₂))) reflect-weakeningᴱ H (M $ N) h (FunctionCallMismatch p) | warning W | _ = app₁ W reflect-weakeningᴱ H (M $ N) h (FunctionCallMismatch p) | _ | warning W = app₂ W reflect-weakeningᴱ H (M $ N) h (app₁ W) = app₁ (reflect-weakeningᴱ H M h W) reflect-weakeningᴱ H (M $ N) h (app₂ W) = app₂ (reflect-weakeningᴱ H N h W) reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₁ p) with heap-weakeningᴱ H M h reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₁ p) | ok q = BinOpMismatch₁ (subst₁ (BinOpWarning op) (sym q) p) reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₁ p) | warning W = bin₁ W reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₂ p) with heap-weakeningᴱ H N h reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₂ p) | ok q = BinOpMismatch₂ (subst₁ (BinOpWarning op) (sym q) p) reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₂ p) | warning W = bin₂ W reflect-weakeningᴱ H (binexp M op N) h (bin₁ W′) = bin₁ (reflect-weakeningᴱ H M h W′) reflect-weakeningᴱ H (binexp M op N) h (bin₂ W′) = bin₂ (reflect-weakeningᴱ H N h W′) reflect-weakeningᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (FunctionDefnMismatch p) with heap-weakeningᴮ H B h reflect-weakeningᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (FunctionDefnMismatch p) | ok q = FunctionDefnMismatch (λ r → p (trans r q)) reflect-weakeningᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (FunctionDefnMismatch p) | warning W = function₁ W reflect-weakeningᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (function₁ W) = function₁ (reflect-weakeningᴮ H B h W) reflect-weakeningᴱ H (block var b ∈ T is B end) h (BlockMismatch p) with heap-weakeningᴮ H B h reflect-weakeningᴱ H (block var b ∈ T is B end) h (BlockMismatch p) | ok q = BlockMismatch (λ r → p (trans r q)) reflect-weakeningᴱ H (block var b ∈ T is B end) h (BlockMismatch p) | warning W = block₁ W reflect-weakeningᴱ H (block var b ∈ T is B end) h (block₁ W) = block₁ (reflect-weakeningᴮ H B h W) reflect-weakeningᴮ H (return M ∙ B) h (return W) = return (reflect-weakeningᴱ H M h W) reflect-weakeningᴮ H (local var y ∈ T ← M ∙ B) h (LocalVarMismatch p) with heap-weakeningᴱ H M h reflect-weakeningᴮ H (local var y ∈ T ← M ∙ B) h (LocalVarMismatch p) | ok q = LocalVarMismatch (λ r → p (trans r q)) reflect-weakeningᴮ H (local var y ∈ T ← M ∙ B) h (LocalVarMismatch p) | warning W = local₁ W reflect-weakeningᴮ H (local var y ∈ T ← M ∙ B) h (local₁ W) = local₁ (reflect-weakeningᴱ H M h W) reflect-weakeningᴮ H (local var y ∈ T ← M ∙ B) h (local₂ W) = local₂ (reflect-weakeningᴮ H B h W) reflect-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (FunctionDefnMismatch p) with heap-weakeningᴮ H C h reflect-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (FunctionDefnMismatch p) | ok q = FunctionDefnMismatch (λ r → p (trans r q)) reflect-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (FunctionDefnMismatch p) | warning W = function₁ W reflect-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₁ W) = function₁ (reflect-weakeningᴮ H C h W) reflect-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₂ W) = function₂ (reflect-weakeningᴮ H B h W) reflect-weakeningᴼ : ∀ H O {H′} → (H ⊑ H′) → Warningᴼ H′ (typeCheckᴼ H′ O) → Warningᴼ H (typeCheckᴼ H O) reflect-weakeningᴼ H (just (function f ⟨ var x ∈ T ⟩∈ U is B end)) h (FunctionDefnMismatch p) with heap-weakeningᴮ H B h reflect-weakeningᴼ H (just (function f ⟨ var x ∈ T ⟩∈ U is B end)) h (FunctionDefnMismatch p) | ok q = FunctionDefnMismatch (λ r → p (trans r q)) reflect-weakeningᴼ H (just (function f ⟨ var x ∈ T ⟩∈ U is B end)) h (FunctionDefnMismatch p) | warning W = function₁ W reflect-weakeningᴼ H (just (function f ⟨ var x ∈ T ⟩∈ U is B end)) h (function₁ W′) = function₁ (reflect-weakeningᴮ H B h W′) reflectᴱ : ∀ H M {H′ M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → Warningᴱ H′ (typeCheckᴱ H′ ∅ M′) → Warningᴴᴱ H (typeCheckᴴᴱ H ∅ M) reflectᴮ : ∀ H B {H′ B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → Warningᴮ H′ (typeCheckᴮ H′ ∅ B′) → Warningᴴᴮ H (typeCheckᴴᴮ H ∅ B) reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) with preservationᴱ H M s | heap-weakeningᴱ H N (rednᴱ⊑ s) reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) | ok q | ok q′ = expr (FunctionCallMismatch (λ r → p (trans (trans (cong src (sym q)) r) q′))) reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) | warning (expr W) | _ = expr (app₁ W) reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) | warning (heap W) | _ = heap W reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) | _ | warning W = expr (app₂ W) reflectᴱ H (M $ N) (app₁ s) (app₁ W′) with reflectᴱ H M s W′ reflectᴱ H (M $ N) (app₁ s) (app₁ W′) | heap W = heap W reflectᴱ H (M $ N) (app₁ s) (app₁ W′) | expr W = expr (app₁ W) reflectᴱ H (M $ N) (app₁ s) (app₂ W′) = expr (app₂ (reflect-weakeningᴱ H N (rednᴱ⊑ s) W′)) reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch p′) with heap-weakeningᴱ H (val p) (rednᴱ⊑ s) | preservationᴱ H N s reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch p′) | ok q | ok q′ = expr (FunctionCallMismatch (λ r → p′ (trans (trans (cong src (sym q)) r) q′))) reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch p′) | warning W | _ = expr (app₁ W) reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch p′) | _ | warning (expr W) = expr (app₂ W) reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch p′) | _ | warning (heap W) = heap W reflectᴱ H (M $ N) (app₂ p s) (app₁ W′) = expr (app₁ (reflect-weakeningᴱ H M (rednᴱ⊑ s) W′)) reflectᴱ H (M $ N) (app₂ p s) (app₂ W′) with reflectᴱ H N s W′ reflectᴱ H (M $ N) (app₂ p s) (app₂ W′) | heap W = heap W reflectᴱ H (M $ N) (app₂ p s) (app₂ W′) | expr W = expr (app₂ W) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) with remember (typeOfⱽ H v) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (just S , r) with S ≡ᵀ T reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (just T , r) | yes refl = heap (addr a p (FunctionDefnMismatch (λ s → q (trans s (substitutivityᴮ H B v x (sym r)))))) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (just S , r) | no s = expr (FunctionCallMismatch (λ t → s (trans (cong orNone (sym r)) (trans (sym t) (cong src (cong orNone (cong typeOfᴹᴼ p))))))) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (nothing , r) with typeOf-val-not-none v reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (nothing , r) | ok s = CONTRADICTION (s (cong orNone (sym r))) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (nothing , r) | warning W = expr (app₂ W) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) with remember (typeOfⱽ H v) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | (just S , q) with S ≡ᵀ T reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | (just T , q) | yes refl = heap (addr a p (function₁ (reflect-substitutionᴮ H B v x (sym q) W′))) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | (just S , q) | no r = expr (FunctionCallMismatch (λ s → r (trans (cong orNone (sym q)) (trans (sym s) (cong src (cong orNone (cong typeOfᴹᴼ p))))))) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | (nothing , q) with typeOf-val-not-none v reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | (nothing , q) | ok r = CONTRADICTION (r (cong orNone (sym q))) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | (nothing , q) | warning W = expr (app₂ W) reflectᴱ H (block var b ∈ T is B end) (block s) (BlockMismatch p) with preservationᴮ H B s reflectᴱ H (block var b ∈ T is B end) (block s) (BlockMismatch p) | ok q = expr (BlockMismatch (λ r → p (trans r q))) reflectᴱ H (block var b ∈ T is B end) (block s) (BlockMismatch p) | warning (heap W) = heap W reflectᴱ H (block var b ∈ T is B end) (block s) (BlockMismatch p) | warning (block W) = expr (block₁ W) reflectᴱ H (block var b ∈ T is B end) (block s) (block₁ W′) with reflectᴮ H B s W′ reflectᴱ H (block var b ∈ T is B end) (block s) (block₁ W′) | heap W = heap W reflectᴱ H (block var b ∈ T is B end) (block s) (block₁ W′) | block W = expr (block₁ W) reflectᴱ H (block var b ∈ T is B end) (return v) W′ = expr (block₁ (return W′)) reflectᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (UnallocatedAddress ()) reflectᴱ H (binexp M op N) (binOp₀ ()) (UnallocatedAddress p) reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) with preservationᴱ H M s reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) | ok q = expr (BinOpMismatch₁ (subst₁ (BinOpWarning op) (sym q) p)) reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) | warning (heap W) = heap W reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) | warning (expr W) = expr (bin₁ W) reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) with heap-weakeningᴱ H N (rednᴱ⊑ s) reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) | ok q = expr (BinOpMismatch₂ ((subst₁ (BinOpWarning op) (sym q) p))) reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) | warning W = expr (bin₂ W) reflectᴱ H (binexp M op N) (binOp₁ s) (bin₁ W′) with reflectᴱ H M s W′ reflectᴱ H (binexp M op N) (binOp₁ s) (bin₁ W′) | heap W = heap W reflectᴱ H (binexp M op N) (binOp₁ s) (bin₁ W′) | expr W = expr (bin₁ W) reflectᴱ H (binexp M op N) (binOp₁ s) (bin₂ W′) = expr (bin₂ (reflect-weakeningᴱ H N (rednᴱ⊑ s) W′)) reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) with heap-weakeningᴱ H M (rednᴱ⊑ s) reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) | ok q = expr (BinOpMismatch₁ (subst₁ (BinOpWarning op) (sym q) p)) reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) | warning W = expr (bin₁ W) reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) with preservationᴱ H N s reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) | ok q = expr (BinOpMismatch₂ (subst₁ (BinOpWarning op) (sym q) p)) reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) | warning (heap W) = heap W reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) | warning (expr W) = expr (bin₂ W) reflectᴱ H (binexp M op N) (binOp₂ s) (bin₁ W′) = expr (bin₁ (reflect-weakeningᴱ H M (rednᴱ⊑ s) W′)) reflectᴱ H (binexp M op N) (binOp₂ s) (bin₂ W′) with reflectᴱ H N s W′ reflectᴱ H (binexp M op N) (binOp₂ s) (bin₂ W′) | heap W = heap W reflectᴱ H (binexp M op N) (binOp₂ s) (bin₂ W′) | expr W = expr (bin₂ W) reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (LocalVarMismatch p) with preservationᴱ H M s reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (LocalVarMismatch p) | ok q = block (LocalVarMismatch (λ r → p (trans r q))) reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (LocalVarMismatch p) | warning (expr W) = block (local₁ W) reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (LocalVarMismatch p) | warning (heap W) = heap W reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₁ W′) with reflectᴱ H M s W′ reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₁ W′) | heap W = heap W reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₁ W′) | expr W = block (local₁ W) reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₂ W′) = block (local₂ (reflect-weakeningᴮ H B (rednᴱ⊑ s) W′)) reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W′ with remember (typeOfⱽ H v) reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W′ | (just S , p) with S ≡ᵀ T reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W′ | (just T , p) | yes refl = block (local₂ (reflect-substitutionᴮ H B v x (sym p) W′)) reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W′ | (just S , p) | no q = block (LocalVarMismatch (λ r → q (trans (cong orNone (sym p)) (sym r)))) reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W′ | (nothing , p) with typeOf-val-not-none v reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W′ | (nothing , p) | ok r = CONTRADICTION (r (cong orNone (sym p))) reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W′ | (nothing , p) | warning W = block (local₁ W) reflectᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) W′ = block (function₂ (reflect-weakeningᴮ H B (snoc defn) (reflect-substitutionᴮ _ B (addr a) f refl W′))) reflectᴮ H (return M ∙ B) (return s) (return W′) with reflectᴱ H M s W′ reflectᴮ H (return M ∙ B) (return s) (return W′) | heap W = heap W reflectᴮ H (return M ∙ B) (return s) (return W′) | expr W = block (return W) reflectᴴᴱ : ∀ H M {H′ M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → Warningᴴᴱ H′ (typeCheckᴴᴱ H′ ∅ M′) → Warningᴴᴱ H (typeCheckᴴᴱ H ∅ M) reflectᴴᴮ : ∀ H B {H′ B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → Warningᴴᴮ H′ (typeCheckᴴᴮ H′ ∅ B′) → Warningᴴᴮ H (typeCheckᴴᴮ H ∅ B) reflectᴴᴱ H M s (expr W′) = reflectᴱ H M s W′ reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a p) (heap (addr b refl W′)) with b ≡ᴬ a reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (heap (addr a refl (FunctionDefnMismatch p))) | yes refl with heap-weakeningᴮ H B (snoc defn) reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (heap (addr a refl (FunctionDefnMismatch p))) | yes refl | ok r = expr (FunctionDefnMismatch λ q → p (trans q r)) reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (heap (addr a refl (FunctionDefnMismatch p))) | yes refl | warning W = expr (function₁ W) reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₁ W′))) | yes refl = expr (function₁ (reflect-weakeningᴮ H B (snoc defn) W′)) reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a p) (heap (addr b refl W′)) | no r = heap (addr b (lookup-not-allocated p r) (reflect-weakeningᴼ H _ (snoc p) W′)) reflectᴴᴱ H (M $ N) (app₁ s) (heap W′) with reflectᴴᴱ H M s (heap W′) reflectᴴᴱ H (M $ N) (app₁ s) (heap W′) | heap W = heap W reflectᴴᴱ H (M $ N) (app₁ s) (heap W′) | expr W = expr (app₁ W) reflectᴴᴱ H (M $ N) (app₂ p s) (heap W′) with reflectᴴᴱ H N s (heap W′) reflectᴴᴱ H (M $ N) (app₂ p s) (heap W′) | heap W = heap W reflectᴴᴱ H (M $ N) (app₂ p s) (heap W′) | expr W = expr (app₂ W) reflectᴴᴱ H (M $ N) (beta O v p q) (heap W′) = heap W′ reflectᴴᴱ H (block var b ∈ T is B end) (block s) (heap W′) with reflectᴴᴮ H B s (heap W′) reflectᴴᴱ H (block var b ∈ T is B end) (block s) (heap W′) | heap W = heap W reflectᴴᴱ H (block var b ∈ T is B end) (block s) (heap W′) | block W = expr (block₁ W) reflectᴴᴱ H (block var b ∈ T is return N ∙ B end) (return v) (heap W′) = heap W′ reflectᴴᴱ H (block var b ∈ T is done end) done (heap W′) = heap W′ reflectᴴᴱ H (binexp M op N) (binOp₀ s) (heap W′) = heap W′ reflectᴴᴱ H (binexp M op N) (binOp₁ s) (heap W′) with reflectᴴᴱ H M s (heap W′) reflectᴴᴱ H (binexp M op N) (binOp₁ s) (heap W′) | heap W = heap W reflectᴴᴱ H (binexp M op N) (binOp₁ s) (heap W′) | expr W = expr (bin₁ W) reflectᴴᴱ H (binexp M op N) (binOp₂ s) (heap W′) with reflectᴴᴱ H N s (heap W′) reflectᴴᴱ H (binexp M op N) (binOp₂ s) (heap W′) | heap W = heap W reflectᴴᴱ H (binexp M op N) (binOp₂ s) (heap W′) | expr W = expr (bin₂ W) reflectᴴᴮ H B s (block W′) = reflectᴮ H B s W′ reflectᴴᴮ H (local var x ∈ T ← M ∙ B) (local s) (heap W′) with reflectᴴᴱ H M s (heap W′) reflectᴴᴮ H (local var x ∈ T ← M ∙ B) (local s) (heap W′) | heap W = heap W reflectᴴᴮ H (local var x ∈ T ← M ∙ B) (local s) (heap W′) | expr W = block (local₁ W) reflectᴴᴮ H (local var x ∈ T ← M ∙ B) (subst v) (heap W′) = heap W′ reflectᴴᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a p) (heap (addr b refl W′)) with b ≡ᴬ a reflectᴴᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) (heap (addr a refl (FunctionDefnMismatch p))) | yes refl with heap-weakeningᴮ H C (snoc defn) reflectᴴᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) (heap (addr a refl (FunctionDefnMismatch p))) | yes refl | ok r = block (FunctionDefnMismatch (λ q → p (trans q r))) reflectᴴᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) (heap (addr a refl (FunctionDefnMismatch p))) | yes refl | warning W = block (function₁ W) reflectᴴᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) (heap (addr a refl (function₁ W′))) | yes refl = block (function₁ (reflect-weakeningᴮ H C (snoc defn) W′)) reflectᴴᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a p) (heap (addr b refl W′)) | no r = heap (addr b (lookup-not-allocated p r) (reflect-weakeningᴼ H _ (snoc p) W′)) reflectᴴᴮ H (return M ∙ B) (return s) (heap W′) with reflectᴴᴱ H M s (heap W′) reflectᴴᴮ H (return M ∙ B) (return s) (heap W′) | heap W = heap W reflectᴴᴮ H (return M ∙ B) (return s) (heap W′) | expr W = block (return W) reflect* : ∀ H B {H′ B′} → (H ⊢ B ⟶* B′ ⊣ H′) → Warningᴴᴮ H′ (typeCheckᴴᴮ H′ ∅ B′) → Warningᴴᴮ H (typeCheckᴴᴮ H ∅ B) reflect* H B refl W = W reflect* H B (step s t) W = reflectᴴᴮ H B s (reflect* _ _ t W) runtimeBinOpWarning : ∀ H {op} v → BinOpError op (valueType v) → BinOpWarning op (orNone (typeOfⱽ H v)) runtimeBinOpWarning H v (+ p) = + (λ q → p (mustBeNumber H ∅ v q)) runtimeBinOpWarning H v (- p) = - (λ q → p (mustBeNumber H ∅ v q)) runtimeBinOpWarning H v (* p) = * (λ q → p (mustBeNumber H ∅ v q)) runtimeBinOpWarning H v (/ p) = / (λ q → p (mustBeNumber H ∅ v q)) runtimeBinOpWarning H v (< p) = < (λ q → p (mustBeNumber H ∅ v q)) runtimeBinOpWarning H v (> p) = > (λ q → p (mustBeNumber H ∅ v q)) runtimeBinOpWarning H v (<= p) = <= (λ q → p (mustBeNumber H ∅ v q)) runtimeBinOpWarning H v (>= p) = >= (λ q → p (mustBeNumber H ∅ v q)) runtimeBinOpWarning H v (·· p) = ·· (λ q → p (mustBeString H ∅ v q)) runtimeWarningᴱ : ∀ H M → RuntimeErrorᴱ H M → Warningᴱ H (typeCheckᴱ H ∅ M) runtimeWarningᴮ : ∀ H B → RuntimeErrorᴮ H B → Warningᴮ H (typeCheckᴮ H ∅ B) runtimeWarningᴱ H (var x) UnboundVariable = UnboundVariable refl runtimeWarningᴱ H (val (addr a)) (SEGV p) = UnallocatedAddress p runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) with typeOf-val-not-none w runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) | ok q = FunctionCallMismatch (λ r → p (mustBeFunction H ∅ v (λ r′ → q (trans r′ r)))) runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) | warning W = app₂ W runtimeWarningᴱ H (M $ N) (app₁ err) = app₁ (runtimeWarningᴱ H M err) runtimeWarningᴱ H (M $ N) (app₂ err) = app₂ (runtimeWarningᴱ H N err) runtimeWarningᴱ H (block var b ∈ T is B end) (block err) = block₁ (runtimeWarningᴮ H B err) runtimeWarningᴱ H (binexp M op N) (BinOpMismatch₁ v w p) = BinOpMismatch₁ (runtimeBinOpWarning H v p) runtimeWarningᴱ H (binexp M op N) (BinOpMismatch₂ v w p) = BinOpMismatch₂ (runtimeBinOpWarning H w p) runtimeWarningᴱ H (binexp M op N) (bin₁ err) = bin₁ (runtimeWarningᴱ H M err) runtimeWarningᴱ H (binexp M op N) (bin₂ err) = bin₂ (runtimeWarningᴱ H N err) runtimeWarningᴮ H (local var x ∈ T ← M ∙ B) (local err) = local₁ (runtimeWarningᴱ H M err) runtimeWarningᴮ H (return M ∙ B) (return err) = return (runtimeWarningᴱ H M err) wellTypedProgramsDontGoWrong : ∀ H′ B B′ → (∅ᴴ ⊢ B ⟶* B′ ⊣ H′) → (RuntimeErrorᴮ H′ B′) → Warningᴮ ∅ᴴ (typeCheckᴮ ∅ᴴ ∅ B) wellTypedProgramsDontGoWrong H′ B B′ t err with reflect* ∅ᴴ B t (block (runtimeWarningᴮ H′ B′ err)) wellTypedProgramsDontGoWrong H′ B B′ t err | heap (addr a refl ()) wellTypedProgramsDontGoWrong H′ B B′ t err | block W = W
{ "alphanum_fraction": 0.646108993, "avg_line_length": 84.4863157895, "ext": "agda", "hexsha": "77852f1a7459ecce8a5fe0b67d7ee05be5b0481f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/Properties/StrictMode.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/Properties/StrictMode.agda", "max_line_length": 379, "max_stars_count": 1, "max_stars_repo_head_hexsha": "3f69d3a4f2b74dac8ecff2ef8ec851c8636324b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "gideros/luau", "max_stars_repo_path": "prototyping/Properties/StrictMode.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-18T04:10:20.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-18T04:10:20.000Z", "num_tokens": 17220, "size": 40131 }
------------------------------------------------------------------------------ -- Properties for the relation LTL ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.List.WF-Relation.LT-Length.PropertiesI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.PropertiesI as Nat using () open import FOTC.Data.List open import FOTC.Data.List.PropertiesI open import FOTC.Data.List.WF-Relation.LT-Length ------------------------------------------------------------------------------ xs<[]→⊥ : ∀ {xs} → List xs → ¬ (LTL xs []) xs<[]→⊥ Lxs xs<[] = lg-xs<lg-[]→⊥ Lxs xs<[] x∷xs<y∷ys→xs<ys : ∀ {x xs y ys} → List xs → List ys → LTL (x ∷ xs) (y ∷ ys) → LTL xs ys x∷xs<y∷ys→xs<ys {x} {xs} {y} {ys} Lxs Lys x∷xs<y∷ys = Nat.Sx<Sy→x<y helper where helper : succ₁ (length xs) < succ₁ (length ys) helper = lt (succ₁ (length xs)) (succ₁ (length ys)) ≡⟨ subst₂ (λ t t' → lt (succ₁ (length xs)) (succ₁ (length ys)) ≡ lt t t') (sym (length-∷ x xs)) (sym (length-∷ y ys)) refl ⟩ lt (length (x ∷ xs)) (length (y ∷ ys)) ≡⟨ x∷xs<y∷ys ⟩ true ∎ <-trans : ∀ {xs ys zs} → List xs → List ys → List zs → LTL xs ys → LTL ys zs → LTL xs zs <-trans Lxs Lys Lzs xs<ys ys<zs = Nat.<-trans (lengthList-N Lxs) (lengthList-N Lys) (lengthList-N Lzs) xs<ys ys<zs lg-xs≡lg-ys→ys<zx→xs<zs : ∀ {xs ys zs} → length xs ≡ length ys → LTL ys zs → LTL xs zs lg-xs≡lg-ys→ys<zx→xs<zs {xs} {ys} {zs} h ys<zs = lt (length xs) (length zs) ≡⟨ subst (λ t → lt (length xs) (length zs) ≡ lt t (length zs)) h refl ⟩ lt (length ys) (length zs) ≡⟨ ys<zs ⟩ true ∎ xs<y∷ys→xs<ys∨lg-xs≡lg-ys : ∀ {xs y ys} → List xs → List ys → LTL xs (y ∷ ys) → LTL xs ys ∨ length xs ≡ length ys xs<y∷ys→xs<ys∨lg-xs≡lg-ys {xs} {y} {ys} Lxs Lys xs<y∷ys = Nat.x<Sy→x<y∨x≡y (lengthList-N Lxs) (lengthList-N Lys) helper where helper : length xs < succ₁ (length ys) helper = lt (length xs) (succ₁ (length ys)) ≡⟨ subst (λ t → lt (length xs) (succ₁ (length ys)) ≡ lt (length xs) t) (sym (length-∷ y ys)) refl ⟩ lt (length xs) (length (y ∷ ys)) ≡⟨ xs<y∷ys ⟩ true ∎
{ "alphanum_fraction": 0.4956056553, "avg_line_length": 35.3648648649, "ext": "agda", "hexsha": "0d9b4c5ccb2a99a52e6b21ce37677a917ab9187c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/List/WF-Relation/LT-Length/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/List/WF-Relation/LT-Length/PropertiesI.agda", "max_line_length": 82, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/List/WF-Relation/LT-Length/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 901, "size": 2617 }
module Optics.Lens where open import Agda.Primitive using (Level; _⊔_; lsuc) open import Data.Product using (_×_; _,_; ∃-syntax) open import Function.Inverse using (_↔_; inverse) open import Relation.Binary.PropositionalEquality using (_≡_; refl; module ≡-Reasoning; cong) open import Category.Functor.Arr open import Category.Functor.Const open import Category.Profunctor.Star open import Category.Strong open import Optics Lens : ∀ {l} (S T A B : Set l) → Set (lsuc l) Lens = Optic StrongImp module Lens {l} {S T A B : Set l} (lens : Lens S T A B) where get : S → A get = getOptic S T A B (starStrong constFunctor) lens set : S → B → T set = setOptic S T A B (starStrong arrFunctor) lens record LawfulLens {l} {S A : Set l} (lens' : Lens S S A A) : Set (lsuc l) where open Lens lens' public lens : Lens S S A A lens = lens' field setget : ∀ (s : S) → set s (get s) ≡ s getset : ∀ (s : S) (a : A) → get (set s a) ≡ a setset : ∀ (s : S) (a a' : A) → set (set s a) ≡ set s lensIso : ∀ {l} {S A : Set l} {lens : Lens S S A A} → (lawful : LawfulLens lens) → S ↔ (∃[ a ] ∃[ c ] ∃[ s ] (c ≡ Lens.set lens s × Lens.get lens s ≡ a)) lensIso {_} {S} {A} lawful = inverse to from from∘to to∘from where open LawfulLens lawful to : S → ∃[ a ] ∃[ c ] ∃[ s ] (c ≡ set s × get s ≡ a) to s = get s , set s , s , refl , refl from : ∃[ a ] ∃[ c ] ∃[ s ] (c ≡ set s × get s ≡ a) → S from (a , c , _ , _ , _) = c a from∘to : (s : S) → from (to s) ≡ s from∘to = setget to∘from : (elem : ∃[ a ] ∃[ c ] ∃[ s ] (c ≡ set s × get s ≡ a)) → to (from elem) ≡ elem open ≡-Reasoning to∘from (.(get s) , .(set s) , s , refl , refl) = begin (get (set s (get s)) , set (set s (get s)) , set s (get s) , _ , _) ≡⟨ cong (λ sᵢ → get sᵢ , set sᵢ , sᵢ , refl , refl) (setget s) ⟩ (get s , set s , s , _ , _) ∎
{ "alphanum_fraction": 0.5575692964, "avg_line_length": 39.0833333333, "ext": "agda", "hexsha": "3a36bf4da2ecdb0ca60fad5de7c9897c5150f2b3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crisoagf/agda-optics", "max_forks_repo_path": "src/Optics/Lens.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crisoagf/agda-optics", "max_issues_repo_path": "src/Optics/Lens.agda", "max_line_length": 153, "max_stars_count": null, "max_stars_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crisoagf/agda-optics", "max_stars_repo_path": "src/Optics/Lens.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 760, "size": 1876 }
{-# OPTIONS --without-K --rewriting #-} {- Imports everything that is not imported by something else. This is not supposed to be used anywhere, this is just a simple way to do `make all' This file is intentionally named index.agda so that Agda will generate index.html. -} module index where {- some group theory results -} import groups.ReducedWord import groups.ProductRepr import groups.CoefficientExtensionality {- homotopy groups of circles -} import homotopy.LoopSpaceCircle import homotopy.PinSn import homotopy.HopfJunior import homotopy.Hopf {- cohomology -} import cohomology.EMModel import cohomology.Sigma import cohomology.Coproduct import cohomology.Torus -- import cohomology.MayerVietorisExact -- FIXME {- prop * prop is still a prop -} import homotopy.PropJoinProp {- a space with preassigned homotopy groups -} import homotopy.SpaceFromGroups {- pushout 3x3 lemma -} {- These takes lots of time and memory to check. -} -- import homotopy.3x3.Commutes -- commented out because this does not run on travis. -- import homotopy.JoinAssoc3x3 -- commented out because this does not run on travis. {- covering spaces -} import homotopy.GroupSetsRepresentCovers import homotopy.AnyUniversalCoverIsPathSet import homotopy.PathSetIsInitalCover {- van kampen -} import homotopy.VanKampen {- blakers massey -} import homotopy.BlakersMassey {- cw complexes -} import cw.CW import cw.examples.Examples -- cellular cohomology groups import cw.cohomology.CellularChainComplex -- Eilenberg-Steenred cohomology groups rephrased import cw.cohomology.ReconstructedCohomologyGroups -- isomorphisms between the cochains the heads import cw.cohomology.ReconstructedCochainsIsoCellularCochains -- There are some unported theorems -- import Spaces.IntervalProps -- import Algebra.F2NotCommutative -- import Spaces.LoopSpaceDecidableWedgeCircles -- import Homotopy.PullbackIsPullback -- import Homotopy.PushoutIsPushout -- import Homotopy.Truncation -- import Sets.QuotientUP
{ "alphanum_fraction": 0.802824004, "avg_line_length": 27.1643835616, "ext": "agda", "hexsha": "d34751414bea0e5763d5e7c6036e7f14740ca209", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/index.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/index.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/index.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 533, "size": 1983 }
module cedille where open import lib open import cedille-types public ---------------------------------------------------------------------------------- -- Run-rewriting rules ---------------------------------------------------------------------------------- data gratr2-nt : Set where _ws-plus-77 : gratr2-nt _ws : gratr2-nt _vars : gratr2-nt _var-star-12 : gratr2-nt _var-bar-11 : gratr2-nt _var : gratr2-nt _type : gratr2-nt _tk : gratr2-nt _theta : gratr2-nt _term : gratr2-nt _start : gratr2-nt _rho : gratr2-nt _qvar : gratr2-nt _qkvar : gratr2-nt _pterm : gratr2-nt _posinfo : gratr2-nt _params : gratr2-nt _ows-star-78 : gratr2-nt _ows : gratr2-nt _otherpunct-bar-67 : gratr2-nt _otherpunct-bar-66 : gratr2-nt _otherpunct-bar-65 : gratr2-nt _otherpunct-bar-64 : gratr2-nt _otherpunct-bar-63 : gratr2-nt _otherpunct-bar-62 : gratr2-nt _otherpunct-bar-61 : gratr2-nt _otherpunct-bar-60 : gratr2-nt _otherpunct-bar-59 : gratr2-nt _otherpunct-bar-58 : gratr2-nt _otherpunct-bar-57 : gratr2-nt _otherpunct-bar-56 : gratr2-nt _otherpunct-bar-55 : gratr2-nt _otherpunct-bar-54 : gratr2-nt _otherpunct-bar-53 : gratr2-nt _otherpunct-bar-52 : gratr2-nt _otherpunct-bar-51 : gratr2-nt _otherpunct-bar-50 : gratr2-nt _otherpunct-bar-49 : gratr2-nt _otherpunct-bar-48 : gratr2-nt _otherpunct-bar-47 : gratr2-nt _otherpunct-bar-46 : gratr2-nt _otherpunct-bar-45 : gratr2-nt _otherpunct-bar-44 : gratr2-nt _otherpunct-bar-43 : gratr2-nt _otherpunct-bar-42 : gratr2-nt _otherpunct-bar-41 : gratr2-nt _otherpunct-bar-40 : gratr2-nt _otherpunct-bar-39 : gratr2-nt _otherpunct-bar-38 : gratr2-nt _otherpunct-bar-37 : gratr2-nt _otherpunct-bar-36 : gratr2-nt _otherpunct-bar-35 : gratr2-nt _otherpunct-bar-34 : gratr2-nt _otherpunct-bar-33 : gratr2-nt _otherpunct-bar-32 : gratr2-nt _otherpunct-bar-31 : gratr2-nt _otherpunct-bar-30 : gratr2-nt _otherpunct-bar-29 : gratr2-nt _otherpunct-bar-28 : gratr2-nt _otherpunct-bar-27 : gratr2-nt _otherpunct-bar-26 : gratr2-nt _otherpunct-bar-25 : gratr2-nt _otherpunct-bar-24 : gratr2-nt _otherpunct-bar-23 : gratr2-nt _otherpunct-bar-22 : gratr2-nt _otherpunct-bar-21 : gratr2-nt _otherpunct : gratr2-nt _optType : gratr2-nt _optTerm : gratr2-nt _optClass : gratr2-nt _optAs : gratr2-nt _numpunct-bar-9 : gratr2-nt _numpunct-bar-8 : gratr2-nt _numpunct-bar-7 : gratr2-nt _numpunct-bar-6 : gratr2-nt _numpunct-bar-10 : gratr2-nt _numpunct : gratr2-nt _numone-range-4 : gratr2-nt _numone : gratr2-nt _num-plus-5 : gratr2-nt _num : gratr2-nt _maybeMinus : gratr2-nt _maybeErased : gratr2-nt _maybeCheckType : gratr2-nt _maybeAtype : gratr2-nt _ltype : gratr2-nt _lterms : gratr2-nt _lterm : gratr2-nt _lliftingType : gratr2-nt _liftingType : gratr2-nt _leftRight : gratr2-nt _lam : gratr2-nt _kvar-star-20 : gratr2-nt _kvar-bar-19 : gratr2-nt _kvar : gratr2-nt _kind : gratr2-nt _imprt : gratr2-nt _imports : gratr2-nt _fpth-star-18 : gratr2-nt _fpth-plus-14 : gratr2-nt _fpth-bar-17 : gratr2-nt _fpth-bar-16 : gratr2-nt _fpth-bar-15 : gratr2-nt _fpth : gratr2-nt _defTermOrType : gratr2-nt _decl : gratr2-nt _comment-star-73 : gratr2-nt _comment : gratr2-nt _cmds : gratr2-nt _cmd : gratr2-nt _bvar-bar-13 : gratr2-nt _bvar : gratr2-nt _binder : gratr2-nt _aws-bar-76 : gratr2-nt _aws-bar-75 : gratr2-nt _aws-bar-74 : gratr2-nt _aws : gratr2-nt _atype : gratr2-nt _aterm : gratr2-nt _arrowtype : gratr2-nt _args : gratr2-nt _arg : gratr2-nt _anychar-bar-72 : gratr2-nt _anychar-bar-71 : gratr2-nt _anychar-bar-70 : gratr2-nt _anychar-bar-69 : gratr2-nt _anychar-bar-68 : gratr2-nt _anychar : gratr2-nt _alpha-range-2 : gratr2-nt _alpha-range-1 : gratr2-nt _alpha-bar-3 : gratr2-nt _alpha : gratr2-nt gratr2-nt-eq : gratr2-nt → gratr2-nt → 𝔹 gratr2-nt-eq _ws-plus-77 _ws-plus-77 = tt gratr2-nt-eq _ws _ws = tt gratr2-nt-eq _vars _vars = tt gratr2-nt-eq _var-star-12 _var-star-12 = tt gratr2-nt-eq _var-bar-11 _var-bar-11 = tt gratr2-nt-eq _var _var = tt gratr2-nt-eq _type _type = tt gratr2-nt-eq _tk _tk = tt gratr2-nt-eq _theta _theta = tt gratr2-nt-eq _term _term = tt gratr2-nt-eq _start _start = tt gratr2-nt-eq _rho _rho = tt gratr2-nt-eq _qvar _qvar = tt gratr2-nt-eq _qkvar _qkvar = tt gratr2-nt-eq _pterm _pterm = tt gratr2-nt-eq _posinfo _posinfo = tt gratr2-nt-eq _params _params = tt gratr2-nt-eq _ows-star-78 _ows-star-78 = tt gratr2-nt-eq _ows _ows = tt gratr2-nt-eq _otherpunct-bar-67 _otherpunct-bar-67 = tt gratr2-nt-eq _otherpunct-bar-66 _otherpunct-bar-66 = tt gratr2-nt-eq _otherpunct-bar-65 _otherpunct-bar-65 = tt gratr2-nt-eq _otherpunct-bar-64 _otherpunct-bar-64 = tt gratr2-nt-eq _otherpunct-bar-63 _otherpunct-bar-63 = tt gratr2-nt-eq _otherpunct-bar-62 _otherpunct-bar-62 = tt gratr2-nt-eq _otherpunct-bar-61 _otherpunct-bar-61 = tt gratr2-nt-eq _otherpunct-bar-60 _otherpunct-bar-60 = tt gratr2-nt-eq _otherpunct-bar-59 _otherpunct-bar-59 = tt gratr2-nt-eq _otherpunct-bar-58 _otherpunct-bar-58 = tt gratr2-nt-eq _otherpunct-bar-57 _otherpunct-bar-57 = tt gratr2-nt-eq _otherpunct-bar-56 _otherpunct-bar-56 = tt gratr2-nt-eq _otherpunct-bar-55 _otherpunct-bar-55 = tt gratr2-nt-eq _otherpunct-bar-54 _otherpunct-bar-54 = tt gratr2-nt-eq _otherpunct-bar-53 _otherpunct-bar-53 = tt gratr2-nt-eq _otherpunct-bar-52 _otherpunct-bar-52 = tt gratr2-nt-eq _otherpunct-bar-51 _otherpunct-bar-51 = tt gratr2-nt-eq _otherpunct-bar-50 _otherpunct-bar-50 = tt gratr2-nt-eq _otherpunct-bar-49 _otherpunct-bar-49 = tt gratr2-nt-eq _otherpunct-bar-48 _otherpunct-bar-48 = tt gratr2-nt-eq _otherpunct-bar-47 _otherpunct-bar-47 = tt gratr2-nt-eq _otherpunct-bar-46 _otherpunct-bar-46 = tt gratr2-nt-eq _otherpunct-bar-45 _otherpunct-bar-45 = tt gratr2-nt-eq _otherpunct-bar-44 _otherpunct-bar-44 = tt gratr2-nt-eq _otherpunct-bar-43 _otherpunct-bar-43 = tt gratr2-nt-eq _otherpunct-bar-42 _otherpunct-bar-42 = tt gratr2-nt-eq _otherpunct-bar-41 _otherpunct-bar-41 = tt gratr2-nt-eq _otherpunct-bar-40 _otherpunct-bar-40 = tt gratr2-nt-eq _otherpunct-bar-39 _otherpunct-bar-39 = tt gratr2-nt-eq _otherpunct-bar-38 _otherpunct-bar-38 = tt gratr2-nt-eq _otherpunct-bar-37 _otherpunct-bar-37 = tt gratr2-nt-eq _otherpunct-bar-36 _otherpunct-bar-36 = tt gratr2-nt-eq _otherpunct-bar-35 _otherpunct-bar-35 = tt gratr2-nt-eq _otherpunct-bar-34 _otherpunct-bar-34 = tt gratr2-nt-eq _otherpunct-bar-33 _otherpunct-bar-33 = tt gratr2-nt-eq _otherpunct-bar-32 _otherpunct-bar-32 = tt gratr2-nt-eq _otherpunct-bar-31 _otherpunct-bar-31 = tt gratr2-nt-eq _otherpunct-bar-30 _otherpunct-bar-30 = tt gratr2-nt-eq _otherpunct-bar-29 _otherpunct-bar-29 = tt gratr2-nt-eq _otherpunct-bar-28 _otherpunct-bar-28 = tt gratr2-nt-eq _otherpunct-bar-27 _otherpunct-bar-27 = tt gratr2-nt-eq _otherpunct-bar-26 _otherpunct-bar-26 = tt gratr2-nt-eq _otherpunct-bar-25 _otherpunct-bar-25 = tt gratr2-nt-eq _otherpunct-bar-24 _otherpunct-bar-24 = tt gratr2-nt-eq _otherpunct-bar-23 _otherpunct-bar-23 = tt gratr2-nt-eq _otherpunct-bar-22 _otherpunct-bar-22 = tt gratr2-nt-eq _otherpunct-bar-21 _otherpunct-bar-21 = tt gratr2-nt-eq _otherpunct _otherpunct = tt gratr2-nt-eq _optType _optType = tt gratr2-nt-eq _optTerm _optTerm = tt gratr2-nt-eq _optClass _optClass = tt gratr2-nt-eq _optAs _optAs = tt gratr2-nt-eq _numpunct-bar-9 _numpunct-bar-9 = tt gratr2-nt-eq _numpunct-bar-8 _numpunct-bar-8 = tt gratr2-nt-eq _numpunct-bar-7 _numpunct-bar-7 = tt gratr2-nt-eq _numpunct-bar-6 _numpunct-bar-6 = tt gratr2-nt-eq _numpunct-bar-10 _numpunct-bar-10 = tt gratr2-nt-eq _numpunct _numpunct = tt gratr2-nt-eq _numone-range-4 _numone-range-4 = tt gratr2-nt-eq _numone _numone = tt gratr2-nt-eq _num-plus-5 _num-plus-5 = tt gratr2-nt-eq _num _num = tt gratr2-nt-eq _maybeMinus _maybeMinus = tt gratr2-nt-eq _maybeErased _maybeErased = tt gratr2-nt-eq _maybeCheckType _maybeCheckType = tt gratr2-nt-eq _maybeAtype _maybeAtype = tt gratr2-nt-eq _ltype _ltype = tt gratr2-nt-eq _lterms _lterms = tt gratr2-nt-eq _lterm _lterm = tt gratr2-nt-eq _lliftingType _lliftingType = tt gratr2-nt-eq _liftingType _liftingType = tt gratr2-nt-eq _leftRight _leftRight = tt gratr2-nt-eq _lam _lam = tt gratr2-nt-eq _kvar-star-20 _kvar-star-20 = tt gratr2-nt-eq _kvar-bar-19 _kvar-bar-19 = tt gratr2-nt-eq _kvar _kvar = tt gratr2-nt-eq _kind _kind = tt gratr2-nt-eq _imprt _imprt = tt gratr2-nt-eq _imports _imports = tt gratr2-nt-eq _fpth-star-18 _fpth-star-18 = tt gratr2-nt-eq _fpth-plus-14 _fpth-plus-14 = tt gratr2-nt-eq _fpth-bar-17 _fpth-bar-17 = tt gratr2-nt-eq _fpth-bar-16 _fpth-bar-16 = tt gratr2-nt-eq _fpth-bar-15 _fpth-bar-15 = tt gratr2-nt-eq _fpth _fpth = tt gratr2-nt-eq _defTermOrType _defTermOrType = tt gratr2-nt-eq _decl _decl = tt gratr2-nt-eq _comment-star-73 _comment-star-73 = tt gratr2-nt-eq _comment _comment = tt gratr2-nt-eq _cmds _cmds = tt gratr2-nt-eq _cmd _cmd = tt gratr2-nt-eq _bvar-bar-13 _bvar-bar-13 = tt gratr2-nt-eq _bvar _bvar = tt gratr2-nt-eq _binder _binder = tt gratr2-nt-eq _aws-bar-76 _aws-bar-76 = tt gratr2-nt-eq _aws-bar-75 _aws-bar-75 = tt gratr2-nt-eq _aws-bar-74 _aws-bar-74 = tt gratr2-nt-eq _aws _aws = tt gratr2-nt-eq _atype _atype = tt gratr2-nt-eq _aterm _aterm = tt gratr2-nt-eq _arrowtype _arrowtype = tt gratr2-nt-eq _args _args = tt gratr2-nt-eq _arg _arg = tt gratr2-nt-eq _anychar-bar-72 _anychar-bar-72 = tt gratr2-nt-eq _anychar-bar-71 _anychar-bar-71 = tt gratr2-nt-eq _anychar-bar-70 _anychar-bar-70 = tt gratr2-nt-eq _anychar-bar-69 _anychar-bar-69 = tt gratr2-nt-eq _anychar-bar-68 _anychar-bar-68 = tt gratr2-nt-eq _anychar _anychar = tt gratr2-nt-eq _alpha-range-2 _alpha-range-2 = tt gratr2-nt-eq _alpha-range-1 _alpha-range-1 = tt gratr2-nt-eq _alpha-bar-3 _alpha-bar-3 = tt gratr2-nt-eq _alpha _alpha = tt gratr2-nt-eq _ _ = ff open import rtn gratr2-nt cedille-start : gratr2-nt → 𝕃 gratr2-rule cedille-start _ws-plus-77 = (just "P225" , nothing , just _ws-plus-77 , inj₁ _aws :: inj₁ _ws-plus-77 :: []) :: (just "P224" , nothing , just _ws-plus-77 , inj₁ _aws :: []) :: [] cedille-start _ws = (just "P226" , nothing , just _ws , inj₁ _ws-plus-77 :: []) :: [] cedille-start _vars = (just "VarsStart" , nothing , just _vars , inj₁ _var :: []) :: (just "VarsNext" , nothing , just _vars , inj₁ _var :: inj₁ _ws :: inj₁ _vars :: []) :: [] cedille-start _var-star-12 = (just "P85" , nothing , just _var-star-12 , inj₁ _var-bar-11 :: inj₁ _var-star-12 :: []) :: (just "P84" , nothing , just _var-star-12 , []) :: [] cedille-start _var-bar-11 = (just "P83" , nothing , just _var-bar-11 , inj₁ _numpunct :: []) :: (just "P82" , nothing , just _var-bar-11 , inj₁ _alpha :: []) :: [] cedille-start _var = (just "P86" , nothing , just _var , inj₁ _alpha :: inj₁ _var-star-12 :: []) :: [] cedille-start _type = (just "embed" , just "embed_end" , just _type , inj₁ _ltype :: []) :: (just "TpLambda" , nothing , just _type , inj₁ _posinfo :: inj₂ 'λ' :: inj₁ _ows :: inj₁ _posinfo :: inj₁ _bvar :: inj₁ _ows :: inj₂ ':' :: inj₁ _ows :: inj₁ _tk :: inj₁ _ows :: inj₂ '.' :: inj₁ _ows :: inj₁ _type :: []) :: (just "TpEq" , nothing , just _type , inj₁ _term :: inj₁ _ows :: inj₂ '≃' :: inj₁ _ows :: inj₁ _term :: []) :: (just "TpArrow" , nothing , just _type , inj₁ _ltype :: inj₁ _ows :: inj₁ _arrowtype :: inj₁ _ows :: inj₁ _type :: []) :: (just "NoSpans" , nothing , just _type , inj₂ '{' :: inj₂ '^' :: inj₁ _type :: inj₁ _posinfo :: inj₂ '^' :: inj₂ '}' :: []) :: (just "Iota" , nothing , just _type , inj₁ _posinfo :: inj₂ 'ι' :: inj₁ _ows :: inj₁ _posinfo :: inj₁ _bvar :: inj₁ _optType :: inj₁ _ows :: inj₂ '.' :: inj₁ _ows :: inj₁ _type :: []) :: (just "Abs" , nothing , just _type , inj₁ _posinfo :: inj₁ _binder :: inj₁ _ows :: inj₁ _posinfo :: inj₁ _bvar :: inj₁ _ows :: inj₂ ':' :: inj₁ _ows :: inj₁ _tk :: inj₁ _ows :: inj₂ '.' :: inj₁ _ows :: inj₁ _type :: []) :: [] cedille-start _tk = (just "Tkt" , nothing , just _tk , inj₁ _type :: []) :: (just "Tkk" , just "Tkk_end" , just _tk , inj₁ _kind :: []) :: [] cedille-start _theta = (just "AbstractVars" , nothing , just _theta , inj₂ 'θ' :: inj₂ '<' :: inj₁ _ows :: inj₁ _vars :: inj₁ _ows :: inj₂ '>' :: []) :: (just "AbstractEq" , nothing , just _theta , inj₂ 'θ' :: inj₂ '+' :: []) :: (just "Abstract" , nothing , just _theta , inj₂ 'θ' :: []) :: [] cedille-start _term = (just "embed" , just "embed_end" , just _term , inj₁ _aterm :: []) :: (just "Theta" , nothing , just _term , inj₁ _posinfo :: inj₁ _theta :: inj₁ _ws :: inj₁ _lterm :: inj₁ _ows :: inj₁ _lterms :: []) :: (just "Let" , nothing , just _term , inj₁ _posinfo :: inj₂ 'l' :: inj₂ 'e' :: inj₂ 't' :: inj₁ _ws :: inj₁ _defTermOrType :: inj₁ _ws :: inj₂ 'i' :: inj₂ 'n' :: inj₁ _ws :: inj₁ _term :: []) :: (just "Lam" , nothing , just _term , inj₁ _posinfo :: inj₁ _lam :: inj₁ _ows :: inj₁ _posinfo :: inj₁ _bvar :: inj₁ _optClass :: inj₁ _ows :: inj₂ '.' :: inj₁ _ows :: inj₁ _term :: []) :: [] cedille-start _start = (just "File" , nothing , just _start , inj₁ _posinfo :: inj₁ _ows :: inj₁ _imports :: inj₂ 'm' :: inj₂ 'o' :: inj₂ 'd' :: inj₂ 'u' :: inj₂ 'l' :: inj₂ 'e' :: inj₁ _ws :: inj₁ _qvar :: inj₁ _ows :: inj₁ _params :: inj₁ _ows :: inj₂ '.' :: inj₁ _ows :: inj₁ _cmds :: inj₁ _ows :: inj₁ _posinfo :: []) :: [] cedille-start _rho = (just "RhoPlus" , nothing , just _rho , inj₂ 'ρ' :: inj₂ '+' :: []) :: (just "RhoPlain" , nothing , just _rho , inj₂ 'ρ' :: []) :: [] cedille-start _qvar = (just "P81" , nothing , just _qvar , inj₁ _var :: inj₂ '.' :: inj₁ _qvar :: []) :: (just "P80" , nothing , just _qvar , inj₁ _var :: []) :: [] cedille-start _qkvar = (just "P102" , nothing , just _qkvar , inj₁ _var :: inj₂ '.' :: inj₁ _qkvar :: []) :: (just "P101" , nothing , just _qkvar , inj₁ _kvar :: []) :: [] cedille-start _pterm = (just "Var" , nothing , just _pterm , inj₁ _posinfo :: inj₁ _qvar :: []) :: (just "Parens" , nothing , just _pterm , inj₁ _posinfo :: inj₂ '(' :: inj₁ _ows :: inj₁ _term :: inj₁ _ows :: inj₂ ')' :: inj₁ _posinfo :: []) :: (just "IotaPair" , nothing , just _pterm , inj₁ _posinfo :: inj₂ '[' :: inj₁ _ows :: inj₁ _term :: inj₁ _ows :: inj₂ ',' :: inj₁ _ows :: inj₁ _term :: inj₁ _ows :: inj₂ ']' :: inj₁ _posinfo :: []) :: (just "Hole" , nothing , just _pterm , inj₁ _posinfo :: inj₂ '●' :: []) :: [] cedille-start _posinfo = (just "Posinfo" , nothing , just _posinfo , []) :: [] cedille-start _params = (just "ParamsNil" , nothing , just _params , []) :: (just "ParamsCons" , nothing , just _params , inj₁ _ows :: inj₁ _decl :: inj₁ _params :: []) :: [] cedille-start _ows-star-78 = (just "P228" , nothing , just _ows-star-78 , inj₁ _aws :: inj₁ _ows-star-78 :: []) :: (just "P227" , nothing , just _ows-star-78 , []) :: [] cedille-start _ows = (just "P229" , nothing , just _ows , inj₁ _ows-star-78 :: []) :: [] cedille-start _otherpunct-bar-67 = (just "P201" , nothing , just _otherpunct-bar-67 , inj₁ _otherpunct-bar-66 :: []) :: (just "P200" , nothing , just _otherpunct-bar-67 , inj₂ '|' :: []) :: [] cedille-start _otherpunct-bar-66 = (just "P199" , nothing , just _otherpunct-bar-66 , inj₁ _otherpunct-bar-65 :: []) :: (just "P198" , nothing , just _otherpunct-bar-66 , inj₂ '□' :: []) :: [] cedille-start _otherpunct-bar-65 = (just "P197" , nothing , just _otherpunct-bar-65 , inj₁ _otherpunct-bar-64 :: []) :: (just "P196" , nothing , just _otherpunct-bar-65 , inj₂ 'Π' :: []) :: [] cedille-start _otherpunct-bar-64 = (just "P195" , nothing , just _otherpunct-bar-64 , inj₁ _otherpunct-bar-63 :: []) :: (just "P194" , nothing , just _otherpunct-bar-64 , inj₂ 'ι' :: []) :: [] cedille-start _otherpunct-bar-63 = (just "P193" , nothing , just _otherpunct-bar-63 , inj₁ _otherpunct-bar-62 :: []) :: (just "P192" , nothing , just _otherpunct-bar-63 , inj₂ 'λ' :: []) :: [] cedille-start _otherpunct-bar-62 = (just "P191" , nothing , just _otherpunct-bar-62 , inj₁ _otherpunct-bar-61 :: []) :: (just "P190" , nothing , just _otherpunct-bar-62 , inj₂ '∀' :: []) :: [] cedille-start _otherpunct-bar-61 = (just "P189" , nothing , just _otherpunct-bar-61 , inj₁ _otherpunct-bar-60 :: []) :: (just "P188" , nothing , just _otherpunct-bar-61 , inj₂ 'π' :: []) :: [] cedille-start _otherpunct-bar-60 = (just "P187" , nothing , just _otherpunct-bar-60 , inj₁ _otherpunct-bar-59 :: []) :: (just "P186" , nothing , just _otherpunct-bar-60 , inj₂ '★' :: []) :: [] cedille-start _otherpunct-bar-59 = (just "P185" , nothing , just _otherpunct-bar-59 , inj₁ _otherpunct-bar-58 :: []) :: (just "P184" , nothing , just _otherpunct-bar-59 , inj₂ '☆' :: []) :: [] cedille-start _otherpunct-bar-58 = (just "P183" , nothing , just _otherpunct-bar-58 , inj₁ _otherpunct-bar-57 :: []) :: (just "P182" , nothing , just _otherpunct-bar-58 , inj₂ '·' :: []) :: [] cedille-start _otherpunct-bar-57 = (just "P181" , nothing , just _otherpunct-bar-57 , inj₁ _otherpunct-bar-56 :: []) :: (just "P180" , nothing , just _otherpunct-bar-57 , inj₂ '⇐' :: []) :: [] cedille-start _otherpunct-bar-56 = (just "P179" , nothing , just _otherpunct-bar-56 , inj₁ _otherpunct-bar-55 :: []) :: (just "P178" , nothing , just _otherpunct-bar-56 , inj₂ '➔' :: []) :: [] cedille-start _otherpunct-bar-55 = (just "P177" , nothing , just _otherpunct-bar-55 , inj₁ _otherpunct-bar-54 :: []) :: (just "P176" , nothing , just _otherpunct-bar-55 , inj₂ '➾' :: []) :: [] cedille-start _otherpunct-bar-54 = (just "P175" , nothing , just _otherpunct-bar-54 , inj₁ _otherpunct-bar-53 :: []) :: (just "P174" , nothing , just _otherpunct-bar-54 , inj₂ '↑' :: []) :: [] cedille-start _otherpunct-bar-53 = (just "P173" , nothing , just _otherpunct-bar-53 , inj₁ _otherpunct-bar-52 :: []) :: (just "P172" , nothing , just _otherpunct-bar-53 , inj₂ '●' :: []) :: [] cedille-start _otherpunct-bar-52 = (just "P171" , nothing , just _otherpunct-bar-52 , inj₁ _otherpunct-bar-51 :: []) :: (just "P170" , nothing , just _otherpunct-bar-52 , inj₂ '(' :: []) :: [] cedille-start _otherpunct-bar-51 = (just "P169" , nothing , just _otherpunct-bar-51 , inj₁ _otherpunct-bar-50 :: []) :: (just "P168" , nothing , just _otherpunct-bar-51 , inj₂ ')' :: []) :: [] cedille-start _otherpunct-bar-50 = (just "P167" , nothing , just _otherpunct-bar-50 , inj₁ _otherpunct-bar-49 :: []) :: (just "P166" , nothing , just _otherpunct-bar-50 , inj₂ ':' :: []) :: [] cedille-start _otherpunct-bar-49 = (just "P165" , nothing , just _otherpunct-bar-49 , inj₁ _otherpunct-bar-48 :: []) :: (just "P164" , nothing , just _otherpunct-bar-49 , inj₂ '.' :: []) :: [] cedille-start _otherpunct-bar-48 = (just "P163" , nothing , just _otherpunct-bar-48 , inj₁ _otherpunct-bar-47 :: []) :: (just "P162" , nothing , just _otherpunct-bar-48 , inj₂ '[' :: []) :: [] cedille-start _otherpunct-bar-47 = (just "P161" , nothing , just _otherpunct-bar-47 , inj₁ _otherpunct-bar-46 :: []) :: (just "P160" , nothing , just _otherpunct-bar-47 , inj₂ ']' :: []) :: [] cedille-start _otherpunct-bar-46 = (just "P159" , nothing , just _otherpunct-bar-46 , inj₁ _otherpunct-bar-45 :: []) :: (just "P158" , nothing , just _otherpunct-bar-46 , inj₂ ',' :: []) :: [] cedille-start _otherpunct-bar-45 = (just "P157" , nothing , just _otherpunct-bar-45 , inj₁ _otherpunct-bar-44 :: []) :: (just "P156" , nothing , just _otherpunct-bar-45 , inj₂ '!' :: []) :: [] cedille-start _otherpunct-bar-44 = (just "P155" , nothing , just _otherpunct-bar-44 , inj₁ _otherpunct-bar-43 :: []) :: (just "P154" , nothing , just _otherpunct-bar-44 , inj₂ '{' :: []) :: [] cedille-start _otherpunct-bar-43 = (just "P153" , nothing , just _otherpunct-bar-43 , inj₁ _otherpunct-bar-42 :: []) :: (just "P152" , nothing , just _otherpunct-bar-43 , inj₂ '}' :: []) :: [] cedille-start _otherpunct-bar-42 = (just "P151" , nothing , just _otherpunct-bar-42 , inj₁ _otherpunct-bar-41 :: []) :: (just "P150" , nothing , just _otherpunct-bar-42 , inj₂ '⇒' :: []) :: [] cedille-start _otherpunct-bar-41 = (just "P149" , nothing , just _otherpunct-bar-41 , inj₁ _otherpunct-bar-40 :: []) :: (just "P148" , nothing , just _otherpunct-bar-41 , inj₂ '?' :: []) :: [] cedille-start _otherpunct-bar-40 = (just "P147" , nothing , just _otherpunct-bar-40 , inj₁ _otherpunct-bar-39 :: []) :: (just "P146" , nothing , just _otherpunct-bar-40 , inj₂ 'Λ' :: []) :: [] cedille-start _otherpunct-bar-39 = (just "P145" , nothing , just _otherpunct-bar-39 , inj₁ _otherpunct-bar-38 :: []) :: (just "P144" , nothing , just _otherpunct-bar-39 , inj₂ 'ρ' :: []) :: [] cedille-start _otherpunct-bar-38 = (just "P143" , nothing , just _otherpunct-bar-38 , inj₁ _otherpunct-bar-37 :: []) :: (just "P142" , nothing , just _otherpunct-bar-38 , inj₂ 'ε' :: []) :: [] cedille-start _otherpunct-bar-37 = (just "P141" , nothing , just _otherpunct-bar-37 , inj₁ _otherpunct-bar-36 :: []) :: (just "P140" , nothing , just _otherpunct-bar-37 , inj₂ 'β' :: []) :: [] cedille-start _otherpunct-bar-36 = (just "P139" , nothing , just _otherpunct-bar-36 , inj₁ _otherpunct-bar-35 :: []) :: (just "P138" , nothing , just _otherpunct-bar-36 , inj₂ '-' :: []) :: [] cedille-start _otherpunct-bar-35 = (just "P137" , nothing , just _otherpunct-bar-35 , inj₁ _otherpunct-bar-34 :: []) :: (just "P136" , nothing , just _otherpunct-bar-35 , inj₂ '𝒌' :: []) :: [] cedille-start _otherpunct-bar-34 = (just "P135" , nothing , just _otherpunct-bar-34 , inj₁ _otherpunct-bar-33 :: []) :: (just "P134" , nothing , just _otherpunct-bar-34 , inj₂ '=' :: []) :: [] cedille-start _otherpunct-bar-33 = (just "P133" , nothing , just _otherpunct-bar-33 , inj₁ _otherpunct-bar-32 :: []) :: (just "P132" , nothing , just _otherpunct-bar-33 , inj₂ 'ς' :: []) :: [] cedille-start _otherpunct-bar-32 = (just "P131" , nothing , just _otherpunct-bar-32 , inj₁ _otherpunct-bar-31 :: []) :: (just "P130" , nothing , just _otherpunct-bar-32 , inj₂ 'θ' :: []) :: [] cedille-start _otherpunct-bar-31 = (just "P129" , nothing , just _otherpunct-bar-31 , inj₁ _otherpunct-bar-30 :: []) :: (just "P128" , nothing , just _otherpunct-bar-31 , inj₂ '+' :: []) :: [] cedille-start _otherpunct-bar-30 = (just "P127" , nothing , just _otherpunct-bar-30 , inj₁ _otherpunct-bar-29 :: []) :: (just "P126" , nothing , just _otherpunct-bar-30 , inj₂ '<' :: []) :: [] cedille-start _otherpunct-bar-29 = (just "P125" , nothing , just _otherpunct-bar-29 , inj₁ _otherpunct-bar-28 :: []) :: (just "P124" , nothing , just _otherpunct-bar-29 , inj₂ '>' :: []) :: [] cedille-start _otherpunct-bar-28 = (just "P123" , nothing , just _otherpunct-bar-28 , inj₁ _otherpunct-bar-27 :: []) :: (just "P122" , nothing , just _otherpunct-bar-28 , inj₂ '≃' :: []) :: [] cedille-start _otherpunct-bar-27 = (just "P121" , nothing , just _otherpunct-bar-27 , inj₁ _otherpunct-bar-26 :: []) :: (just "P120" , nothing , just _otherpunct-bar-27 , inj₂ '\"' :: []) :: [] cedille-start _otherpunct-bar-26 = (just "P119" , nothing , just _otherpunct-bar-26 , inj₁ _otherpunct-bar-25 :: []) :: (just "P118" , nothing , just _otherpunct-bar-26 , inj₂ 'δ' :: []) :: [] cedille-start _otherpunct-bar-25 = (just "P117" , nothing , just _otherpunct-bar-25 , inj₁ _otherpunct-bar-24 :: []) :: (just "P116" , nothing , just _otherpunct-bar-25 , inj₂ 'χ' :: []) :: [] cedille-start _otherpunct-bar-24 = (just "P115" , nothing , just _otherpunct-bar-24 , inj₁ _otherpunct-bar-23 :: []) :: (just "P114" , nothing , just _otherpunct-bar-24 , inj₂ 'μ' :: []) :: [] cedille-start _otherpunct-bar-23 = (just "P113" , nothing , just _otherpunct-bar-23 , inj₁ _otherpunct-bar-22 :: []) :: (just "P112" , nothing , just _otherpunct-bar-23 , inj₂ 'υ' :: []) :: [] cedille-start _otherpunct-bar-22 = (just "P111" , nothing , just _otherpunct-bar-22 , inj₁ _otherpunct-bar-21 :: []) :: (just "P110" , nothing , just _otherpunct-bar-22 , inj₂ 'φ' :: []) :: [] cedille-start _otherpunct-bar-21 = (just "P109" , nothing , just _otherpunct-bar-21 , inj₂ 'ω' :: []) :: (just "P108" , nothing , just _otherpunct-bar-21 , inj₂ '◂' :: []) :: [] cedille-start _otherpunct = (just "P202" , nothing , just _otherpunct , inj₁ _otherpunct-bar-67 :: []) :: [] cedille-start _optType = (just "SomeType" , nothing , just _optType , inj₁ _ows :: inj₂ ':' :: inj₁ _ows :: inj₁ _type :: []) :: (just "NoType" , nothing , just _optType , []) :: [] cedille-start _optTerm = (just "SomeTerm" , nothing , just _optTerm , inj₁ _ows :: inj₂ '{' :: inj₁ _ows :: inj₁ _term :: inj₁ _ows :: inj₂ '}' :: inj₁ _posinfo :: []) :: (just "NoTerm" , nothing , just _optTerm , []) :: [] cedille-start _optClass = (just "SomeClass" , nothing , just _optClass , inj₁ _ows :: inj₂ ':' :: inj₁ _ows :: inj₁ _tk :: []) :: (just "NoClass" , nothing , just _optClass , []) :: [] cedille-start _optAs = (just "SomeOptAs" , nothing , just _optAs , inj₁ _ows :: inj₂ 'a' :: inj₂ 's' :: inj₁ _ws :: inj₁ _var :: []) :: (just "NoOptAs" , nothing , just _optAs , []) :: [] cedille-start _numpunct-bar-9 = (just "P76" , nothing , just _numpunct-bar-9 , inj₁ _numpunct-bar-8 :: []) :: (just "P75" , nothing , just _numpunct-bar-9 , inj₂ '\'' :: []) :: [] cedille-start _numpunct-bar-8 = (just "P74" , nothing , just _numpunct-bar-8 , inj₁ _numpunct-bar-7 :: []) :: (just "P73" , nothing , just _numpunct-bar-8 , inj₂ '-' :: []) :: [] cedille-start _numpunct-bar-7 = (just "P72" , nothing , just _numpunct-bar-7 , inj₁ _numpunct-bar-6 :: []) :: (just "P71" , nothing , just _numpunct-bar-7 , inj₂ '~' :: []) :: [] cedille-start _numpunct-bar-6 = (just "P70" , nothing , just _numpunct-bar-6 , inj₂ '_' :: []) :: (just "P69" , nothing , just _numpunct-bar-6 , inj₂ '#' :: []) :: [] cedille-start _numpunct-bar-10 = (just "P78" , nothing , just _numpunct-bar-10 , inj₁ _numpunct-bar-9 :: []) :: (just "P77" , nothing , just _numpunct-bar-10 , inj₁ _numone :: []) :: [] cedille-start _numpunct = (just "P79" , nothing , just _numpunct , inj₁ _numpunct-bar-10 :: []) :: [] cedille-start _numone-range-4 = (just "P64" , nothing , just _numone-range-4 , inj₂ '9' :: []) :: (just "P63" , nothing , just _numone-range-4 , inj₂ '8' :: []) :: (just "P62" , nothing , just _numone-range-4 , inj₂ '7' :: []) :: (just "P61" , nothing , just _numone-range-4 , inj₂ '6' :: []) :: (just "P60" , nothing , just _numone-range-4 , inj₂ '5' :: []) :: (just "P59" , nothing , just _numone-range-4 , inj₂ '4' :: []) :: (just "P58" , nothing , just _numone-range-4 , inj₂ '3' :: []) :: (just "P57" , nothing , just _numone-range-4 , inj₂ '2' :: []) :: (just "P56" , nothing , just _numone-range-4 , inj₂ '1' :: []) :: (just "P55" , nothing , just _numone-range-4 , inj₂ '0' :: []) :: [] cedille-start _numone = (just "P65" , nothing , just _numone , inj₁ _numone-range-4 :: []) :: [] cedille-start _num-plus-5 = (just "P67" , nothing , just _num-plus-5 , inj₁ _numone :: inj₁ _num-plus-5 :: []) :: (just "P66" , nothing , just _num-plus-5 , inj₁ _numone :: []) :: [] cedille-start _num = (just "P68" , nothing , just _num , inj₁ _num-plus-5 :: []) :: [] cedille-start _maybeMinus = (just "EpsHnf" , nothing , just _maybeMinus , []) :: (just "EpsHanf" , nothing , just _maybeMinus , inj₂ '-' :: []) :: [] cedille-start _maybeErased = (just "NotErased" , nothing , just _maybeErased , []) :: (just "Erased" , nothing , just _maybeErased , inj₂ '-' :: inj₁ _ows :: []) :: [] cedille-start _maybeCheckType = (just "Type" , nothing , just _maybeCheckType , inj₁ _ows :: inj₂ '◂' :: inj₁ _ows :: inj₁ _type :: []) :: (just "NoCheckType" , nothing , just _maybeCheckType , []) :: [] cedille-start _maybeAtype = (just "NoAtype" , nothing , just _maybeAtype , []) :: (just "Atype" , nothing , just _maybeAtype , inj₁ _ows :: inj₁ _atype :: []) :: [] cedille-start _ltype = (just "embed" , nothing , just _ltype , inj₁ _atype :: []) :: (just "Lft" , nothing , just _ltype , inj₁ _posinfo :: inj₂ '↑' :: inj₁ _ows :: inj₁ _posinfo :: inj₁ _var :: inj₁ _ows :: inj₂ '.' :: inj₁ _ows :: inj₁ _term :: inj₁ _ows :: inj₂ ':' :: inj₁ _ows :: inj₁ _lliftingType :: []) :: [] cedille-start _lterms = (just "LtermsNil" , nothing , just _lterms , inj₁ _posinfo :: []) :: (just "LtermsCons" , nothing , just _lterms , inj₁ _ws :: inj₁ _maybeErased :: inj₁ _lterm :: inj₁ _lterms :: []) :: [] cedille-start _lterm = (just "embed" , just "embed_end" , just _lterm , inj₁ _pterm :: []) :: (just "Sigma" , nothing , just _lterm , inj₁ _posinfo :: inj₂ 'ς' :: inj₁ _ows :: inj₁ _lterm :: []) :: (just "Rho" , nothing , just _lterm , inj₁ _posinfo :: inj₁ _rho :: inj₁ _ows :: inj₁ _lterm :: inj₁ _ows :: inj₂ '-' :: inj₁ _ows :: inj₁ _lterm :: []) :: (just "Phi" , nothing , just _lterm , inj₁ _posinfo :: inj₂ 'φ' :: inj₁ _ows :: inj₁ _lterm :: inj₁ _ows :: inj₂ '-' :: inj₁ _ows :: inj₁ _lterm :: inj₁ _ows :: inj₂ '{' :: inj₁ _ows :: inj₁ _term :: inj₁ _ows :: inj₂ '}' :: inj₁ _posinfo :: []) :: (just "Epsilon" , nothing , just _lterm , inj₁ _posinfo :: inj₂ 'ε' :: inj₁ _leftRight :: inj₁ _maybeMinus :: inj₁ _ows :: inj₁ _lterm :: []) :: (just "Chi" , nothing , just _lterm , inj₁ _posinfo :: inj₂ 'χ' :: inj₁ _maybeAtype :: inj₁ _ows :: inj₂ '-' :: inj₁ _ows :: inj₁ _lterm :: []) :: (just "Beta" , nothing , just _lterm , inj₁ _posinfo :: inj₂ 'β' :: inj₁ _optTerm :: []) :: [] cedille-start _lliftingType = (just "LiftStar" , nothing , just _lliftingType , inj₁ _posinfo :: inj₂ '☆' :: []) :: (just "LiftParens" , nothing , just _lliftingType , inj₁ _posinfo :: inj₂ '(' :: inj₁ _ows :: inj₁ _liftingType :: inj₁ _ows :: inj₂ ')' :: inj₁ _posinfo :: []) :: [] cedille-start _liftingType = (just "embed" , nothing , just _liftingType , inj₁ _lliftingType :: []) :: (just "LiftTpArrow" , nothing , just _liftingType , inj₁ _type :: inj₁ _ows :: inj₂ '➔' :: inj₁ _ows :: inj₁ _liftingType :: []) :: (just "LiftPi" , nothing , just _liftingType , inj₁ _posinfo :: inj₂ 'Π' :: inj₁ _ows :: inj₁ _bvar :: inj₁ _ows :: inj₂ ':' :: inj₁ _ows :: inj₁ _type :: inj₁ _ows :: inj₂ '.' :: inj₁ _ows :: inj₁ _liftingType :: []) :: [] cedille-start _leftRight = (just "Right" , nothing , just _leftRight , inj₂ 'r' :: []) :: (just "Left" , nothing , just _leftRight , inj₂ 'l' :: []) :: (just "Both" , nothing , just _leftRight , []) :: [] cedille-start _lam = (just "KeptLambda" , nothing , just _lam , inj₂ 'λ' :: []) :: (just "ErasedLambda" , nothing , just _lam , inj₂ 'Λ' :: []) :: [] cedille-start _kvar-star-20 = (just "P106" , nothing , just _kvar-star-20 , inj₁ _kvar-bar-19 :: inj₁ _kvar-star-20 :: []) :: (just "P105" , nothing , just _kvar-star-20 , []) :: [] cedille-start _kvar-bar-19 = (just "P104" , nothing , just _kvar-bar-19 , inj₁ _numpunct :: []) :: (just "P103" , nothing , just _kvar-bar-19 , inj₁ _alpha :: []) :: [] cedille-start _kvar = (just "P107" , nothing , just _kvar , inj₂ '𝒌' :: inj₁ _kvar-star-20 :: []) :: [] cedille-start _kind = (just "Star" , nothing , just _kind , inj₁ _posinfo :: inj₂ '★' :: []) :: (just "KndVar" , nothing , just _kind , inj₁ _posinfo :: inj₁ _qkvar :: inj₁ _args :: []) :: (just "KndTpArrow" , nothing , just _kind , inj₁ _ltype :: inj₁ _ows :: inj₂ '➔' :: inj₁ _ows :: inj₁ _kind :: []) :: (just "KndPi" , nothing , just _kind , inj₁ _posinfo :: inj₂ 'Π' :: inj₁ _ows :: inj₁ _posinfo :: inj₁ _bvar :: inj₁ _ows :: inj₂ ':' :: inj₁ _ows :: inj₁ _tk :: inj₁ _ows :: inj₂ '.' :: inj₁ _ows :: inj₁ _kind :: []) :: (just "KndParens" , nothing , just _kind , inj₁ _posinfo :: inj₂ '(' :: inj₁ _ows :: inj₁ _kind :: inj₁ _ows :: inj₂ ')' :: inj₁ _posinfo :: []) :: [] cedille-start _imprt = (just "Import" , nothing , just _imprt , inj₁ _posinfo :: inj₂ 'i' :: inj₂ 'm' :: inj₂ 'p' :: inj₂ 'o' :: inj₂ 'r' :: inj₂ 't' :: inj₁ _ws :: inj₁ _fpth :: inj₁ _optAs :: inj₁ _args :: inj₁ _ows :: inj₂ '.' :: inj₁ _posinfo :: []) :: [] cedille-start _imports = (just "ImportsStart" , nothing , just _imports , []) :: (just "ImportsNext" , nothing , just _imports , inj₁ _imprt :: inj₁ _ows :: inj₁ _imports :: []) :: [] cedille-start _fpth-star-18 = (just "P99" , nothing , just _fpth-star-18 , inj₁ _fpth-bar-17 :: inj₁ _fpth-star-18 :: []) :: (just "P98" , nothing , just _fpth-star-18 , []) :: [] cedille-start _fpth-plus-14 = (just "P91" , nothing , just _fpth-plus-14 , inj₂ '.' :: inj₂ '.' :: inj₂ '/' :: inj₁ _fpth-plus-14 :: []) :: (just "P90" , nothing , just _fpth-plus-14 , inj₂ '.' :: inj₂ '.' :: inj₂ '/' :: []) :: [] cedille-start _fpth-bar-17 = (just "P97" , nothing , just _fpth-bar-17 , inj₁ _fpth-bar-16 :: []) :: (just "P96" , nothing , just _fpth-bar-17 , inj₁ _alpha :: []) :: [] cedille-start _fpth-bar-16 = (just "P95" , nothing , just _fpth-bar-16 , inj₂ '/' :: []) :: (just "P94" , nothing , just _fpth-bar-16 , inj₁ _numpunct :: []) :: [] cedille-start _fpth-bar-15 = (just "P93" , nothing , just _fpth-bar-15 , inj₁ _fpth-plus-14 :: []) :: (just "P92" , nothing , just _fpth-bar-15 , inj₁ _alpha :: []) :: [] cedille-start _fpth = (just "P100" , nothing , just _fpth , inj₁ _fpth-bar-15 :: inj₁ _fpth-star-18 :: []) :: [] cedille-start _defTermOrType = (just "DefType" , nothing , just _defTermOrType , inj₁ _posinfo :: inj₁ _var :: inj₁ _ows :: inj₂ '◂' :: inj₁ _ows :: inj₁ _kind :: inj₁ _ows :: inj₂ '=' :: inj₁ _ows :: inj₁ _type :: []) :: (just "DefTerm" , nothing , just _defTermOrType , inj₁ _posinfo :: inj₁ _var :: inj₁ _maybeCheckType :: inj₁ _ows :: inj₂ '=' :: inj₁ _ows :: inj₁ _term :: []) :: [] cedille-start _decl = (just "Decl" , nothing , just _decl , inj₁ _posinfo :: inj₂ '(' :: inj₁ _ows :: inj₁ _posinfo :: inj₁ _bvar :: inj₁ _ows :: inj₂ ':' :: inj₁ _ows :: inj₁ _tk :: inj₁ _ows :: inj₂ ')' :: inj₁ _posinfo :: []) :: [] cedille-start _comment-star-73 = (just "P215" , nothing , just _comment-star-73 , inj₁ _anychar :: inj₁ _comment-star-73 :: []) :: (just "P214" , nothing , just _comment-star-73 , []) :: [] cedille-start _comment = (just "P216" , nothing , just _comment , inj₂ '%' :: inj₁ _comment-star-73 :: inj₂ '\n' :: []) :: [] cedille-start _cmds = (just "CmdsStart" , nothing , just _cmds , []) :: (just "CmdsNext" , nothing , just _cmds , inj₁ _cmd :: inj₁ _ws :: inj₁ _cmds :: []) :: [] cedille-start _cmd = (just "ImportCmd" , nothing , just _cmd , inj₁ _imprt :: []) :: (just "DefTermOrType" , nothing , just _cmd , inj₁ _defTermOrType :: inj₁ _ows :: inj₂ '.' :: inj₁ _posinfo :: []) :: (just "DefKind" , nothing , just _cmd , inj₁ _posinfo :: inj₁ _kvar :: inj₁ _params :: inj₁ _ows :: inj₂ '=' :: inj₁ _ows :: inj₁ _kind :: inj₁ _ows :: inj₂ '.' :: inj₁ _posinfo :: []) :: [] cedille-start _bvar-bar-13 = (just "P88" , nothing , just _bvar-bar-13 , inj₁ _var :: []) :: (just "P87" , nothing , just _bvar-bar-13 , inj₂ '_' :: []) :: [] cedille-start _bvar = (just "P89" , nothing , just _bvar , inj₁ _bvar-bar-13 :: []) :: [] cedille-start _binder = (just "Pi" , nothing , just _binder , inj₂ 'Π' :: []) :: (just "All" , nothing , just _binder , inj₂ '∀' :: []) :: [] cedille-start _aws-bar-76 = (just "P222" , nothing , just _aws-bar-76 , inj₁ _aws-bar-75 :: []) :: (just "P221" , nothing , just _aws-bar-76 , inj₂ '\n' :: []) :: [] cedille-start _aws-bar-75 = (just "P220" , nothing , just _aws-bar-75 , inj₁ _aws-bar-74 :: []) :: (just "P219" , nothing , just _aws-bar-75 , inj₂ '\t' :: []) :: [] cedille-start _aws-bar-74 = (just "P218" , nothing , just _aws-bar-74 , inj₁ _comment :: []) :: (just "P217" , nothing , just _aws-bar-74 , inj₂ ' ' :: []) :: [] cedille-start _aws = (just "P223" , nothing , just _aws , inj₁ _aws-bar-76 :: []) :: [] cedille-start _atype = (just "TpVar" , nothing , just _atype , inj₁ _posinfo :: inj₁ _qvar :: []) :: (just "TpParens" , nothing , just _atype , inj₁ _posinfo :: inj₂ '(' :: inj₁ _ows :: inj₁ _type :: inj₁ _ows :: inj₂ ')' :: inj₁ _posinfo :: []) :: (just "TpHole" , nothing , just _atype , inj₁ _posinfo :: inj₂ '●' :: []) :: [] cedille-start _aterm = (just "embed" , nothing , just _aterm , inj₁ _lterm :: []) :: [] cedille-start _arrowtype = (just "UnerasedArrow" , nothing , just _arrowtype , inj₂ '➔' :: []) :: (just "ErasedArrow" , nothing , just _arrowtype , inj₂ '➾' :: []) :: [] cedille-start _args = (just "ArgsNil" , nothing , just _args , inj₁ _posinfo :: []) :: (just "ArgsCons" , nothing , just _args , inj₁ _arg :: inj₁ _args :: []) :: [] cedille-start _arg = (just "TypeArg" , nothing , just _arg , inj₁ _ows :: inj₂ '·' :: inj₁ _ws :: inj₁ _atype :: []) :: (just "TermArg" , nothing , just _arg , inj₁ _ws :: inj₁ _lterm :: []) :: [] cedille-start _anychar-bar-72 = (just "P212" , nothing , just _anychar-bar-72 , inj₁ _anychar-bar-71 :: []) :: (just "P211" , nothing , just _anychar-bar-72 , inj₁ _alpha :: []) :: [] cedille-start _anychar-bar-71 = (just "P210" , nothing , just _anychar-bar-71 , inj₁ _anychar-bar-70 :: []) :: (just "P209" , nothing , just _anychar-bar-71 , inj₁ _numpunct :: []) :: [] cedille-start _anychar-bar-70 = (just "P208" , nothing , just _anychar-bar-70 , inj₁ _anychar-bar-69 :: []) :: (just "P207" , nothing , just _anychar-bar-70 , inj₂ '\t' :: []) :: [] cedille-start _anychar-bar-69 = (just "P206" , nothing , just _anychar-bar-69 , inj₁ _anychar-bar-68 :: []) :: (just "P205" , nothing , just _anychar-bar-69 , inj₂ ' ' :: []) :: [] cedille-start _anychar-bar-68 = (just "P204" , nothing , just _anychar-bar-68 , inj₁ _otherpunct :: []) :: (just "P203" , nothing , just _anychar-bar-68 , inj₂ '%' :: []) :: [] cedille-start _anychar = (just "P213" , nothing , just _anychar , inj₁ _anychar-bar-72 :: []) :: [] cedille-start _alpha-range-2 = (just "P51" , nothing , just _alpha-range-2 , inj₂ 'Z' :: []) :: (just "P50" , nothing , just _alpha-range-2 , inj₂ 'Y' :: []) :: (just "P49" , nothing , just _alpha-range-2 , inj₂ 'X' :: []) :: (just "P48" , nothing , just _alpha-range-2 , inj₂ 'W' :: []) :: (just "P47" , nothing , just _alpha-range-2 , inj₂ 'V' :: []) :: (just "P46" , nothing , just _alpha-range-2 , inj₂ 'U' :: []) :: (just "P45" , nothing , just _alpha-range-2 , inj₂ 'T' :: []) :: (just "P44" , nothing , just _alpha-range-2 , inj₂ 'S' :: []) :: (just "P43" , nothing , just _alpha-range-2 , inj₂ 'R' :: []) :: (just "P42" , nothing , just _alpha-range-2 , inj₂ 'Q' :: []) :: (just "P41" , nothing , just _alpha-range-2 , inj₂ 'P' :: []) :: (just "P40" , nothing , just _alpha-range-2 , inj₂ 'O' :: []) :: (just "P39" , nothing , just _alpha-range-2 , inj₂ 'N' :: []) :: (just "P38" , nothing , just _alpha-range-2 , inj₂ 'M' :: []) :: (just "P37" , nothing , just _alpha-range-2 , inj₂ 'L' :: []) :: (just "P36" , nothing , just _alpha-range-2 , inj₂ 'K' :: []) :: (just "P35" , nothing , just _alpha-range-2 , inj₂ 'J' :: []) :: (just "P34" , nothing , just _alpha-range-2 , inj₂ 'I' :: []) :: (just "P33" , nothing , just _alpha-range-2 , inj₂ 'H' :: []) :: (just "P32" , nothing , just _alpha-range-2 , inj₂ 'G' :: []) :: (just "P31" , nothing , just _alpha-range-2 , inj₂ 'F' :: []) :: (just "P30" , nothing , just _alpha-range-2 , inj₂ 'E' :: []) :: (just "P29" , nothing , just _alpha-range-2 , inj₂ 'D' :: []) :: (just "P28" , nothing , just _alpha-range-2 , inj₂ 'C' :: []) :: (just "P27" , nothing , just _alpha-range-2 , inj₂ 'B' :: []) :: (just "P26" , nothing , just _alpha-range-2 , inj₂ 'A' :: []) :: [] cedille-start _alpha-range-1 = (just "P9" , nothing , just _alpha-range-1 , inj₂ 'j' :: []) :: (just "P8" , nothing , just _alpha-range-1 , inj₂ 'i' :: []) :: (just "P7" , nothing , just _alpha-range-1 , inj₂ 'h' :: []) :: (just "P6" , nothing , just _alpha-range-1 , inj₂ 'g' :: []) :: (just "P5" , nothing , just _alpha-range-1 , inj₂ 'f' :: []) :: (just "P4" , nothing , just _alpha-range-1 , inj₂ 'e' :: []) :: (just "P3" , nothing , just _alpha-range-1 , inj₂ 'd' :: []) :: (just "P25" , nothing , just _alpha-range-1 , inj₂ 'z' :: []) :: (just "P24" , nothing , just _alpha-range-1 , inj₂ 'y' :: []) :: (just "P23" , nothing , just _alpha-range-1 , inj₂ 'x' :: []) :: (just "P22" , nothing , just _alpha-range-1 , inj₂ 'w' :: []) :: (just "P21" , nothing , just _alpha-range-1 , inj₂ 'v' :: []) :: (just "P20" , nothing , just _alpha-range-1 , inj₂ 'u' :: []) :: (just "P2" , nothing , just _alpha-range-1 , inj₂ 'c' :: []) :: (just "P19" , nothing , just _alpha-range-1 , inj₂ 't' :: []) :: (just "P18" , nothing , just _alpha-range-1 , inj₂ 's' :: []) :: (just "P17" , nothing , just _alpha-range-1 , inj₂ 'r' :: []) :: (just "P16" , nothing , just _alpha-range-1 , inj₂ 'q' :: []) :: (just "P15" , nothing , just _alpha-range-1 , inj₂ 'p' :: []) :: (just "P14" , nothing , just _alpha-range-1 , inj₂ 'o' :: []) :: (just "P13" , nothing , just _alpha-range-1 , inj₂ 'n' :: []) :: (just "P12" , nothing , just _alpha-range-1 , inj₂ 'm' :: []) :: (just "P11" , nothing , just _alpha-range-1 , inj₂ 'l' :: []) :: (just "P10" , nothing , just _alpha-range-1 , inj₂ 'k' :: []) :: (just "P1" , nothing , just _alpha-range-1 , inj₂ 'b' :: []) :: (just "P0" , nothing , just _alpha-range-1 , inj₂ 'a' :: []) :: [] cedille-start _alpha-bar-3 = (just "P53" , nothing , just _alpha-bar-3 , inj₁ _alpha-range-2 :: []) :: (just "P52" , nothing , just _alpha-bar-3 , inj₁ _alpha-range-1 :: []) :: [] cedille-start _alpha = (just "P54" , nothing , just _alpha , inj₁ _alpha-bar-3 :: []) :: [] cedille-return : maybe gratr2-nt → 𝕃 gratr2-rule cedille-return (just _pterm) = (nothing , nothing , just _pterm , inj₁ _ows :: inj₂ '.' :: inj₁ _ows :: inj₁ _num :: inj₁ _posinfo :: []) :: [] cedille-return (just _ltype) = (nothing , nothing , just _ltype , inj₁ _ws :: inj₁ _lterm :: []) :: (nothing , nothing , just _ltype , inj₁ _ws :: inj₂ '·' :: inj₁ _ws :: inj₁ _atype :: []) :: [] cedille-return (just _liftingType) = (nothing , nothing , just _liftingType , inj₁ _ows :: inj₂ '➔' :: inj₁ _ows :: inj₁ _liftingType :: []) :: [] cedille-return (just _kind) = (nothing , nothing , just _kind , inj₁ _ows :: inj₂ '➔' :: inj₁ _ows :: inj₁ _kind :: []) :: [] cedille-return (just _aterm) = (nothing , nothing , just _aterm , inj₁ _ws :: inj₂ '·' :: inj₁ _ws :: inj₁ _atype :: []) :: (nothing , nothing , just _aterm , inj₁ _ws :: inj₁ _maybeErased :: inj₁ _aterm :: []) :: [] cedille-return _ = [] cedille-rtn : gratr2-rtn cedille-rtn = record { start = _start ; _eq_ = gratr2-nt-eq ; gratr2-start = cedille-start ; gratr2-return = cedille-return } open import run ptr open noderiv ------------------------------------------ -- Length-decreasing rules ------------------------------------------ len-dec-rewrite : Run → maybe (Run × ℕ) len-dec-rewrite {- Abs-} ((Id "Abs") :: (ParseTree (parsed-posinfo x0)) :: (ParseTree (parsed-binder x1)) :: (ParseTree parsed-ows) :: (ParseTree (parsed-posinfo x2)) :: (ParseTree (parsed-bvar x3)) :: (ParseTree parsed-ows) :: (InputChar ':') :: (ParseTree parsed-ows) :: (ParseTree (parsed-tk x4)) :: (ParseTree parsed-ows) :: (InputChar '.') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-type x5)) rest) = just (ParseTree (parsed-type (norm-type (Abs x0 x1 x2 x3 x4 x5))) ::' rest , 14) len-dec-rewrite {- Abstract-} ((Id "Abstract") :: _::_(InputChar 'θ') rest) = just (ParseTree (parsed-theta (norm-theta Abstract)) ::' rest , 2) len-dec-rewrite {- AbstractEq-} ((Id "AbstractEq") :: (InputChar 'θ') :: _::_(InputChar '+') rest) = just (ParseTree (parsed-theta (norm-theta AbstractEq)) ::' rest , 3) len-dec-rewrite {- AbstractVars-} ((Id "AbstractVars") :: (InputChar 'θ') :: (InputChar '<') :: (ParseTree parsed-ows) :: (ParseTree (parsed-vars x0)) :: (ParseTree parsed-ows) :: _::_(InputChar '>') rest) = just (ParseTree (parsed-theta (norm-theta (AbstractVars x0))) ::' rest , 7) len-dec-rewrite {- All-} ((Id "All") :: _::_(InputChar '∀') rest) = just (ParseTree (parsed-binder (norm-binder All)) ::' rest , 2) len-dec-rewrite {- App-} ((ParseTree (parsed-aterm x0)) :: (ParseTree parsed-ws) :: (ParseTree (parsed-maybeErased x1)) :: _::_(ParseTree (parsed-aterm x2)) rest) = just (ParseTree (parsed-aterm (norm-term (App x0 x1 x2))) ::' rest , 4) len-dec-rewrite {- AppTp-} ((ParseTree (parsed-aterm x0)) :: (ParseTree parsed-ws) :: (InputChar '·') :: (ParseTree parsed-ws) :: _::_(ParseTree (parsed-atype x1)) rest) = just (ParseTree (parsed-aterm (norm-term (AppTp x0 x1))) ::' rest , 5) len-dec-rewrite {- ArgsCons-} ((Id "ArgsCons") :: (ParseTree (parsed-arg x0)) :: _::_(ParseTree (parsed-args x1)) rest) = just (ParseTree (parsed-args (norm-args (ArgsCons x0 x1))) ::' rest , 3) len-dec-rewrite {- ArgsNil-} ((Id "ArgsNil") :: _::_(ParseTree (parsed-posinfo x0)) rest) = just (ParseTree (parsed-args (norm-args (ArgsNil x0))) ::' rest , 2) len-dec-rewrite {- Atype-} ((Id "Atype") :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-atype x0)) rest) = just (ParseTree (parsed-maybeAtype (norm-maybeAtype (Atype x0))) ::' rest , 3) len-dec-rewrite {- Beta-} ((Id "Beta") :: (ParseTree (parsed-posinfo x0)) :: (InputChar 'β') :: _::_(ParseTree (parsed-optTerm x1)) rest) = just (ParseTree (parsed-lterm (norm-term (Beta x0 x1))) ::' rest , 4) len-dec-rewrite {- Chi-} ((Id "Chi") :: (ParseTree (parsed-posinfo x0)) :: (InputChar 'χ') :: (ParseTree (parsed-maybeAtype x1)) :: (ParseTree parsed-ows) :: (InputChar '-') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-lterm x2)) rest) = just (ParseTree (parsed-lterm (norm-term (Chi x0 x1 x2))) ::' rest , 8) len-dec-rewrite {- CmdsNext-} ((Id "CmdsNext") :: (ParseTree (parsed-cmd x0)) :: (ParseTree parsed-ws) :: _::_(ParseTree (parsed-cmds x1)) rest) = just (ParseTree (parsed-cmds (norm-cmds (CmdsNext x0 x1))) ::' rest , 4) len-dec-rewrite {- Decl-} ((Id "Decl") :: (ParseTree (parsed-posinfo x0)) :: (InputChar '(') :: (ParseTree parsed-ows) :: (ParseTree (parsed-posinfo x1)) :: (ParseTree (parsed-bvar x2)) :: (ParseTree parsed-ows) :: (InputChar ':') :: (ParseTree parsed-ows) :: (ParseTree (parsed-tk x3)) :: (ParseTree parsed-ows) :: (InputChar ')') :: _::_(ParseTree (parsed-posinfo x4)) rest) = just (ParseTree (parsed-decl (norm-decl (Decl x0 x1 x2 x3 x4))) ::' rest , 13) len-dec-rewrite {- DefKind-} ((Id "DefKind") :: (ParseTree (parsed-posinfo x0)) :: (ParseTree (parsed-kvar x1)) :: (ParseTree (parsed-params x2)) :: (ParseTree parsed-ows) :: (InputChar '=') :: (ParseTree parsed-ows) :: (ParseTree (parsed-kind x3)) :: (ParseTree parsed-ows) :: (InputChar '.') :: _::_(ParseTree (parsed-posinfo x4)) rest) = just (ParseTree (parsed-cmd (norm-cmd (DefKind x0 x1 x2 x3 x4))) ::' rest , 11) len-dec-rewrite {- DefTerm-} ((Id "DefTerm") :: (ParseTree (parsed-posinfo x0)) :: (ParseTree (parsed-var x1)) :: (ParseTree (parsed-maybeCheckType x2)) :: (ParseTree parsed-ows) :: (InputChar '=') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-term x3)) rest) = just (ParseTree (parsed-defTermOrType (norm-defTermOrType (DefTerm x0 x1 x2 x3))) ::' rest , 8) len-dec-rewrite {- DefTermOrType-} ((Id "DefTermOrType") :: (ParseTree (parsed-defTermOrType x0)) :: (ParseTree parsed-ows) :: (InputChar '.') :: _::_(ParseTree (parsed-posinfo x1)) rest) = just (ParseTree (parsed-cmd (norm-cmd (DefTermOrType x0 x1))) ::' rest , 5) len-dec-rewrite {- DefType-} ((Id "DefType") :: (ParseTree (parsed-posinfo x0)) :: (ParseTree (parsed-var x1)) :: (ParseTree parsed-ows) :: (InputChar '◂') :: (ParseTree parsed-ows) :: (ParseTree (parsed-kind x2)) :: (ParseTree parsed-ows) :: (InputChar '=') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-type x3)) rest) = just (ParseTree (parsed-defTermOrType (norm-defTermOrType (DefType x0 x1 x2 x3))) ::' rest , 11) len-dec-rewrite {- EpsHanf-} ((Id "EpsHanf") :: _::_(InputChar '-') rest) = just (ParseTree (parsed-maybeMinus (norm-maybeMinus EpsHanf)) ::' rest , 2) len-dec-rewrite {- Epsilon-} ((Id "Epsilon") :: (ParseTree (parsed-posinfo x0)) :: (InputChar 'ε') :: (ParseTree (parsed-leftRight x1)) :: (ParseTree (parsed-maybeMinus x2)) :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-lterm x3)) rest) = just (ParseTree (parsed-lterm (norm-term (Epsilon x0 x1 x2 x3))) ::' rest , 7) len-dec-rewrite {- Erased-} ((Id "Erased") :: (InputChar '-') :: _::_(ParseTree parsed-ows) rest) = just (ParseTree (parsed-maybeErased (norm-maybeErased Erased)) ::' rest , 3) len-dec-rewrite {- ErasedArrow-} ((Id "ErasedArrow") :: _::_(InputChar '➾') rest) = just (ParseTree (parsed-arrowtype (norm-arrowtype ErasedArrow)) ::' rest , 2) len-dec-rewrite {- ErasedLambda-} ((Id "ErasedLambda") :: _::_(InputChar 'Λ') rest) = just (ParseTree (parsed-lam (norm-lam ErasedLambda)) ::' rest , 2) len-dec-rewrite {- File-} ((Id "File") :: (ParseTree (parsed-posinfo x0)) :: (ParseTree parsed-ows) :: (ParseTree (parsed-imports x1)) :: (InputChar 'm') :: (InputChar 'o') :: (InputChar 'd') :: (InputChar 'u') :: (InputChar 'l') :: (InputChar 'e') :: (ParseTree parsed-ws) :: (ParseTree (parsed-qvar x2)) :: (ParseTree parsed-ows) :: (ParseTree (parsed-params x3)) :: (ParseTree parsed-ows) :: (InputChar '.') :: (ParseTree parsed-ows) :: (ParseTree (parsed-cmds x4)) :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-posinfo x5)) rest) = just (ParseTree (parsed-start (norm-start (File x0 x1 x2 x3 x4 x5))) ::' rest , 20) len-dec-rewrite {- Hole-} ((Id "Hole") :: (ParseTree (parsed-posinfo x0)) :: _::_(InputChar '●') rest) = just (ParseTree (parsed-pterm (norm-term (Hole x0))) ::' rest , 3) len-dec-rewrite {- Import-} ((Id "Import") :: (ParseTree (parsed-posinfo x0)) :: (InputChar 'i') :: (InputChar 'm') :: (InputChar 'p') :: (InputChar 'o') :: (InputChar 'r') :: (InputChar 't') :: (ParseTree parsed-ws) :: (ParseTree (parsed-fpth x1)) :: (ParseTree (parsed-optAs x2)) :: (ParseTree (parsed-args x3)) :: (ParseTree parsed-ows) :: (InputChar '.') :: _::_(ParseTree (parsed-posinfo x4)) rest) = just (ParseTree (parsed-imprt (norm-imprt (Import x0 x1 x2 x3 x4))) ::' rest , 15) len-dec-rewrite {- ImportCmd-} ((Id "ImportCmd") :: _::_(ParseTree (parsed-imprt x0)) rest) = just (ParseTree (parsed-cmd (norm-cmd (ImportCmd x0))) ::' rest , 2) len-dec-rewrite {- ImportsNext-} ((Id "ImportsNext") :: (ParseTree (parsed-imprt x0)) :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-imports x1)) rest) = just (ParseTree (parsed-imports (norm-imports (ImportsNext x0 x1))) ::' rest , 4) len-dec-rewrite {- Iota-} ((Id "Iota") :: (ParseTree (parsed-posinfo x0)) :: (InputChar 'ι') :: (ParseTree parsed-ows) :: (ParseTree (parsed-posinfo x1)) :: (ParseTree (parsed-bvar x2)) :: (ParseTree (parsed-optType x3)) :: (ParseTree parsed-ows) :: (InputChar '.') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-type x4)) rest) = just (ParseTree (parsed-type (norm-type (Iota x0 x1 x2 x3 x4))) ::' rest , 11) len-dec-rewrite {- IotaPair-} ((Id "IotaPair") :: (ParseTree (parsed-posinfo x0)) :: (InputChar '[') :: (ParseTree parsed-ows) :: (ParseTree (parsed-term x1)) :: (ParseTree parsed-ows) :: (InputChar ',') :: (ParseTree parsed-ows) :: (ParseTree (parsed-term x2)) :: (ParseTree parsed-ows) :: (InputChar ']') :: _::_(ParseTree (parsed-posinfo x3)) rest) = just (ParseTree (parsed-pterm (norm-term (IotaPair x0 x1 x2 x3))) ::' rest , 12) len-dec-rewrite {- IotaProj-} ((ParseTree (parsed-pterm x0)) :: (ParseTree parsed-ows) :: (InputChar '.') :: (ParseTree parsed-ows) :: (ParseTree (parsed-num x1)) :: _::_(ParseTree (parsed-posinfo x2)) rest) = just (ParseTree (parsed-pterm (norm-term (IotaProj x0 x1 x2))) ::' rest , 6) len-dec-rewrite {- KeptLambda-} ((Id "KeptLambda") :: _::_(InputChar 'λ') rest) = just (ParseTree (parsed-lam (norm-lam KeptLambda)) ::' rest , 2) len-dec-rewrite {- KndArrow-} ((ParseTree (parsed-kind x0)) :: (ParseTree parsed-ows) :: (InputChar '➔') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-kind x1)) rest) = just (ParseTree (parsed-kind (norm-kind (KndArrow x0 x1))) ::' rest , 5) len-dec-rewrite {- KndParens-} ((Id "KndParens") :: (ParseTree (parsed-posinfo x0)) :: (InputChar '(') :: (ParseTree parsed-ows) :: (ParseTree (parsed-kind x1)) :: (ParseTree parsed-ows) :: (InputChar ')') :: _::_(ParseTree (parsed-posinfo x2)) rest) = just (ParseTree (parsed-kind (norm-kind (KndParens x0 x1 x2))) ::' rest , 8) len-dec-rewrite {- KndPi-} ((Id "KndPi") :: (ParseTree (parsed-posinfo x0)) :: (InputChar 'Π') :: (ParseTree parsed-ows) :: (ParseTree (parsed-posinfo x1)) :: (ParseTree (parsed-bvar x2)) :: (ParseTree parsed-ows) :: (InputChar ':') :: (ParseTree parsed-ows) :: (ParseTree (parsed-tk x3)) :: (ParseTree parsed-ows) :: (InputChar '.') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-kind x4)) rest) = just (ParseTree (parsed-kind (norm-kind (KndPi x0 x1 x2 x3 x4))) ::' rest , 14) len-dec-rewrite {- KndTpArrow-} ((Id "KndTpArrow") :: (ParseTree (parsed-ltype x0)) :: (ParseTree parsed-ows) :: (InputChar '➔') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-kind x1)) rest) = just (ParseTree (parsed-kind (norm-kind (KndTpArrow x0 x1))) ::' rest , 6) len-dec-rewrite {- KndVar-} ((Id "KndVar") :: (ParseTree (parsed-posinfo x0)) :: (ParseTree (parsed-qkvar x1)) :: _::_(ParseTree (parsed-args x2)) rest) = just (ParseTree (parsed-kind (norm-kind (KndVar x0 x1 x2))) ::' rest , 4) len-dec-rewrite {- Lam-} ((Id "Lam") :: (ParseTree (parsed-posinfo x0)) :: (ParseTree (parsed-lam x1)) :: (ParseTree parsed-ows) :: (ParseTree (parsed-posinfo x2)) :: (ParseTree (parsed-bvar x3)) :: (ParseTree (parsed-optClass x4)) :: (ParseTree parsed-ows) :: (InputChar '.') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-term x5)) rest) = just (ParseTree (parsed-term (norm-term (Lam x0 x1 x2 x3 x4 x5))) ::' rest , 11) len-dec-rewrite {- Left-} ((Id "Left") :: _::_(InputChar 'l') rest) = just (ParseTree (parsed-leftRight (norm-leftRight Left)) ::' rest , 2) len-dec-rewrite {- Let-} ((Id "Let") :: (ParseTree (parsed-posinfo x0)) :: (InputChar 'l') :: (InputChar 'e') :: (InputChar 't') :: (ParseTree parsed-ws) :: (ParseTree (parsed-defTermOrType x1)) :: (ParseTree parsed-ws) :: (InputChar 'i') :: (InputChar 'n') :: (ParseTree parsed-ws) :: _::_(ParseTree (parsed-term x2)) rest) = just (ParseTree (parsed-term (norm-term (Let x0 x1 x2))) ::' rest , 12) len-dec-rewrite {- Lft-} ((Id "Lft") :: (ParseTree (parsed-posinfo x0)) :: (InputChar '↑') :: (ParseTree parsed-ows) :: (ParseTree (parsed-posinfo x1)) :: (ParseTree (parsed-var x2)) :: (ParseTree parsed-ows) :: (InputChar '.') :: (ParseTree parsed-ows) :: (ParseTree (parsed-term x3)) :: (ParseTree parsed-ows) :: (InputChar ':') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-lliftingType x4)) rest) = just (ParseTree (parsed-ltype (norm-type (Lft x0 x1 x2 x3 x4))) ::' rest , 14) len-dec-rewrite {- LiftArrow-} ((ParseTree (parsed-liftingType x0)) :: (ParseTree parsed-ows) :: (InputChar '➔') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-liftingType x1)) rest) = just (ParseTree (parsed-liftingType (norm-liftingType (LiftArrow x0 x1))) ::' rest , 5) len-dec-rewrite {- LiftParens-} ((Id "LiftParens") :: (ParseTree (parsed-posinfo x0)) :: (InputChar '(') :: (ParseTree parsed-ows) :: (ParseTree (parsed-liftingType x1)) :: (ParseTree parsed-ows) :: (InputChar ')') :: _::_(ParseTree (parsed-posinfo x2)) rest) = just (ParseTree (parsed-lliftingType (norm-liftingType (LiftParens x0 x1 x2))) ::' rest , 8) len-dec-rewrite {- LiftPi-} ((Id "LiftPi") :: (ParseTree (parsed-posinfo x0)) :: (InputChar 'Π') :: (ParseTree parsed-ows) :: (ParseTree (parsed-bvar x1)) :: (ParseTree parsed-ows) :: (InputChar ':') :: (ParseTree parsed-ows) :: (ParseTree (parsed-type x2)) :: (ParseTree parsed-ows) :: (InputChar '.') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-liftingType x3)) rest) = just (ParseTree (parsed-liftingType (norm-liftingType (LiftPi x0 x1 x2 x3))) ::' rest , 13) len-dec-rewrite {- LiftStar-} ((Id "LiftStar") :: (ParseTree (parsed-posinfo x0)) :: _::_(InputChar '☆') rest) = just (ParseTree (parsed-lliftingType (norm-liftingType (LiftStar x0))) ::' rest , 3) len-dec-rewrite {- LiftTpArrow-} ((Id "LiftTpArrow") :: (ParseTree (parsed-type x0)) :: (ParseTree parsed-ows) :: (InputChar '➔') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-liftingType x1)) rest) = just (ParseTree (parsed-liftingType (norm-liftingType (LiftTpArrow x0 x1))) ::' rest , 6) len-dec-rewrite {- LtermsCons-} ((Id "LtermsCons") :: (ParseTree parsed-ws) :: (ParseTree (parsed-maybeErased x0)) :: (ParseTree (parsed-lterm x1)) :: _::_(ParseTree (parsed-lterms x2)) rest) = just (ParseTree (parsed-lterms (norm-lterms (LtermsCons x0 x1 x2))) ::' rest , 5) len-dec-rewrite {- LtermsNil-} ((Id "LtermsNil") :: _::_(ParseTree (parsed-posinfo x0)) rest) = just (ParseTree (parsed-lterms (norm-lterms (LtermsNil x0))) ::' rest , 2) len-dec-rewrite {- NoSpans-} ((Id "NoSpans") :: (InputChar '{') :: (InputChar '^') :: (ParseTree (parsed-type x0)) :: (ParseTree (parsed-posinfo x1)) :: (InputChar '^') :: _::_(InputChar '}') rest) = just (ParseTree (parsed-type (norm-type (NoSpans x0 x1))) ::' rest , 7) len-dec-rewrite {- P0-} ((Id "P0") :: _::_(InputChar 'a') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'a'))) ::' rest , 2) len-dec-rewrite {- P1-} ((Id "P1") :: _::_(InputChar 'b') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'b'))) ::' rest , 2) len-dec-rewrite {- P10-} ((Id "P10") :: _::_(InputChar 'k') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'k'))) ::' rest , 2) len-dec-rewrite {- P100-} ((Id "P100") :: (ParseTree (parsed-fpth-bar-15 x0)) :: _::_(ParseTree (parsed-fpth-star-18 x1)) rest) = just (ParseTree (parsed-fpth (string-append 1 x0 x1)) ::' rest , 3) len-dec-rewrite {- P101-} ((Id "P101") :: _::_(ParseTree (parsed-kvar x0)) rest) = just (ParseTree (parsed-qkvar (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P102-} ((Id "P102") :: (ParseTree (parsed-var x0)) :: (InputChar '.') :: _::_(ParseTree (parsed-qkvar x1)) rest) = just (ParseTree (parsed-qkvar (string-append 2 x0 (char-to-string '.') x1)) ::' rest , 4) len-dec-rewrite {- P103-} ((Id "P103") :: _::_(ParseTree (parsed-alpha x0)) rest) = just (ParseTree (parsed-kvar-bar-19 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P104-} ((Id "P104") :: _::_(ParseTree (parsed-numpunct x0)) rest) = just (ParseTree (parsed-kvar-bar-19 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P106-} ((Id "P106") :: (ParseTree (parsed-kvar-bar-19 x0)) :: _::_(ParseTree (parsed-kvar-star-20 x1)) rest) = just (ParseTree (parsed-kvar-star-20 (string-append 1 x0 x1)) ::' rest , 3) len-dec-rewrite {- P107-} ((Id "P107") :: (InputChar '𝒌') :: _::_(ParseTree (parsed-kvar-star-20 x0)) rest) = just (ParseTree (parsed-kvar (string-append 1 (char-to-string '𝒌') x0)) ::' rest , 3) len-dec-rewrite {- P108-} ((Id "P108") :: _::_(InputChar '◂') rest) = just (ParseTree parsed-otherpunct-bar-21 ::' rest , 2) len-dec-rewrite {- P109-} ((Id "P109") :: _::_(InputChar 'ω') rest) = just (ParseTree parsed-otherpunct-bar-21 ::' rest , 2) len-dec-rewrite {- P11-} ((Id "P11") :: _::_(InputChar 'l') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'l'))) ::' rest , 2) len-dec-rewrite {- P110-} ((Id "P110") :: _::_(InputChar 'φ') rest) = just (ParseTree parsed-otherpunct-bar-22 ::' rest , 2) len-dec-rewrite {- P111-} ((Id "P111") :: _::_(ParseTree parsed-otherpunct-bar-21) rest) = just (ParseTree parsed-otherpunct-bar-22 ::' rest , 2) len-dec-rewrite {- P112-} ((Id "P112") :: _::_(InputChar 'υ') rest) = just (ParseTree parsed-otherpunct-bar-23 ::' rest , 2) len-dec-rewrite {- P113-} ((Id "P113") :: _::_(ParseTree parsed-otherpunct-bar-22) rest) = just (ParseTree parsed-otherpunct-bar-23 ::' rest , 2) len-dec-rewrite {- P114-} ((Id "P114") :: _::_(InputChar 'μ') rest) = just (ParseTree parsed-otherpunct-bar-24 ::' rest , 2) len-dec-rewrite {- P115-} ((Id "P115") :: _::_(ParseTree parsed-otherpunct-bar-23) rest) = just (ParseTree parsed-otherpunct-bar-24 ::' rest , 2) len-dec-rewrite {- P116-} ((Id "P116") :: _::_(InputChar 'χ') rest) = just (ParseTree parsed-otherpunct-bar-25 ::' rest , 2) len-dec-rewrite {- P117-} ((Id "P117") :: _::_(ParseTree parsed-otherpunct-bar-24) rest) = just (ParseTree parsed-otherpunct-bar-25 ::' rest , 2) len-dec-rewrite {- P118-} ((Id "P118") :: _::_(InputChar 'δ') rest) = just (ParseTree parsed-otherpunct-bar-26 ::' rest , 2) len-dec-rewrite {- P119-} ((Id "P119") :: _::_(ParseTree parsed-otherpunct-bar-25) rest) = just (ParseTree parsed-otherpunct-bar-26 ::' rest , 2) len-dec-rewrite {- P12-} ((Id "P12") :: _::_(InputChar 'm') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'm'))) ::' rest , 2) len-dec-rewrite {- P120-} ((Id "P120") :: _::_(InputChar '\"') rest) = just (ParseTree parsed-otherpunct-bar-27 ::' rest , 2) len-dec-rewrite {- P121-} ((Id "P121") :: _::_(ParseTree parsed-otherpunct-bar-26) rest) = just (ParseTree parsed-otherpunct-bar-27 ::' rest , 2) len-dec-rewrite {- P122-} ((Id "P122") :: _::_(InputChar '≃') rest) = just (ParseTree parsed-otherpunct-bar-28 ::' rest , 2) len-dec-rewrite {- P123-} ((Id "P123") :: _::_(ParseTree parsed-otherpunct-bar-27) rest) = just (ParseTree parsed-otherpunct-bar-28 ::' rest , 2) len-dec-rewrite {- P124-} ((Id "P124") :: _::_(InputChar '>') rest) = just (ParseTree parsed-otherpunct-bar-29 ::' rest , 2) len-dec-rewrite {- P125-} ((Id "P125") :: _::_(ParseTree parsed-otherpunct-bar-28) rest) = just (ParseTree parsed-otherpunct-bar-29 ::' rest , 2) len-dec-rewrite {- P126-} ((Id "P126") :: _::_(InputChar '<') rest) = just (ParseTree parsed-otherpunct-bar-30 ::' rest , 2) len-dec-rewrite {- P127-} ((Id "P127") :: _::_(ParseTree parsed-otherpunct-bar-29) rest) = just (ParseTree parsed-otherpunct-bar-30 ::' rest , 2) len-dec-rewrite {- P128-} ((Id "P128") :: _::_(InputChar '+') rest) = just (ParseTree parsed-otherpunct-bar-31 ::' rest , 2) len-dec-rewrite {- P129-} ((Id "P129") :: _::_(ParseTree parsed-otherpunct-bar-30) rest) = just (ParseTree parsed-otherpunct-bar-31 ::' rest , 2) len-dec-rewrite {- P13-} ((Id "P13") :: _::_(InputChar 'n') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'n'))) ::' rest , 2) len-dec-rewrite {- P130-} ((Id "P130") :: _::_(InputChar 'θ') rest) = just (ParseTree parsed-otherpunct-bar-32 ::' rest , 2) len-dec-rewrite {- P131-} ((Id "P131") :: _::_(ParseTree parsed-otherpunct-bar-31) rest) = just (ParseTree parsed-otherpunct-bar-32 ::' rest , 2) len-dec-rewrite {- P132-} ((Id "P132") :: _::_(InputChar 'ς') rest) = just (ParseTree parsed-otherpunct-bar-33 ::' rest , 2) len-dec-rewrite {- P133-} ((Id "P133") :: _::_(ParseTree parsed-otherpunct-bar-32) rest) = just (ParseTree parsed-otherpunct-bar-33 ::' rest , 2) len-dec-rewrite {- P134-} ((Id "P134") :: _::_(InputChar '=') rest) = just (ParseTree parsed-otherpunct-bar-34 ::' rest , 2) len-dec-rewrite {- P135-} ((Id "P135") :: _::_(ParseTree parsed-otherpunct-bar-33) rest) = just (ParseTree parsed-otherpunct-bar-34 ::' rest , 2) len-dec-rewrite {- P136-} ((Id "P136") :: _::_(InputChar '𝒌') rest) = just (ParseTree parsed-otherpunct-bar-35 ::' rest , 2) len-dec-rewrite {- P137-} ((Id "P137") :: _::_(ParseTree parsed-otherpunct-bar-34) rest) = just (ParseTree parsed-otherpunct-bar-35 ::' rest , 2) len-dec-rewrite {- P138-} ((Id "P138") :: _::_(InputChar '-') rest) = just (ParseTree parsed-otherpunct-bar-36 ::' rest , 2) len-dec-rewrite {- P139-} ((Id "P139") :: _::_(ParseTree parsed-otherpunct-bar-35) rest) = just (ParseTree parsed-otherpunct-bar-36 ::' rest , 2) len-dec-rewrite {- P14-} ((Id "P14") :: _::_(InputChar 'o') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'o'))) ::' rest , 2) len-dec-rewrite {- P140-} ((Id "P140") :: _::_(InputChar 'β') rest) = just (ParseTree parsed-otherpunct-bar-37 ::' rest , 2) len-dec-rewrite {- P141-} ((Id "P141") :: _::_(ParseTree parsed-otherpunct-bar-36) rest) = just (ParseTree parsed-otherpunct-bar-37 ::' rest , 2) len-dec-rewrite {- P142-} ((Id "P142") :: _::_(InputChar 'ε') rest) = just (ParseTree parsed-otherpunct-bar-38 ::' rest , 2) len-dec-rewrite {- P143-} ((Id "P143") :: _::_(ParseTree parsed-otherpunct-bar-37) rest) = just (ParseTree parsed-otherpunct-bar-38 ::' rest , 2) len-dec-rewrite {- P144-} ((Id "P144") :: _::_(InputChar 'ρ') rest) = just (ParseTree parsed-otherpunct-bar-39 ::' rest , 2) len-dec-rewrite {- P145-} ((Id "P145") :: _::_(ParseTree parsed-otherpunct-bar-38) rest) = just (ParseTree parsed-otherpunct-bar-39 ::' rest , 2) len-dec-rewrite {- P146-} ((Id "P146") :: _::_(InputChar 'Λ') rest) = just (ParseTree parsed-otherpunct-bar-40 ::' rest , 2) len-dec-rewrite {- P147-} ((Id "P147") :: _::_(ParseTree parsed-otherpunct-bar-39) rest) = just (ParseTree parsed-otherpunct-bar-40 ::' rest , 2) len-dec-rewrite {- P148-} ((Id "P148") :: _::_(InputChar '?') rest) = just (ParseTree parsed-otherpunct-bar-41 ::' rest , 2) len-dec-rewrite {- P149-} ((Id "P149") :: _::_(ParseTree parsed-otherpunct-bar-40) rest) = just (ParseTree parsed-otherpunct-bar-41 ::' rest , 2) len-dec-rewrite {- P15-} ((Id "P15") :: _::_(InputChar 'p') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'p'))) ::' rest , 2) len-dec-rewrite {- P150-} ((Id "P150") :: _::_(InputChar '⇒') rest) = just (ParseTree parsed-otherpunct-bar-42 ::' rest , 2) len-dec-rewrite {- P151-} ((Id "P151") :: _::_(ParseTree parsed-otherpunct-bar-41) rest) = just (ParseTree parsed-otherpunct-bar-42 ::' rest , 2) len-dec-rewrite {- P152-} ((Id "P152") :: _::_(InputChar '}') rest) = just (ParseTree parsed-otherpunct-bar-43 ::' rest , 2) len-dec-rewrite {- P153-} ((Id "P153") :: _::_(ParseTree parsed-otherpunct-bar-42) rest) = just (ParseTree parsed-otherpunct-bar-43 ::' rest , 2) len-dec-rewrite {- P154-} ((Id "P154") :: _::_(InputChar '{') rest) = just (ParseTree parsed-otherpunct-bar-44 ::' rest , 2) len-dec-rewrite {- P155-} ((Id "P155") :: _::_(ParseTree parsed-otherpunct-bar-43) rest) = just (ParseTree parsed-otherpunct-bar-44 ::' rest , 2) len-dec-rewrite {- P156-} ((Id "P156") :: _::_(InputChar '!') rest) = just (ParseTree parsed-otherpunct-bar-45 ::' rest , 2) len-dec-rewrite {- P157-} ((Id "P157") :: _::_(ParseTree parsed-otherpunct-bar-44) rest) = just (ParseTree parsed-otherpunct-bar-45 ::' rest , 2) len-dec-rewrite {- P158-} ((Id "P158") :: _::_(InputChar ',') rest) = just (ParseTree parsed-otherpunct-bar-46 ::' rest , 2) len-dec-rewrite {- P159-} ((Id "P159") :: _::_(ParseTree parsed-otherpunct-bar-45) rest) = just (ParseTree parsed-otherpunct-bar-46 ::' rest , 2) len-dec-rewrite {- P16-} ((Id "P16") :: _::_(InputChar 'q') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'q'))) ::' rest , 2) len-dec-rewrite {- P160-} ((Id "P160") :: _::_(InputChar ']') rest) = just (ParseTree parsed-otherpunct-bar-47 ::' rest , 2) len-dec-rewrite {- P161-} ((Id "P161") :: _::_(ParseTree parsed-otherpunct-bar-46) rest) = just (ParseTree parsed-otherpunct-bar-47 ::' rest , 2) len-dec-rewrite {- P162-} ((Id "P162") :: _::_(InputChar '[') rest) = just (ParseTree parsed-otherpunct-bar-48 ::' rest , 2) len-dec-rewrite {- P163-} ((Id "P163") :: _::_(ParseTree parsed-otherpunct-bar-47) rest) = just (ParseTree parsed-otherpunct-bar-48 ::' rest , 2) len-dec-rewrite {- P164-} ((Id "P164") :: _::_(InputChar '.') rest) = just (ParseTree parsed-otherpunct-bar-49 ::' rest , 2) len-dec-rewrite {- P165-} ((Id "P165") :: _::_(ParseTree parsed-otherpunct-bar-48) rest) = just (ParseTree parsed-otherpunct-bar-49 ::' rest , 2) len-dec-rewrite {- P166-} ((Id "P166") :: _::_(InputChar ':') rest) = just (ParseTree parsed-otherpunct-bar-50 ::' rest , 2) len-dec-rewrite {- P167-} ((Id "P167") :: _::_(ParseTree parsed-otherpunct-bar-49) rest) = just (ParseTree parsed-otherpunct-bar-50 ::' rest , 2) len-dec-rewrite {- P168-} ((Id "P168") :: _::_(InputChar ')') rest) = just (ParseTree parsed-otherpunct-bar-51 ::' rest , 2) len-dec-rewrite {- P169-} ((Id "P169") :: _::_(ParseTree parsed-otherpunct-bar-50) rest) = just (ParseTree parsed-otherpunct-bar-51 ::' rest , 2) len-dec-rewrite {- P17-} ((Id "P17") :: _::_(InputChar 'r') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'r'))) ::' rest , 2) len-dec-rewrite {- P170-} ((Id "P170") :: _::_(InputChar '(') rest) = just (ParseTree parsed-otherpunct-bar-52 ::' rest , 2) len-dec-rewrite {- P171-} ((Id "P171") :: _::_(ParseTree parsed-otherpunct-bar-51) rest) = just (ParseTree parsed-otherpunct-bar-52 ::' rest , 2) len-dec-rewrite {- P172-} ((Id "P172") :: _::_(InputChar '●') rest) = just (ParseTree parsed-otherpunct-bar-53 ::' rest , 2) len-dec-rewrite {- P173-} ((Id "P173") :: _::_(ParseTree parsed-otherpunct-bar-52) rest) = just (ParseTree parsed-otherpunct-bar-53 ::' rest , 2) len-dec-rewrite {- P174-} ((Id "P174") :: _::_(InputChar '↑') rest) = just (ParseTree parsed-otherpunct-bar-54 ::' rest , 2) len-dec-rewrite {- P175-} ((Id "P175") :: _::_(ParseTree parsed-otherpunct-bar-53) rest) = just (ParseTree parsed-otherpunct-bar-54 ::' rest , 2) len-dec-rewrite {- P176-} ((Id "P176") :: _::_(InputChar '➾') rest) = just (ParseTree parsed-otherpunct-bar-55 ::' rest , 2) len-dec-rewrite {- P177-} ((Id "P177") :: _::_(ParseTree parsed-otherpunct-bar-54) rest) = just (ParseTree parsed-otherpunct-bar-55 ::' rest , 2) len-dec-rewrite {- P178-} ((Id "P178") :: _::_(InputChar '➔') rest) = just (ParseTree parsed-otherpunct-bar-56 ::' rest , 2) len-dec-rewrite {- P179-} ((Id "P179") :: _::_(ParseTree parsed-otherpunct-bar-55) rest) = just (ParseTree parsed-otherpunct-bar-56 ::' rest , 2) len-dec-rewrite {- P18-} ((Id "P18") :: _::_(InputChar 's') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 's'))) ::' rest , 2) len-dec-rewrite {- P180-} ((Id "P180") :: _::_(InputChar '⇐') rest) = just (ParseTree parsed-otherpunct-bar-57 ::' rest , 2) len-dec-rewrite {- P181-} ((Id "P181") :: _::_(ParseTree parsed-otherpunct-bar-56) rest) = just (ParseTree parsed-otherpunct-bar-57 ::' rest , 2) len-dec-rewrite {- P182-} ((Id "P182") :: _::_(InputChar '·') rest) = just (ParseTree parsed-otherpunct-bar-58 ::' rest , 2) len-dec-rewrite {- P183-} ((Id "P183") :: _::_(ParseTree parsed-otherpunct-bar-57) rest) = just (ParseTree parsed-otherpunct-bar-58 ::' rest , 2) len-dec-rewrite {- P184-} ((Id "P184") :: _::_(InputChar '☆') rest) = just (ParseTree parsed-otherpunct-bar-59 ::' rest , 2) len-dec-rewrite {- P185-} ((Id "P185") :: _::_(ParseTree parsed-otherpunct-bar-58) rest) = just (ParseTree parsed-otherpunct-bar-59 ::' rest , 2) len-dec-rewrite {- P186-} ((Id "P186") :: _::_(InputChar '★') rest) = just (ParseTree parsed-otherpunct-bar-60 ::' rest , 2) len-dec-rewrite {- P187-} ((Id "P187") :: _::_(ParseTree parsed-otherpunct-bar-59) rest) = just (ParseTree parsed-otherpunct-bar-60 ::' rest , 2) len-dec-rewrite {- P188-} ((Id "P188") :: _::_(InputChar 'π') rest) = just (ParseTree parsed-otherpunct-bar-61 ::' rest , 2) len-dec-rewrite {- P189-} ((Id "P189") :: _::_(ParseTree parsed-otherpunct-bar-60) rest) = just (ParseTree parsed-otherpunct-bar-61 ::' rest , 2) len-dec-rewrite {- P19-} ((Id "P19") :: _::_(InputChar 't') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 't'))) ::' rest , 2) len-dec-rewrite {- P190-} ((Id "P190") :: _::_(InputChar '∀') rest) = just (ParseTree parsed-otherpunct-bar-62 ::' rest , 2) len-dec-rewrite {- P191-} ((Id "P191") :: _::_(ParseTree parsed-otherpunct-bar-61) rest) = just (ParseTree parsed-otherpunct-bar-62 ::' rest , 2) len-dec-rewrite {- P192-} ((Id "P192") :: _::_(InputChar 'λ') rest) = just (ParseTree parsed-otherpunct-bar-63 ::' rest , 2) len-dec-rewrite {- P193-} ((Id "P193") :: _::_(ParseTree parsed-otherpunct-bar-62) rest) = just (ParseTree parsed-otherpunct-bar-63 ::' rest , 2) len-dec-rewrite {- P194-} ((Id "P194") :: _::_(InputChar 'ι') rest) = just (ParseTree parsed-otherpunct-bar-64 ::' rest , 2) len-dec-rewrite {- P195-} ((Id "P195") :: _::_(ParseTree parsed-otherpunct-bar-63) rest) = just (ParseTree parsed-otherpunct-bar-64 ::' rest , 2) len-dec-rewrite {- P196-} ((Id "P196") :: _::_(InputChar 'Π') rest) = just (ParseTree parsed-otherpunct-bar-65 ::' rest , 2) len-dec-rewrite {- P197-} ((Id "P197") :: _::_(ParseTree parsed-otherpunct-bar-64) rest) = just (ParseTree parsed-otherpunct-bar-65 ::' rest , 2) len-dec-rewrite {- P198-} ((Id "P198") :: _::_(InputChar '□') rest) = just (ParseTree parsed-otherpunct-bar-66 ::' rest , 2) len-dec-rewrite {- P199-} ((Id "P199") :: _::_(ParseTree parsed-otherpunct-bar-65) rest) = just (ParseTree parsed-otherpunct-bar-66 ::' rest , 2) len-dec-rewrite {- P2-} ((Id "P2") :: _::_(InputChar 'c') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'c'))) ::' rest , 2) len-dec-rewrite {- P20-} ((Id "P20") :: _::_(InputChar 'u') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'u'))) ::' rest , 2) len-dec-rewrite {- P200-} ((Id "P200") :: _::_(InputChar '|') rest) = just (ParseTree parsed-otherpunct-bar-67 ::' rest , 2) len-dec-rewrite {- P201-} ((Id "P201") :: _::_(ParseTree parsed-otherpunct-bar-66) rest) = just (ParseTree parsed-otherpunct-bar-67 ::' rest , 2) len-dec-rewrite {- P202-} ((Id "P202") :: _::_(ParseTree parsed-otherpunct-bar-67) rest) = just (ParseTree parsed-otherpunct ::' rest , 2) len-dec-rewrite {- P203-} ((Id "P203") :: _::_(InputChar '%') rest) = just (ParseTree parsed-anychar-bar-68 ::' rest , 2) len-dec-rewrite {- P204-} ((Id "P204") :: _::_(ParseTree parsed-otherpunct) rest) = just (ParseTree parsed-anychar-bar-68 ::' rest , 2) len-dec-rewrite {- P205-} ((Id "P205") :: _::_(InputChar ' ') rest) = just (ParseTree parsed-anychar-bar-69 ::' rest , 2) len-dec-rewrite {- P206-} ((Id "P206") :: _::_(ParseTree parsed-anychar-bar-68) rest) = just (ParseTree parsed-anychar-bar-69 ::' rest , 2) len-dec-rewrite {- P207-} ((Id "P207") :: _::_(InputChar '\t') rest) = just (ParseTree parsed-anychar-bar-70 ::' rest , 2) len-dec-rewrite {- P208-} ((Id "P208") :: _::_(ParseTree parsed-anychar-bar-69) rest) = just (ParseTree parsed-anychar-bar-70 ::' rest , 2) len-dec-rewrite {- P209-} ((Id "P209") :: _::_(ParseTree (parsed-numpunct x0)) rest) = just (ParseTree parsed-anychar-bar-71 ::' rest , 2) len-dec-rewrite {- P21-} ((Id "P21") :: _::_(InputChar 'v') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'v'))) ::' rest , 2) len-dec-rewrite {- P210-} ((Id "P210") :: _::_(ParseTree parsed-anychar-bar-70) rest) = just (ParseTree parsed-anychar-bar-71 ::' rest , 2) len-dec-rewrite {- P211-} ((Id "P211") :: _::_(ParseTree (parsed-alpha x0)) rest) = just (ParseTree parsed-anychar-bar-72 ::' rest , 2) len-dec-rewrite {- P212-} ((Id "P212") :: _::_(ParseTree parsed-anychar-bar-71) rest) = just (ParseTree parsed-anychar-bar-72 ::' rest , 2) len-dec-rewrite {- P213-} ((Id "P213") :: _::_(ParseTree parsed-anychar-bar-72) rest) = just (ParseTree parsed-anychar ::' rest , 2) len-dec-rewrite {- P215-} ((Id "P215") :: (ParseTree parsed-anychar) :: _::_(ParseTree parsed-comment-star-73) rest) = just (ParseTree parsed-comment-star-73 ::' rest , 3) len-dec-rewrite {- P216-} ((Id "P216") :: (InputChar '%') :: (ParseTree parsed-comment-star-73) :: _::_(InputChar '\n') rest) = just (ParseTree parsed-comment ::' rest , 4) len-dec-rewrite {- P217-} ((Id "P217") :: _::_(InputChar ' ') rest) = just (ParseTree parsed-aws-bar-74 ::' rest , 2) len-dec-rewrite {- P218-} ((Id "P218") :: _::_(ParseTree parsed-comment) rest) = just (ParseTree parsed-aws-bar-74 ::' rest , 2) len-dec-rewrite {- P219-} ((Id "P219") :: _::_(InputChar '\t') rest) = just (ParseTree parsed-aws-bar-75 ::' rest , 2) len-dec-rewrite {- P22-} ((Id "P22") :: _::_(InputChar 'w') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'w'))) ::' rest , 2) len-dec-rewrite {- P220-} ((Id "P220") :: _::_(ParseTree parsed-aws-bar-74) rest) = just (ParseTree parsed-aws-bar-75 ::' rest , 2) len-dec-rewrite {- P221-} ((Id "P221") :: _::_(InputChar '\n') rest) = just (ParseTree parsed-aws-bar-76 ::' rest , 2) len-dec-rewrite {- P222-} ((Id "P222") :: _::_(ParseTree parsed-aws-bar-75) rest) = just (ParseTree parsed-aws-bar-76 ::' rest , 2) len-dec-rewrite {- P223-} ((Id "P223") :: _::_(ParseTree parsed-aws-bar-76) rest) = just (ParseTree parsed-aws ::' rest , 2) len-dec-rewrite {- P224-} ((Id "P224") :: _::_(ParseTree parsed-aws) rest) = just (ParseTree parsed-ws-plus-77 ::' rest , 2) len-dec-rewrite {- P225-} ((Id "P225") :: (ParseTree parsed-aws) :: _::_(ParseTree parsed-ws-plus-77) rest) = just (ParseTree parsed-ws-plus-77 ::' rest , 3) len-dec-rewrite {- P226-} ((Id "P226") :: _::_(ParseTree parsed-ws-plus-77) rest) = just (ParseTree parsed-ws ::' rest , 2) len-dec-rewrite {- P228-} ((Id "P228") :: (ParseTree parsed-aws) :: _::_(ParseTree parsed-ows-star-78) rest) = just (ParseTree parsed-ows-star-78 ::' rest , 3) len-dec-rewrite {- P229-} ((Id "P229") :: _::_(ParseTree parsed-ows-star-78) rest) = just (ParseTree parsed-ows ::' rest , 2) len-dec-rewrite {- P23-} ((Id "P23") :: _::_(InputChar 'x') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'x'))) ::' rest , 2) len-dec-rewrite {- P24-} ((Id "P24") :: _::_(InputChar 'y') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'y'))) ::' rest , 2) len-dec-rewrite {- P25-} ((Id "P25") :: _::_(InputChar 'z') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'z'))) ::' rest , 2) len-dec-rewrite {- P26-} ((Id "P26") :: _::_(InputChar 'A') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'A'))) ::' rest , 2) len-dec-rewrite {- P27-} ((Id "P27") :: _::_(InputChar 'B') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'B'))) ::' rest , 2) len-dec-rewrite {- P28-} ((Id "P28") :: _::_(InputChar 'C') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'C'))) ::' rest , 2) len-dec-rewrite {- P29-} ((Id "P29") :: _::_(InputChar 'D') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'D'))) ::' rest , 2) len-dec-rewrite {- P3-} ((Id "P3") :: _::_(InputChar 'd') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'd'))) ::' rest , 2) len-dec-rewrite {- P30-} ((Id "P30") :: _::_(InputChar 'E') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'E'))) ::' rest , 2) len-dec-rewrite {- P31-} ((Id "P31") :: _::_(InputChar 'F') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'F'))) ::' rest , 2) len-dec-rewrite {- P32-} ((Id "P32") :: _::_(InputChar 'G') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'G'))) ::' rest , 2) len-dec-rewrite {- P33-} ((Id "P33") :: _::_(InputChar 'H') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'H'))) ::' rest , 2) len-dec-rewrite {- P34-} ((Id "P34") :: _::_(InputChar 'I') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'I'))) ::' rest , 2) len-dec-rewrite {- P35-} ((Id "P35") :: _::_(InputChar 'J') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'J'))) ::' rest , 2) len-dec-rewrite {- P36-} ((Id "P36") :: _::_(InputChar 'K') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'K'))) ::' rest , 2) len-dec-rewrite {- P37-} ((Id "P37") :: _::_(InputChar 'L') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'L'))) ::' rest , 2) len-dec-rewrite {- P38-} ((Id "P38") :: _::_(InputChar 'M') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'M'))) ::' rest , 2) len-dec-rewrite {- P39-} ((Id "P39") :: _::_(InputChar 'N') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'N'))) ::' rest , 2) len-dec-rewrite {- P4-} ((Id "P4") :: _::_(InputChar 'e') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'e'))) ::' rest , 2) len-dec-rewrite {- P40-} ((Id "P40") :: _::_(InputChar 'O') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'O'))) ::' rest , 2) len-dec-rewrite {- P41-} ((Id "P41") :: _::_(InputChar 'P') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'P'))) ::' rest , 2) len-dec-rewrite {- P42-} ((Id "P42") :: _::_(InputChar 'Q') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'Q'))) ::' rest , 2) len-dec-rewrite {- P43-} ((Id "P43") :: _::_(InputChar 'R') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'R'))) ::' rest , 2) len-dec-rewrite {- P44-} ((Id "P44") :: _::_(InputChar 'S') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'S'))) ::' rest , 2) len-dec-rewrite {- P45-} ((Id "P45") :: _::_(InputChar 'T') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'T'))) ::' rest , 2) len-dec-rewrite {- P46-} ((Id "P46") :: _::_(InputChar 'U') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'U'))) ::' rest , 2) len-dec-rewrite {- P47-} ((Id "P47") :: _::_(InputChar 'V') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'V'))) ::' rest , 2) len-dec-rewrite {- P48-} ((Id "P48") :: _::_(InputChar 'W') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'W'))) ::' rest , 2) len-dec-rewrite {- P49-} ((Id "P49") :: _::_(InputChar 'X') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'X'))) ::' rest , 2) len-dec-rewrite {- P5-} ((Id "P5") :: _::_(InputChar 'f') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'f'))) ::' rest , 2) len-dec-rewrite {- P50-} ((Id "P50") :: _::_(InputChar 'Y') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'Y'))) ::' rest , 2) len-dec-rewrite {- P51-} ((Id "P51") :: _::_(InputChar 'Z') rest) = just (ParseTree (parsed-alpha-range-2 (string-append 0 (char-to-string 'Z'))) ::' rest , 2) len-dec-rewrite {- P52-} ((Id "P52") :: _::_(ParseTree (parsed-alpha-range-1 x0)) rest) = just (ParseTree (parsed-alpha-bar-3 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P53-} ((Id "P53") :: _::_(ParseTree (parsed-alpha-range-2 x0)) rest) = just (ParseTree (parsed-alpha-bar-3 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P54-} ((Id "P54") :: _::_(ParseTree (parsed-alpha-bar-3 x0)) rest) = just (ParseTree (parsed-alpha (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P55-} ((Id "P55") :: _::_(InputChar '0') rest) = just (ParseTree (parsed-numone-range-4 (string-append 0 (char-to-string '0'))) ::' rest , 2) len-dec-rewrite {- P56-} ((Id "P56") :: _::_(InputChar '1') rest) = just (ParseTree (parsed-numone-range-4 (string-append 0 (char-to-string '1'))) ::' rest , 2) len-dec-rewrite {- P57-} ((Id "P57") :: _::_(InputChar '2') rest) = just (ParseTree (parsed-numone-range-4 (string-append 0 (char-to-string '2'))) ::' rest , 2) len-dec-rewrite {- P58-} ((Id "P58") :: _::_(InputChar '3') rest) = just (ParseTree (parsed-numone-range-4 (string-append 0 (char-to-string '3'))) ::' rest , 2) len-dec-rewrite {- P59-} ((Id "P59") :: _::_(InputChar '4') rest) = just (ParseTree (parsed-numone-range-4 (string-append 0 (char-to-string '4'))) ::' rest , 2) len-dec-rewrite {- P6-} ((Id "P6") :: _::_(InputChar 'g') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'g'))) ::' rest , 2) len-dec-rewrite {- P60-} ((Id "P60") :: _::_(InputChar '5') rest) = just (ParseTree (parsed-numone-range-4 (string-append 0 (char-to-string '5'))) ::' rest , 2) len-dec-rewrite {- P61-} ((Id "P61") :: _::_(InputChar '6') rest) = just (ParseTree (parsed-numone-range-4 (string-append 0 (char-to-string '6'))) ::' rest , 2) len-dec-rewrite {- P62-} ((Id "P62") :: _::_(InputChar '7') rest) = just (ParseTree (parsed-numone-range-4 (string-append 0 (char-to-string '7'))) ::' rest , 2) len-dec-rewrite {- P63-} ((Id "P63") :: _::_(InputChar '8') rest) = just (ParseTree (parsed-numone-range-4 (string-append 0 (char-to-string '8'))) ::' rest , 2) len-dec-rewrite {- P64-} ((Id "P64") :: _::_(InputChar '9') rest) = just (ParseTree (parsed-numone-range-4 (string-append 0 (char-to-string '9'))) ::' rest , 2) len-dec-rewrite {- P65-} ((Id "P65") :: _::_(ParseTree (parsed-numone-range-4 x0)) rest) = just (ParseTree (parsed-numone (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P66-} ((Id "P66") :: _::_(ParseTree (parsed-numone x0)) rest) = just (ParseTree (parsed-num-plus-5 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P67-} ((Id "P67") :: (ParseTree (parsed-numone x0)) :: _::_(ParseTree (parsed-num-plus-5 x1)) rest) = just (ParseTree (parsed-num-plus-5 (string-append 1 x0 x1)) ::' rest , 3) len-dec-rewrite {- P68-} ((Id "P68") :: _::_(ParseTree (parsed-num-plus-5 x0)) rest) = just (ParseTree (parsed-num (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P69-} ((Id "P69") :: _::_(InputChar '#') rest) = just (ParseTree (parsed-numpunct-bar-6 (string-append 0 (char-to-string '#'))) ::' rest , 2) len-dec-rewrite {- P7-} ((Id "P7") :: _::_(InputChar 'h') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'h'))) ::' rest , 2) len-dec-rewrite {- P70-} ((Id "P70") :: _::_(InputChar '_') rest) = just (ParseTree (parsed-numpunct-bar-6 (string-append 0 (char-to-string '_'))) ::' rest , 2) len-dec-rewrite {- P71-} ((Id "P71") :: _::_(InputChar '~') rest) = just (ParseTree (parsed-numpunct-bar-7 (string-append 0 (char-to-string '~'))) ::' rest , 2) len-dec-rewrite {- P72-} ((Id "P72") :: _::_(ParseTree (parsed-numpunct-bar-6 x0)) rest) = just (ParseTree (parsed-numpunct-bar-7 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P73-} ((Id "P73") :: _::_(InputChar '-') rest) = just (ParseTree (parsed-numpunct-bar-8 (string-append 0 (char-to-string '-'))) ::' rest , 2) len-dec-rewrite {- P74-} ((Id "P74") :: _::_(ParseTree (parsed-numpunct-bar-7 x0)) rest) = just (ParseTree (parsed-numpunct-bar-8 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P75-} ((Id "P75") :: _::_(InputChar '\'') rest) = just (ParseTree (parsed-numpunct-bar-9 (string-append 0 (char-to-string '\''))) ::' rest , 2) len-dec-rewrite {- P76-} ((Id "P76") :: _::_(ParseTree (parsed-numpunct-bar-8 x0)) rest) = just (ParseTree (parsed-numpunct-bar-9 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P77-} ((Id "P77") :: _::_(ParseTree (parsed-numone x0)) rest) = just (ParseTree (parsed-numpunct-bar-10 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P78-} ((Id "P78") :: _::_(ParseTree (parsed-numpunct-bar-9 x0)) rest) = just (ParseTree (parsed-numpunct-bar-10 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P79-} ((Id "P79") :: _::_(ParseTree (parsed-numpunct-bar-10 x0)) rest) = just (ParseTree (parsed-numpunct (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P8-} ((Id "P8") :: _::_(InputChar 'i') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'i'))) ::' rest , 2) len-dec-rewrite {- P80-} ((Id "P80") :: _::_(ParseTree (parsed-var x0)) rest) = just (ParseTree (parsed-qvar (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P81-} ((Id "P81") :: (ParseTree (parsed-var x0)) :: (InputChar '.') :: _::_(ParseTree (parsed-qvar x1)) rest) = just (ParseTree (parsed-qvar (string-append 2 x0 (char-to-string '.') x1)) ::' rest , 4) len-dec-rewrite {- P82-} ((Id "P82") :: _::_(ParseTree (parsed-alpha x0)) rest) = just (ParseTree (parsed-var-bar-11 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P83-} ((Id "P83") :: _::_(ParseTree (parsed-numpunct x0)) rest) = just (ParseTree (parsed-var-bar-11 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P85-} ((Id "P85") :: (ParseTree (parsed-var-bar-11 x0)) :: _::_(ParseTree (parsed-var-star-12 x1)) rest) = just (ParseTree (parsed-var-star-12 (string-append 1 x0 x1)) ::' rest , 3) len-dec-rewrite {- P86-} ((Id "P86") :: (ParseTree (parsed-alpha x0)) :: _::_(ParseTree (parsed-var-star-12 x1)) rest) = just (ParseTree (parsed-var (string-append 1 x0 x1)) ::' rest , 3) len-dec-rewrite {- P87-} ((Id "P87") :: _::_(InputChar '_') rest) = just (ParseTree (parsed-bvar-bar-13 (string-append 0 (char-to-string '_'))) ::' rest , 2) len-dec-rewrite {- P88-} ((Id "P88") :: _::_(ParseTree (parsed-var x0)) rest) = just (ParseTree (parsed-bvar-bar-13 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P89-} ((Id "P89") :: _::_(ParseTree (parsed-bvar-bar-13 x0)) rest) = just (ParseTree (parsed-bvar (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P9-} ((Id "P9") :: _::_(InputChar 'j') rest) = just (ParseTree (parsed-alpha-range-1 (string-append 0 (char-to-string 'j'))) ::' rest , 2) len-dec-rewrite {- P90-} ((Id "P90") :: (InputChar '.') :: (InputChar '.') :: _::_(InputChar '/') rest) = just (ParseTree (parsed-fpth-plus-14 (string-append 2 (char-to-string '.') (char-to-string '.') (char-to-string '/'))) ::' rest , 4) len-dec-rewrite {- P91-} ((Id "P91") :: (InputChar '.') :: (InputChar '.') :: (InputChar '/') :: _::_(ParseTree (parsed-fpth-plus-14 x0)) rest) = just (ParseTree (parsed-fpth-plus-14 (string-append 3 (char-to-string '.') (char-to-string '.') (char-to-string '/') x0)) ::' rest , 5) len-dec-rewrite {- P92-} ((Id "P92") :: _::_(ParseTree (parsed-alpha x0)) rest) = just (ParseTree (parsed-fpth-bar-15 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P93-} ((Id "P93") :: _::_(ParseTree (parsed-fpth-plus-14 x0)) rest) = just (ParseTree (parsed-fpth-bar-15 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P94-} ((Id "P94") :: _::_(ParseTree (parsed-numpunct x0)) rest) = just (ParseTree (parsed-fpth-bar-16 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P95-} ((Id "P95") :: _::_(InputChar '/') rest) = just (ParseTree (parsed-fpth-bar-16 (string-append 0 (char-to-string '/'))) ::' rest , 2) len-dec-rewrite {- P96-} ((Id "P96") :: _::_(ParseTree (parsed-alpha x0)) rest) = just (ParseTree (parsed-fpth-bar-17 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P97-} ((Id "P97") :: _::_(ParseTree (parsed-fpth-bar-16 x0)) rest) = just (ParseTree (parsed-fpth-bar-17 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P99-} ((Id "P99") :: (ParseTree (parsed-fpth-bar-17 x0)) :: _::_(ParseTree (parsed-fpth-star-18 x1)) rest) = just (ParseTree (parsed-fpth-star-18 (string-append 1 x0 x1)) ::' rest , 3) len-dec-rewrite {- ParamsCons-} ((Id "ParamsCons") :: (ParseTree parsed-ows) :: (ParseTree (parsed-decl x0)) :: _::_(ParseTree (parsed-params x1)) rest) = just (ParseTree (parsed-params (norm-params (ParamsCons x0 x1))) ::' rest , 4) len-dec-rewrite {- Parens-} ((Id "Parens") :: (ParseTree (parsed-posinfo x0)) :: (InputChar '(') :: (ParseTree parsed-ows) :: (ParseTree (parsed-term x1)) :: (ParseTree parsed-ows) :: (InputChar ')') :: _::_(ParseTree (parsed-posinfo x2)) rest) = just (ParseTree (parsed-pterm (norm-term (Parens x0 x1 x2))) ::' rest , 8) len-dec-rewrite {- Phi-} ((Id "Phi") :: (ParseTree (parsed-posinfo x0)) :: (InputChar 'φ') :: (ParseTree parsed-ows) :: (ParseTree (parsed-lterm x1)) :: (ParseTree parsed-ows) :: (InputChar '-') :: (ParseTree parsed-ows) :: (ParseTree (parsed-lterm x2)) :: (ParseTree parsed-ows) :: (InputChar '{') :: (ParseTree parsed-ows) :: (ParseTree (parsed-term x3)) :: (ParseTree parsed-ows) :: (InputChar '}') :: _::_(ParseTree (parsed-posinfo x4)) rest) = just (ParseTree (parsed-lterm (norm-term (Phi x0 x1 x2 x3 x4))) ::' rest , 16) len-dec-rewrite {- Pi-} ((Id "Pi") :: _::_(InputChar 'Π') rest) = just (ParseTree (parsed-binder (norm-binder Pi)) ::' rest , 2) len-dec-rewrite {- Rho-} ((Id "Rho") :: (ParseTree (parsed-posinfo x0)) :: (ParseTree (parsed-rho x1)) :: (ParseTree parsed-ows) :: (ParseTree (parsed-lterm x2)) :: (ParseTree parsed-ows) :: (InputChar '-') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-lterm x3)) rest) = just (ParseTree (parsed-lterm (norm-term (Rho x0 x1 x2 x3))) ::' rest , 9) len-dec-rewrite {- RhoPlain-} ((Id "RhoPlain") :: _::_(InputChar 'ρ') rest) = just (ParseTree (parsed-rho (norm-rho RhoPlain)) ::' rest , 2) len-dec-rewrite {- RhoPlus-} ((Id "RhoPlus") :: (InputChar 'ρ') :: _::_(InputChar '+') rest) = just (ParseTree (parsed-rho (norm-rho RhoPlus)) ::' rest , 3) len-dec-rewrite {- Right-} ((Id "Right") :: _::_(InputChar 'r') rest) = just (ParseTree (parsed-leftRight (norm-leftRight Right)) ::' rest , 2) len-dec-rewrite {- Sigma-} ((Id "Sigma") :: (ParseTree (parsed-posinfo x0)) :: (InputChar 'ς') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-lterm x1)) rest) = just (ParseTree (parsed-lterm (norm-term (Sigma x0 x1))) ::' rest , 5) len-dec-rewrite {- SomeClass-} ((Id "SomeClass") :: (ParseTree parsed-ows) :: (InputChar ':') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-tk x0)) rest) = just (ParseTree (parsed-optClass (norm-optClass (SomeClass x0))) ::' rest , 5) len-dec-rewrite {- SomeOptAs-} ((Id "SomeOptAs") :: (ParseTree parsed-ows) :: (InputChar 'a') :: (InputChar 's') :: (ParseTree parsed-ws) :: _::_(ParseTree (parsed-var x0)) rest) = just (ParseTree (parsed-optAs (norm-optAs (SomeOptAs x0))) ::' rest , 6) len-dec-rewrite {- SomeTerm-} ((Id "SomeTerm") :: (ParseTree parsed-ows) :: (InputChar '{') :: (ParseTree parsed-ows) :: (ParseTree (parsed-term x0)) :: (ParseTree parsed-ows) :: (InputChar '}') :: _::_(ParseTree (parsed-posinfo x1)) rest) = just (ParseTree (parsed-optTerm (norm-optTerm (SomeTerm x0 x1))) ::' rest , 8) len-dec-rewrite {- SomeType-} ((Id "SomeType") :: (ParseTree parsed-ows) :: (InputChar ':') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-type x0)) rest) = just (ParseTree (parsed-optType (norm-optType (SomeType x0))) ::' rest , 5) len-dec-rewrite {- Star-} ((Id "Star") :: (ParseTree (parsed-posinfo x0)) :: _::_(InputChar '★') rest) = just (ParseTree (parsed-kind (norm-kind (Star x0))) ::' rest , 3) len-dec-rewrite {- TermArg-} ((Id "TermArg") :: (ParseTree parsed-ws) :: _::_(ParseTree (parsed-lterm x0)) rest) = just (ParseTree (parsed-arg (norm-arg (TermArg x0))) ::' rest , 3) len-dec-rewrite {- Theta-} ((Id "Theta") :: (ParseTree (parsed-posinfo x0)) :: (ParseTree (parsed-theta x1)) :: (ParseTree parsed-ws) :: (ParseTree (parsed-lterm x2)) :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-lterms x3)) rest) = just (ParseTree (parsed-term (norm-term (Theta x0 x1 x2 x3))) ::' rest , 7) len-dec-rewrite {- Tkk-} ((Id "Tkk") :: (ParseTree (parsed-kind x0)) :: _::_(Id "Tkk_end") rest) = just (ParseTree (parsed-tk (norm-tk (Tkk x0))) ::' rest , 3) len-dec-rewrite {- Tkt-} ((Id "Tkt") :: _::_(ParseTree (parsed-type x0)) rest) = just (ParseTree (parsed-tk (norm-tk (Tkt x0))) ::' rest , 2) len-dec-rewrite {- TpApp-} ((ParseTree (parsed-ltype x0)) :: (ParseTree parsed-ws) :: (InputChar '·') :: (ParseTree parsed-ws) :: _::_(ParseTree (parsed-atype x1)) rest) = just (ParseTree (parsed-ltype (norm-type (TpApp x0 x1))) ::' rest , 5) len-dec-rewrite {- TpAppt-} ((ParseTree (parsed-ltype x0)) :: (ParseTree parsed-ws) :: _::_(ParseTree (parsed-lterm x1)) rest) = just (ParseTree (parsed-ltype (norm-type (TpAppt x0 x1))) ::' rest , 3) len-dec-rewrite {- TpArrow-} ((Id "TpArrow") :: (ParseTree (parsed-ltype x0)) :: (ParseTree parsed-ows) :: (ParseTree (parsed-arrowtype x1)) :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-type x2)) rest) = just (ParseTree (parsed-type (norm-type (TpArrow x0 x1 x2))) ::' rest , 6) len-dec-rewrite {- TpEq-} ((Id "TpEq") :: (ParseTree (parsed-term x0)) :: (ParseTree parsed-ows) :: (InputChar '≃') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-term x1)) rest) = just (ParseTree (parsed-type (norm-type (TpEq x0 x1))) ::' rest , 6) len-dec-rewrite {- TpHole-} ((Id "TpHole") :: (ParseTree (parsed-posinfo x0)) :: _::_(InputChar '●') rest) = just (ParseTree (parsed-atype (norm-type (TpHole x0))) ::' rest , 3) len-dec-rewrite {- TpLambda-} ((Id "TpLambda") :: (ParseTree (parsed-posinfo x0)) :: (InputChar 'λ') :: (ParseTree parsed-ows) :: (ParseTree (parsed-posinfo x1)) :: (ParseTree (parsed-bvar x2)) :: (ParseTree parsed-ows) :: (InputChar ':') :: (ParseTree parsed-ows) :: (ParseTree (parsed-tk x3)) :: (ParseTree parsed-ows) :: (InputChar '.') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-type x4)) rest) = just (ParseTree (parsed-type (norm-type (TpLambda x0 x1 x2 x3 x4))) ::' rest , 14) len-dec-rewrite {- TpParens-} ((Id "TpParens") :: (ParseTree (parsed-posinfo x0)) :: (InputChar '(') :: (ParseTree parsed-ows) :: (ParseTree (parsed-type x1)) :: (ParseTree parsed-ows) :: (InputChar ')') :: _::_(ParseTree (parsed-posinfo x2)) rest) = just (ParseTree (parsed-atype (norm-type (TpParens x0 x1 x2))) ::' rest , 8) len-dec-rewrite {- TpVar-} ((Id "TpVar") :: (ParseTree (parsed-posinfo x0)) :: _::_(ParseTree (parsed-qvar x1)) rest) = just (ParseTree (parsed-atype (norm-type (TpVar x0 x1))) ::' rest , 3) len-dec-rewrite {- Type-} ((Id "Type") :: (ParseTree parsed-ows) :: (InputChar '◂') :: (ParseTree parsed-ows) :: _::_(ParseTree (parsed-type x0)) rest) = just (ParseTree (parsed-maybeCheckType (norm-maybeCheckType (Type x0))) ::' rest , 5) len-dec-rewrite {- TypeArg-} ((Id "TypeArg") :: (ParseTree parsed-ows) :: (InputChar '·') :: (ParseTree parsed-ws) :: _::_(ParseTree (parsed-atype x0)) rest) = just (ParseTree (parsed-arg (norm-arg (TypeArg x0))) ::' rest , 5) len-dec-rewrite {- UnerasedArrow-} ((Id "UnerasedArrow") :: _::_(InputChar '➔') rest) = just (ParseTree (parsed-arrowtype (norm-arrowtype UnerasedArrow)) ::' rest , 2) len-dec-rewrite {- Var-} ((Id "Var") :: (ParseTree (parsed-posinfo x0)) :: _::_(ParseTree (parsed-qvar x1)) rest) = just (ParseTree (parsed-pterm (norm-term (Var x0 x1))) ::' rest , 3) len-dec-rewrite {- VarsNext-} ((Id "VarsNext") :: (ParseTree (parsed-var x0)) :: (ParseTree parsed-ws) :: _::_(ParseTree (parsed-vars x1)) rest) = just (ParseTree (parsed-vars (norm-vars (VarsNext x0 x1))) ::' rest , 4) len-dec-rewrite {- VarsStart-} ((Id "VarsStart") :: _::_(ParseTree (parsed-var x0)) rest) = just (ParseTree (parsed-vars (norm-vars (VarsStart x0))) ::' rest , 2) len-dec-rewrite {- embed-} ((Id "embed") :: (ParseTree (parsed-aterm x0)) :: _::_(Id "embed_end") rest) = just (ParseTree (parsed-term x0) ::' rest , 3) len-dec-rewrite {- embed-} ((Id "embed") :: _::_(ParseTree (parsed-lterm x0)) rest) = just (ParseTree (parsed-aterm x0) ::' rest , 2) len-dec-rewrite {- embed-} ((Id "embed") :: (ParseTree (parsed-pterm x0)) :: _::_(Id "embed_end") rest) = just (ParseTree (parsed-lterm x0) ::' rest , 3) len-dec-rewrite {- embed-} ((Id "embed") :: (ParseTree (parsed-ltype x0)) :: _::_(Id "embed_end") rest) = just (ParseTree (parsed-type x0) ::' rest , 3) len-dec-rewrite {- embed-} ((Id "embed") :: _::_(ParseTree (parsed-atype x0)) rest) = just (ParseTree (parsed-ltype x0) ::' rest , 2) len-dec-rewrite {- embed-} ((Id "embed") :: _::_(ParseTree (parsed-lliftingType x0)) rest) = just (ParseTree (parsed-liftingType x0) ::' rest , 2) len-dec-rewrite {- Both-} (_::_(Id "Both") rest) = just (ParseTree (parsed-leftRight (norm-leftRight Both)) ::' rest , 1) len-dec-rewrite {- CmdsStart-} (_::_(Id "CmdsStart") rest) = just (ParseTree (parsed-cmds (norm-cmds CmdsStart)) ::' rest , 1) len-dec-rewrite {- EpsHnf-} (_::_(Id "EpsHnf") rest) = just (ParseTree (parsed-maybeMinus (norm-maybeMinus EpsHnf)) ::' rest , 1) len-dec-rewrite {- ImportsStart-} (_::_(Id "ImportsStart") rest) = just (ParseTree (parsed-imports (norm-imports ImportsStart)) ::' rest , 1) len-dec-rewrite {- NoAtype-} (_::_(Id "NoAtype") rest) = just (ParseTree (parsed-maybeAtype (norm-maybeAtype NoAtype)) ::' rest , 1) len-dec-rewrite {- NoCheckType-} (_::_(Id "NoCheckType") rest) = just (ParseTree (parsed-maybeCheckType (norm-maybeCheckType NoCheckType)) ::' rest , 1) len-dec-rewrite {- NoClass-} (_::_(Id "NoClass") rest) = just (ParseTree (parsed-optClass (norm-optClass NoClass)) ::' rest , 1) len-dec-rewrite {- NoOptAs-} (_::_(Id "NoOptAs") rest) = just (ParseTree (parsed-optAs (norm-optAs NoOptAs)) ::' rest , 1) len-dec-rewrite {- NoTerm-} (_::_(Id "NoTerm") rest) = just (ParseTree (parsed-optTerm (norm-optTerm NoTerm)) ::' rest , 1) len-dec-rewrite {- NoType-} (_::_(Id "NoType") rest) = just (ParseTree (parsed-optType (norm-optType NoType)) ::' rest , 1) len-dec-rewrite {- NotErased-} (_::_(Id "NotErased") rest) = just (ParseTree (parsed-maybeErased (norm-maybeErased NotErased)) ::' rest , 1) len-dec-rewrite {- P105-} (_::_(Id "P105") rest) = just (ParseTree (parsed-kvar-star-20 empty-string) ::' rest , 1) len-dec-rewrite {- P214-} (_::_(Id "P214") rest) = just (ParseTree parsed-comment-star-73 ::' rest , 1) len-dec-rewrite {- P227-} (_::_(Id "P227") rest) = just (ParseTree parsed-ows-star-78 ::' rest , 1) len-dec-rewrite {- P84-} (_::_(Id "P84") rest) = just (ParseTree (parsed-var-star-12 empty-string) ::' rest , 1) len-dec-rewrite {- P98-} (_::_(Id "P98") rest) = just (ParseTree (parsed-fpth-star-18 empty-string) ::' rest , 1) len-dec-rewrite {- ParamsNil-} (_::_(Id "ParamsNil") rest) = just (ParseTree (parsed-params (norm-params ParamsNil)) ::' rest , 1) len-dec-rewrite {- Posinfo-} (_::_(Posinfo n) rest) = just (ParseTree (parsed-posinfo (ℕ-to-string n)) ::' rest , 1) len-dec-rewrite x = nothing rrs : rewriteRules rrs = record { len-dec-rewrite = len-dec-rewrite }
{ "alphanum_fraction": 0.6338782105, "avg_line_length": 130.6722797927, "ext": "agda", "hexsha": "8c0d76da79cae73839e0f90ede3533c5e37d44cc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/cedille.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/cedille.agda", "max_line_length": 1723, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/cedille.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 36623, "size": 100879 }
{-# OPTIONS --rewriting --confluence-check #-} data _==_ {i} {A : Set i} : (x y : A) → Set i where refl : {a : A} → a == a {-# BUILTIN REWRITE _==_ #-} data ⊥ : Set where record ⊤ : Set where constructor tt module Test (p : ⊥ == ⊤) where abstract A : Set A = ⊥ q : A == ⊤ q = p {-# REWRITE q #-} f : A f = tt abstract g : ⊥ g = f -- g reduces to tt, which does not have type ⊥.
{ "alphanum_fraction": 0.4802784223, "avg_line_length": 14.3666666667, "ext": "agda", "hexsha": "fce86f08303102376eed679d34547b0bd4bd0d43", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue4147.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue4147.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue4147.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 161, "size": 431 }
module interfaceExtensionAndDelegation where open import Data.Product open import Data.Nat.Base open import Data.Nat.Show open import Data.String.Base using (String; _++_) open import Size open import NativeIO open import interactiveProgramsAgda using (ConsoleInterface; _>>=_; do; IO; return; putStrLn; translateIOConsole ) open import objectsInAgda using (Interface; Method; Result; CellMethod; get; put; CellResult; cellI; IOObject; CellC; method; simpleCell ) data CounterMethod A : Set where super : (m : CellMethod A) → CounterMethod A stats : CounterMethod A statsCellI : (A : Set) → Interface Method (statsCellI A) = CounterMethod A Result (statsCellI A) (super m) = Result (cellI A) m Result (statsCellI A) stats = Unit CounterC : (i : Size) → Set CounterC = IOObject ConsoleInterface (statsCellI String) pattern getᶜ = super get pattern putᶜ x = super (put x) {- Methods of CounterC are now getᶜ (putᶜ x) stats -} counterCell : ∀{i} (c : CellC i) (ngets nputs : ℕ) → CounterC i method (counterCell c ngets nputs) getᶜ = method c get >>= λ { (s , c') → return (s , counterCell c' (1 + ngets) nputs) } method (counterCell c ngets nputs) (putᶜ x) = method c (put x) >>= λ { (_ , c') → return (_ , counterCell c' ngets (1 + nputs)) } method (counterCell c ngets nputs) stats = do (putStrLn ("Counted " ++ show ngets ++ " calls to get and " ++ show nputs ++ " calls to put.")) λ _ → return (_ , counterCell c ngets nputs) program : String → IO ConsoleInterface ∞ Unit program arg = let c₀ = counterCell (simpleCell "Start") 0 0 in method c₀ getᶜ >>= λ{ (s , c₁) → do (putStrLn s) λ _ → method c₁ (putᶜ arg) >>= λ{ (_ , c₂) → method c₂ getᶜ >>= λ{ (s' , c₃) → do (putStrLn s') λ _ → method c₃ (putᶜ "Over!") >>= λ{ (_ , c₄) → method c₄ stats >>= λ{ (_ , c₅) → return _ }}}}} main : NativeIO Unit main = translateIOConsole (program "Hello")
{ "alphanum_fraction": 0.560599383, "avg_line_length": 33.3676470588, "ext": "agda", "hexsha": "292887218748123ddfd1721e7be70d43a2d1bcc3", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/interfaceExtensionAndDelegation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/interfaceExtensionAndDelegation.agda", "max_line_length": 72, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/interfaceExtensionAndDelegation.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 675, "size": 2269 }
{-# OPTIONS --cubical #-} module Integer.Univalence where open import Cubical.Foundations.NTypes open import Data.Empty open import Data.Product as Σ open import Data.Product.Relation.Pointwise.NonDependent open import Data.Unit open import Equality open import Function open import Integer.Difference as D open import Integer.Signed as S open import Natural as ℕ open import Quotient as / open import Syntax open import Relation.Nullary zero≢suc : ∀ {m} → ¬ (zero ≡ suc m) zero≢suc p = case ⟪ p ⟫ of λ () ⟦D→S⟧ : D.⟦ℤ⟧ → S.⟦ℤ⟧ ⟦D→S⟧ (a – zero) = +1* a ⟦D→S⟧ (zero – b) = -1* b ⟦D→S⟧ (suc a – suc b) = ⟦D→S⟧ (a – b) D→S : D.ℤ → S.ℤ D→S = ⟦D→S⟧ // line where line : ∀ x y → x D.≈ y → ⟦D→S⟧ x S.≈ ⟦D→S⟧ y line (zero – zero) (zero – zero) p = refl line (zero – zero) (zero – suc d) p = refl , p line (zero – zero) (suc c – zero) p = compPath p (cong suc ⟨ +-identityʳ c ⟩) line (zero – b) (suc c – suc d) p = line (zero – b) (c – d) ⟨ suc-injective ⟪ p ⟫ ⟩ line (suc a – suc b) (zero – d) p = line (a – b) (zero – d) ⟨ suc-injective ⟪ p ⟫ ⟩ line (zero – suc b) (zero – zero) p = sym p , refl line (zero – suc b) (zero – suc d) p = sym p line (zero – suc b) (suc c – zero) p = case ⟪ p ⟫ of λ () line (suc a – zero) (zero – d) p = case ⟪ p ⟫ of λ () line (suc a – zero) (suc c – zero) p = suc a ≡⟨ cong suc (sym ⟨ +-identityʳ a ⟩) ⟩ suc (a + 0) ≡⟨ p ⟩ suc (c + 0) ≡⟨ cong suc ⟨ +-identityʳ c ⟩ ⟩ suc c ∎ line (suc a – b) (suc c – suc d) p = line (suc a – b) (c – d) ⟨ suc-injective ⟪ compPath (cong suc (sym (+-suc a d))) p ⟫ ⟩ line (suc a – suc b) (suc c – d) p = line (a – b) (suc c – d) ⟨ suc-injective ⟪ compPath p (cong suc (+-suc c b)) ⟫ ⟩ ⟦S→D⟧ : S.⟦ℤ⟧ → D.⟦ℤ⟧ ⟦S→D⟧ (+1* a) = a – zero ⟦S→D⟧ (-1* a) = zero – a ⟦D→S→D⟧ : ∀ x → ⟦S→D⟧ (⟦D→S⟧ x) D.≈ x ⟦D→S→D⟧ (zero – zero) = refl ⟦D→S→D⟧ (zero – suc b) = refl ⟦D→S→D⟧ (suc a – zero) = refl ⟦D→S→D⟧ (suc a – suc b) = let m , n = ⟦S→D⟧ (⟦D→S⟧ (a – b)) in m + suc b ≡⟨ +-suc m b ⟩ suc (m + b) ≡⟨ cong suc (⟦D→S→D⟧ (a – b)) ⟩ suc (a + n) ∎ ⟦S→D→S⟧ : ∀ x → ⟦D→S⟧ (⟦S→D⟧ x) S.≈ x ⟦S→D→S⟧ (+1* x) = refl ⟦S→D→S⟧ (-1* zero) = refl , refl ⟦S→D→S⟧ (-1* suc x) = refl cong-⟦S→D⟧ : ∀ x y → x S.≈ y → ⟦S→D⟧ x D.≈ ⟦S→D⟧ y cong-⟦S→D⟧ (+1* x) (+1* y) = cong (_+ zero) cong-⟦S→D⟧ (-1* x) (-1* y) = sym cong-⟦S→D⟧ (+1* x) (-1* y) = Σ.uncurry (cong₂ _+_) cong-⟦S→D⟧ (-1* x) (+1* y) (p , q) = compPath (sym (cong₂ _+_ p q)) ⟨ +-comm x y ⟩ cong-⟦D→S⟧ : ∀ x y → x D.≈ y → ⟦D→S⟧ x S.≈ ⟦D→S⟧ y cong-⟦D→S⟧ (zero – zero) (zero – zero) p = refl cong-⟦D→S⟧ (zero – zero) (zero – suc d) p = refl , p cong-⟦D→S⟧ (zero – zero) (suc c – zero) p = compPath p (cong suc ⟨ +-identityʳ c ⟩) cong-⟦D→S⟧ (zero – b) (suc c – suc d) p = cong-⟦D→S⟧ (zero – b) (c – d) ⟨ suc-injective ⟪ p ⟫ ⟩ cong-⟦D→S⟧ (suc a – suc b) (zero – d) p = cong-⟦D→S⟧ (a – b) (zero – d) ⟨ suc-injective ⟪ p ⟫ ⟩ cong-⟦D→S⟧ (zero – suc b) (zero – zero) p = sym p , refl cong-⟦D→S⟧ (zero – suc b) (zero – suc d) p = sym p cong-⟦D→S⟧ (zero – suc b) (suc c – zero) p = case ⟪ p ⟫ of λ () cong-⟦D→S⟧ (suc a – zero) (zero – d) p = case ⟪ p ⟫ of λ () cong-⟦D→S⟧ (suc a – zero) (suc c – zero) p = suc a ≡⟨ cong suc (sym ⟨ +-identityʳ a ⟩) ⟩ suc (a + 0) ≡⟨ p ⟩ suc (c + 0) ≡⟨ cong suc ⟨ +-identityʳ c ⟩ ⟩ suc c ∎ cong-⟦D→S⟧ (suc a – b) (suc c – suc d) p = cong-⟦D→S⟧ (suc a – b) (c – d) ⟨ suc-injective ⟪ compPath (cong suc (sym (+-suc a d))) p ⟫ ⟩ cong-⟦D→S⟧ (suc a – suc b) (suc c – d) p = cong-⟦D→S⟧ (a – b) (suc c – d) ⟨ suc-injective ⟪ compPath p (cong suc (+-suc c b)) ⟫ ⟩ Signed≡Difference : S.ℤ ≡ D.ℤ Signed≡Difference = ua (isoToEquiv ⟦S→D⟧ ⟦D→S⟧ cong-⟦S→D⟧ cong-⟦D→S⟧ ⟦S→D→S⟧ ⟦D→S→D⟧)
{ "alphanum_fraction": 0.4940617577, "avg_line_length": 33.8303571429, "ext": "agda", "hexsha": "fb0e3c10c7aa93fa5fa9bdf328f985d855ea526b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "67ea7b96228c592daf79e800ebe4a7c12ed7221e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "kcsmnt0/numbers", "max_forks_repo_path": "src/Integer/Univalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "67ea7b96228c592daf79e800ebe4a7c12ed7221e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "kcsmnt0/numbers", "max_issues_repo_path": "src/Integer/Univalence.agda", "max_line_length": 95, "max_stars_count": 9, "max_stars_repo_head_hexsha": "67ea7b96228c592daf79e800ebe4a7c12ed7221e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "kcsmnt0/numbers", "max_stars_repo_path": "src/Integer/Univalence.agda", "max_stars_repo_stars_event_max_datetime": "2020-01-16T07:16:26.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-20T01:29:41.000Z", "num_tokens": 1962, "size": 3789 }
postulate anything : ∀{a}{A : Set a} → A data N : Set where suc : (n : N) → N data Val : (n : N) → Set where valSuc : (n : N) → Val (suc n) -- valSuc : (n : N) → Val n -- internal error disappears Pred : Set₁ Pred = (n : N) → Set postulate Any : (P : Pred) → Set F : (P : Pred) → Pred anyF : {P : Pred} (S : Any P) → Any (F P) Evaluate : ∀ (n : N) (P : (w : Val n) → Set) → Set Evaluate n P = P anything LR : (n : N) → Pred LR n m = Evaluate n λ { (valSuc _) → anything} anyLR : {n : N} → Any (LR n) anyLR = anyF anything
{ "alphanum_fraction": 0.5211009174, "avg_line_length": 20.1851851852, "ext": "agda", "hexsha": "023e559836c49b655b7fac475e0d81ec7586714f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2047.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2047.agda", "max_line_length": 57, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2047.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 219, "size": 545 }
{-# OPTIONS --without-K --safe #-} -- The 'Identity' instance, with all of Setoids as models module Categories.Theory.Lawvere.Instance.Identity where open import Data.Fin using (splitAt) open import Data.Sum using ([_,_]′) open import Data.Unit.Polymorphic using (⊤; tt) open import Level open import Relation.Binary.PropositionalEquality using (_≡_; refl; isEquivalence) open import Categories.Category.Cartesian.Bundle using (CartesianCategory) open import Categories.Category.Core using (Category) open import Categories.Category.Instance.Nat open import Categories.Category.Unbundled.Properties using (unpack′) open import Categories.Functor.IdentityOnObjects using (id-IOO) open import Categories.Object.Product using (Product) open import Categories.Theory.Lawvere using (LawvereTheory) Identity : LawvereTheory 0ℓ 0ℓ Identity = record { L = unpack′ (Category.op Nat) ; T = CartesianCategory.cartesian Natop-Cartesian ; I = id-IOO ; CartF = record { F-resp-⊤ = record { ! = λ () ; !-unique = λ _ () } ; F-resp-× = λ {m} {n} → record { P m n } } } where module P m n = Product Natop (Natop-Product m n)
{ "alphanum_fraction": 0.7326906223, "avg_line_length": 33.5588235294, "ext": "agda", "hexsha": "c40264462d1f13c93643de6cf4e8b3df9ff315fa", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Theory/Lawvere/Instance/Identity.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Theory/Lawvere/Instance/Identity.agda", "max_line_length": 74, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Theory/Lawvere/Instance/Identity.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 308, "size": 1141 }
-- Andreas, 2016-11-02, issue #2285 -- double check for record types record Big : _ where field any : ∀{a} → Set a
{ "alphanum_fraction": 0.6525423729, "avg_line_length": 19.6666666667, "ext": "agda", "hexsha": "3f5612a9928a1b9661f0379bd8ddba54c0e75b11", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2285-record.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2285-record.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2285-record.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 41, "size": 118 }
{-# OPTIONS --allow-unsolved-metas --no-positivity-check --no-termination-check --type-in-type --sized-types --injective-type-constructors --guardedness-preserving-type-constructors --experimental-irrelevance #-} module SafeFlagPragmas where
{ "alphanum_fraction": 0.5840978593, "avg_line_length": 29.7272727273, "ext": "agda", "hexsha": "8fd7a172b05fc3e26d51e2264532d17ac0aac4eb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/SafeFlagPragmas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/SafeFlagPragmas.agda", "max_line_length": 54, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/SafeFlagPragmas.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 73, "size": 327 }
-- Andreas, 2020-09-26, issue #4944. -- Size solver got stuck on projected variables which are left over -- in some size constraints by the generalization feature. -- {-# OPTIONS --sized-types #-} -- {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.conv.size:60 -v tc.size:30 -v tc.meta.assign:10 #-} open import Agda.Builtin.Size variable i : Size postulate A : Set data ListA (i : Size) : Set where nil : ListA i cons : (j : Size< i) (t : A) (as : ListA j) → ListA i postulate node : A → ListA ∞ → A R : (i : Size) (as as′ : ListA i) → Set test : -- {i : Size} -- made error vanish (t u : A) (as : ListA i) → R (↑ (↑ i)) (cons (↑ i) t (cons i u as)) (cons _ (node t (cons _ u nil)) as) variable t u : A as : ListA i postulate tst2 : R _ (cons _ t (cons _ u as)) (cons _ (node t (cons _ u nil)) as) -- Should pass.
{ "alphanum_fraction": 0.5755148741, "avg_line_length": 23.6216216216, "ext": "agda", "hexsha": "7f85cf8d2b75d5e47bbb4fd76d3172c327b2624a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue4944.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4944.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4944.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 307, "size": 874 }