Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 8,964 Bytes
86083d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
---
annotations_creators:
- machine-generated
language_creators:
- crowdsourced
languages:
  ace:
  - ace
  af:
  - af
  als:
  - als
  am:
  - am
  an:
  - an
  ang:
  - ang
  ar:
  - ar
  arc:
  - arc
  arz:
  - arz
  as:
  - as
  ast:
  - ast
  ay:
  - ay
  az:
  - az
  ba:
  - ba
  bar:
  - bar
  be:
  - be
  bg:
  - bg
  bh:
  - bh
  bn:
  - bn
  bo:
  - bo
  br:
  - br
  bs:
  - bs
  ca:
  - ca
  cdo:
  - cdo
  ce:
  - ce
  ceb:
  - ceb
  ckb:
  - ckb
  co:
  - co
  crh:
  - crh
  cs:
  - cs
  csb:
  - csb
  cv:
  - cv
  cy:
  - cy
  da:
  - da
  de:
  - de
  diq:
  - diq
  dv:
  - dv
  el:
  - el
  en:
  - en
  eo:
  - eo
  es:
  - es
  et:
  - et
  eu:
  - eu
  ext:
  - ext
  fa:
  - fa
  fi:
  - fi
  fo:
  - fo
  fr:
  - fr
  frr:
  - frr
  fur:
  - fur
  fy:
  - fy
  ga:
  - ga
  gan:
  - gan
  gd:
  - gd
  gl:
  - gl
  gn:
  - gn
  gu:
  - gu
  hak:
  - hak
  he:
  - he
  hi:
  - hi
  hr:
  - hr
  hsb:
  - hsb
  hu:
  - hu
  hy:
  - hy
  ia:
  - ia
  id:
  - id
  ig:
  - ig
  ilo:
  - ilo
  io:
  - io
  is:
  - is
  it:
  - it
  ja:
  - ja
  jbo:
  - jbo
  jv:
  - jv
  ka:
  - ka
  kk:
  - kk
  km:
  - km
  kn:
  - kn
  ko:
  - ko
  ksh:
  - ksh
  ku:
  - ku
  ky:
  - ky
  la:
  - la
  lb:
  - lb
  li:
  - li
  lij:
  - lij
  lmo:
  - lmo
  ln:
  - ln
  lt:
  - lt
  lv:
  - lv
  mg:
  - mg
  mhr:
  - mhr
  mi:
  - mi
  min:
  - min
  mk:
  - mk
  ml:
  - ml
  mn:
  - mn
  mr:
  - mr
  ms:
  - ms
  mt:
  - mt
  mwl:
  - mwl
  my:
  - my
  mzn:
  - mzn
  nap:
  - nap
  nds:
  - nds
  ne:
  - ne
  nl:
  - nl
  nn:
  - nn
  'no':
  - 'no'
  nov:
  - nov
  oc:
  - oc
  or:
  - or
  os:
  - os
  other-bat-smg:
  - other-bat-smg
  other-be-x-old:
  - other-be-x-old
  other-cbk-zam:
  - other-cbk-zam
  other-eml:
  - other-eml
  other-fiu-vro:
  - other-fiu-vro
  other-map-bms:
  - other-map-bms
  other-simple:
  - other-simple
  other-zh-classical:
  - other-zh-classical
  other-zh-min-nan:
  - other-zh-min-nan
  other-zh-yue:
  - other-zh-yue
  pa:
  - pa
  pdc:
  - pdc
  pl:
  - pl
  pms:
  - pms
  pnb:
  - pnb
  ps:
  - ps
  pt:
  - pt
  qu:
  - qu
  rm:
  - rm
  ro:
  - ro
  ru:
  - ru
  rw:
  - rw
  sa:
  - sa
  sah:
  - sah
  scn:
  - scn
  sco:
  - sco
  sd:
  - sd
  sh:
  - sh
  si:
  - si
  sk:
  - sk
  sl:
  - sl
  so:
  - so
  sq:
  - sq
  sr:
  - sr
  su:
  - su
  sv:
  - sv
  sw:
  - sw
  szl:
  - szl
  ta:
  - ta
  te:
  - te
  tg:
  - tg
  th:
  - th
  tk:
  - tk
  tl:
  - tl
  tr:
  - tr
  tt:
  - tt
  ug:
  - ug
  uk:
  - uk
  ur:
  - ur
  uz:
  - uz
  vec:
  - vec
  vep:
  - vep
  vi:
  - vi
  vls:
  - vls
  vo:
  - vo
  wa:
  - wa
  war:
  - war
  wuu:
  - wuu
  xmf:
  - xmf
  yi:
  - yi
  yo:
  - yo
  zea:
  - zea
  zh:
  - zh
licenses:
- unknown
multilinguality:
- multilingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- structure-prediction
task_ids:
- named-entity-recognition
---

# Dataset Card for WikiANN

## Table of Contents
- [Dataset Card for WikiANN](#dataset-card-for-wikiann)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)
    - [Annotations](#annotations)
      - [Annotation process](#annotation-process)
      - [Who are the annotators?](#who-are-the-annotators)
    - [Personal and Sensitive Information](#personal-and-sensitive-information)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** [Massively Multilingual Transfer for NER](https://github.com/afshinrahimi/mmner)
- **Repository:** [Massively Multilingual Transfer for NER](https://github.com/afshinrahimi/mmner)
- **Paper:** The original datasets come from the _Cross-lingual name tagging and linking for 282 languages_ [paper](https://www.aclweb.org/anthology/P17-1178/) by Xiaoman Pan et al. (2018). This version corresponds to the balanced train, dev, and test splits of the original data from the _Massively Multilingual Transfer for NER_ [paper](https://arxiv.org/abs/1902.00193) by Afshin Rahimi et al. (2019).
- **Leaderboard:**
- **Point of Contact:** [Afshin Rahimi](mailto:afshinrahimi@gmail.com) or [Lewis Tunstall](mailto:lewis.c.tunstall@gmail.com)

### Dataset Summary

WikiANN (sometimes called PAN-X) is a multilingual named entity recognition dataset consisting of Wikipedia articles annotated with LOC (location), PER (person), and ORG (organisation) tags in the IOB2 format. This version corresponds to the balanced train, dev, and test splits of Rahimi et al. (2019), which supports 176 of the 282 languages from the original WikiANN corpus.

### Supported Tasks and Leaderboards

- `named-entity-recognition`: The dataset can be used to train a model for named entity recognition in many languages, or evaluate the zero-shot cross-lingual capabilities of multilingual models.

### Languages

[More Information Needed]

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

[More Information Needed]

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

The original 282 datasets are associated with this article

```
@inproceedings{pan-etal-2017-cross,
    title = "Cross-lingual Name Tagging and Linking for 282 Languages",
    author = "Pan, Xiaoman  and
      Zhang, Boliang  and
      May, Jonathan  and
      Nothman, Joel  and
      Knight, Kevin  and
      Ji, Heng",
    booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/P17-1178",
    doi = "10.18653/v1/P17-1178",
    pages = "1946--1958",
    abstract = "The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of new KB mining methods: generating {``}silver-standard{''} annotations by transferring annotations from English to other languages through cross-lingual links and KB properties, refining annotations through self-training and topic selection, deriving language-specific morphology features from anchor links, and mining word translation pairs from cross-lingual links. Both name tagging and linking results for 282 languages are promising on Wikipedia data and on-Wikipedia data.",
}
```

while the 176 languages supported in this version are associated with the following article

```
@inproceedings{rahimi-etal-2019-massively,
    title = "Massively Multilingual Transfer for {NER}",
    author = "Rahimi, Afshin  and
      Li, Yuan  and
      Cohn, Trevor",
    booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/P19-1015",
    pages = "151--164",
}
```