Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
system HF staff commited on
Commit
1d6aeb3
1 Parent(s): 6755c8a

Update files from the datasets library (from 1.11.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.11.0

Files changed (3) hide show
  1. README.md +383 -14
  2. dataset_infos.json +0 -0
  3. wikiann.py +1 -2
README.md CHANGED
@@ -231,25 +231,25 @@ languages:
231
  os:
232
  - os
233
  other-bat-smg:
234
- - other-bat-smg
235
  other-be-x-old:
236
- - other-be-x-old
237
  other-cbk-zam:
238
- - other-cbk-zam
239
  other-eml:
240
- - other-eml
241
  other-fiu-vro:
242
- - other-fiu-vro
243
  other-map-bms:
244
- - other-map-bms
245
  other-simple:
246
- - other-simple
247
  other-zh-classical:
248
- - other-zh-classical
249
  other-zh-min-nan:
250
- - other-zh-min-nan
251
  other-zh-yue:
252
- - other-zh-yue
253
  pa:
254
  - pa
255
  pdc:
@@ -369,6 +369,7 @@ task_categories:
369
  task_ids:
370
  - named-entity-recognition
371
  paperswithcode_id: wikiann-1
 
372
  ---
373
 
374
  # Dataset Card for WikiANN
@@ -403,7 +404,7 @@ paperswithcode_id: wikiann-1
403
  - **Repository:** [Massively Multilingual Transfer for NER](https://github.com/afshinrahimi/mmner)
404
  - **Paper:** The original datasets come from the _Cross-lingual name tagging and linking for 282 languages_ [paper](https://www.aclweb.org/anthology/P17-1178/) by Xiaoman Pan et al. (2018). This version corresponds to the balanced train, dev, and test splits of the original data from the _Massively Multilingual Transfer for NER_ [paper](https://arxiv.org/abs/1902.00193) by Afshin Rahimi et al. (2019).
405
  - **Leaderboard:**
406
- - **Point of Contact:** [Afshin Rahimi](mailto:afshinrahimi@gmail.com) or [Lewis Tunstall](mailto:lewis.c.tunstall@gmail.com)
407
 
408
  ### Dataset Summary
409
 
@@ -415,13 +416,201 @@ WikiANN (sometimes called PAN-X) is a multilingual named entity recognition data
415
 
416
  ### Languages
417
 
418
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419
 
420
  ## Dataset Structure
421
 
422
  ### Data Instances
423
 
424
- [More Information Needed]
 
 
 
 
 
 
 
 
425
 
426
  ### Data Fields
427
 
@@ -432,7 +621,187 @@ WikiANN (sometimes called PAN-X) is a multilingual named entity recognition data
432
 
433
  ### Data Splits
434
 
435
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436
 
437
  ## Dataset Creation
438
 
 
231
  os:
232
  - os
233
  other-bat-smg:
234
+ - sgs
235
  other-be-x-old:
236
+ - be-tarask
237
  other-cbk-zam:
238
+ - cbk
239
  other-eml:
240
+ - eml
241
  other-fiu-vro:
242
+ - vro
243
  other-map-bms:
244
+ - jv-x-bms
245
  other-simple:
246
+ - en-basiceng
247
  other-zh-classical:
248
+ - lzh
249
  other-zh-min-nan:
250
+ - nan
251
  other-zh-yue:
252
+ - yue
253
  pa:
254
  - pa
255
  pdc:
 
369
  task_ids:
370
  - named-entity-recognition
371
  paperswithcode_id: wikiann-1
372
+ pretty_name: WikiANN
373
  ---
374
 
375
  # Dataset Card for WikiANN
 
404
  - **Repository:** [Massively Multilingual Transfer for NER](https://github.com/afshinrahimi/mmner)
405
  - **Paper:** The original datasets come from the _Cross-lingual name tagging and linking for 282 languages_ [paper](https://www.aclweb.org/anthology/P17-1178/) by Xiaoman Pan et al. (2018). This version corresponds to the balanced train, dev, and test splits of the original data from the _Massively Multilingual Transfer for NER_ [paper](https://arxiv.org/abs/1902.00193) by Afshin Rahimi et al. (2019).
406
  - **Leaderboard:**
407
+ - **Point of Contact:** [Afshin Rahimi](mailto:afshinrahimi@gmail.com) or [Lewis Tunstall](mailto:lewis.c.tunstall@gmail.com) or [Albert Villanova del Moral](albert@huggingface.co)
408
 
409
  ### Dataset Summary
410
 
 
416
 
417
  ### Languages
418
 
419
+ The dataset contains 176 languages, one in each of the configuration subsets. The corresponding BCP 47 language tags
420
+ are:
421
+
422
+ | | Language tag |
423
+ |:-------------------|:---------------|
424
+ | ace | ace |
425
+ | af | af |
426
+ | als | als |
427
+ | am | am |
428
+ | an | an |
429
+ | ang | ang |
430
+ | ar | ar |
431
+ | arc | arc |
432
+ | arz | arz |
433
+ | as | as |
434
+ | ast | ast |
435
+ | ay | ay |
436
+ | az | az |
437
+ | ba | ba |
438
+ | bar | bar |
439
+ | be | be |
440
+ | bg | bg |
441
+ | bh | bh |
442
+ | bn | bn |
443
+ | bo | bo |
444
+ | br | br |
445
+ | bs | bs |
446
+ | ca | ca |
447
+ | cdo | cdo |
448
+ | ce | ce |
449
+ | ceb | ceb |
450
+ | ckb | ckb |
451
+ | co | co |
452
+ | crh | crh |
453
+ | cs | cs |
454
+ | csb | csb |
455
+ | cv | cv |
456
+ | cy | cy |
457
+ | da | da |
458
+ | de | de |
459
+ | diq | diq |
460
+ | dv | dv |
461
+ | el | el |
462
+ | en | en |
463
+ | eo | eo |
464
+ | es | es |
465
+ | et | et |
466
+ | eu | eu |
467
+ | ext | ext |
468
+ | fa | fa |
469
+ | fi | fi |
470
+ | fo | fo |
471
+ | fr | fr |
472
+ | frr | frr |
473
+ | fur | fur |
474
+ | fy | fy |
475
+ | ga | ga |
476
+ | gan | gan |
477
+ | gd | gd |
478
+ | gl | gl |
479
+ | gn | gn |
480
+ | gu | gu |
481
+ | hak | hak |
482
+ | he | he |
483
+ | hi | hi |
484
+ | hr | hr |
485
+ | hsb | hsb |
486
+ | hu | hu |
487
+ | hy | hy |
488
+ | ia | ia |
489
+ | id | id |
490
+ | ig | ig |
491
+ | ilo | ilo |
492
+ | io | io |
493
+ | is | is |
494
+ | it | it |
495
+ | ja | ja |
496
+ | jbo | jbo |
497
+ | jv | jv |
498
+ | ka | ka |
499
+ | kk | kk |
500
+ | km | km |
501
+ | kn | kn |
502
+ | ko | ko |
503
+ | ksh | ksh |
504
+ | ku | ku |
505
+ | ky | ky |
506
+ | la | la |
507
+ | lb | lb |
508
+ | li | li |
509
+ | lij | lij |
510
+ | lmo | lmo |
511
+ | ln | ln |
512
+ | lt | lt |
513
+ | lv | lv |
514
+ | mg | mg |
515
+ | mhr | mhr |
516
+ | mi | mi |
517
+ | min | min |
518
+ | mk | mk |
519
+ | ml | ml |
520
+ | mn | mn |
521
+ | mr | mr |
522
+ | ms | ms |
523
+ | mt | mt |
524
+ | mwl | mwl |
525
+ | my | my |
526
+ | mzn | mzn |
527
+ | nap | nap |
528
+ | nds | nds |
529
+ | ne | ne |
530
+ | nl | nl |
531
+ | nn | nn |
532
+ | no | no |
533
+ | nov | nov |
534
+ | oc | oc |
535
+ | or | or |
536
+ | os | os |
537
+ | other-bat-smg | sgs |
538
+ | other-be-x-old | be-tarask |
539
+ | other-cbk-zam | cbk |
540
+ | other-eml | eml |
541
+ | other-fiu-vro | vro |
542
+ | other-map-bms | jv-x-bms |
543
+ | other-simple | en-basiceng |
544
+ | other-zh-classical | lzh |
545
+ | other-zh-min-nan | nan |
546
+ | other-zh-yue | yue |
547
+ | pa | pa |
548
+ | pdc | pdc |
549
+ | pl | pl |
550
+ | pms | pms |
551
+ | pnb | pnb |
552
+ | ps | ps |
553
+ | pt | pt |
554
+ | qu | qu |
555
+ | rm | rm |
556
+ | ro | ro |
557
+ | ru | ru |
558
+ | rw | rw |
559
+ | sa | sa |
560
+ | sah | sah |
561
+ | scn | scn |
562
+ | sco | sco |
563
+ | sd | sd |
564
+ | sh | sh |
565
+ | si | si |
566
+ | sk | sk |
567
+ | sl | sl |
568
+ | so | so |
569
+ | sq | sq |
570
+ | sr | sr |
571
+ | su | su |
572
+ | sv | sv |
573
+ | sw | sw |
574
+ | szl | szl |
575
+ | ta | ta |
576
+ | te | te |
577
+ | tg | tg |
578
+ | th | th |
579
+ | tk | tk |
580
+ | tl | tl |
581
+ | tr | tr |
582
+ | tt | tt |
583
+ | ug | ug |
584
+ | uk | uk |
585
+ | ur | ur |
586
+ | uz | uz |
587
+ | vec | vec |
588
+ | vep | vep |
589
+ | vi | vi |
590
+ | vls | vls |
591
+ | vo | vo |
592
+ | wa | wa |
593
+ | war | war |
594
+ | wuu | wuu |
595
+ | xmf | xmf |
596
+ | yi | yi |
597
+ | yo | yo |
598
+ | zea | zea |
599
+ | zh | zh |
600
 
601
  ## Dataset Structure
602
 
603
  ### Data Instances
604
 
605
+ This is an example in the "train" split of the "af" (Afrikaans language) configuration subset:
606
+ ```python
607
+ {
608
+ 'tokens': ['Sy', 'ander', 'seun', ',', 'Swjatopolk', ',', 'was', 'die', 'resultaat', 'van', '’n', 'buite-egtelike', 'verhouding', '.'],
609
+ 'ner_tags': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
610
+ 'langs': ['af', 'af', 'af', 'af', 'af', 'af', 'af', 'af', 'af', 'af', 'af', 'af', 'af', 'af'],
611
+ 'spans': ['PER: Swjatopolk']
612
+ }
613
+ ```
614
 
615
  ### Data Fields
616
 
 
621
 
622
  ### Data Splits
623
 
624
+ For each configuration subset, the data is split into "train", "validation" and "test" sets, each containing the
625
+ following number of examples:
626
+
627
+ | | Train | Validation | Test |
628
+ |:-------------|--------:|-------------:|-------:|
629
+ | ace | 100 | 100 | 100 |
630
+ | af | 5000 | 1000 | 1000 |
631
+ | als | 100 | 100 | 100 |
632
+ | am | 100 | 100 | 100 |
633
+ | an | 1000 | 1000 | 1000 |
634
+ | ang | 100 | 100 | 100 |
635
+ | ar | 20000 | 10000 | 10000 |
636
+ | arc | 100 | 100 | 100 |
637
+ | arz | 100 | 100 | 100 |
638
+ | as | 100 | 100 | 100 |
639
+ | ast | 1000 | 1000 | 1000 |
640
+ | ay | 100 | 100 | 100 |
641
+ | az | 10000 | 1000 | 1000 |
642
+ | ba | 100 | 100 | 100 |
643
+ | bar | 100 | 100 | 100 |
644
+ | bat-smg | 100 | 100 | 100 |
645
+ | be | 15000 | 1000 | 1000 |
646
+ | be-x-old | 5000 | 1000 | 1000 |
647
+ | bg | 20000 | 10000 | 10000 |
648
+ | bh | 100 | 100 | 100 |
649
+ | bn | 10000 | 1000 | 1000 |
650
+ | bo | 100 | 100 | 100 |
651
+ | br | 1000 | 1000 | 1000 |
652
+ | bs | 15000 | 1000 | 1000 |
653
+ | ca | 20000 | 10000 | 10000 |
654
+ | cbk-zam | 100 | 100 | 100 |
655
+ | cdo | 100 | 100 | 100 |
656
+ | ce | 100 | 100 | 100 |
657
+ | ceb | 100 | 100 | 100 |
658
+ | ckb | 1000 | 1000 | 1000 |
659
+ | co | 100 | 100 | 100 |
660
+ | crh | 100 | 100 | 100 |
661
+ | cs | 20000 | 10000 | 10000 |
662
+ | csb | 100 | 100 | 100 |
663
+ | cv | 100 | 100 | 100 |
664
+ | cy | 10000 | 1000 | 1000 |
665
+ | da | 20000 | 10000 | 10000 |
666
+ | de | 20000 | 10000 | 10000 |
667
+ | diq | 100 | 100 | 100 |
668
+ | dv | 100 | 100 | 100 |
669
+ | el | 20000 | 10000 | 10000 |
670
+ | eml | 100 | 100 | 100 |
671
+ | en | 20000 | 10000 | 10000 |
672
+ | eo | 15000 | 10000 | 10000 |
673
+ | es | 20000 | 10000 | 10000 |
674
+ | et | 15000 | 10000 | 10000 |
675
+ | eu | 10000 | 10000 | 10000 |
676
+ | ext | 100 | 100 | 100 |
677
+ | fa | 20000 | 10000 | 10000 |
678
+ | fi | 20000 | 10000 | 10000 |
679
+ | fiu-vro | 100 | 100 | 100 |
680
+ | fo | 100 | 100 | 100 |
681
+ | fr | 20000 | 10000 | 10000 |
682
+ | frr | 100 | 100 | 100 |
683
+ | fur | 100 | 100 | 100 |
684
+ | fy | 1000 | 1000 | 1000 |
685
+ | ga | 1000 | 1000 | 1000 |
686
+ | gan | 100 | 100 | 100 |
687
+ | gd | 100 | 100 | 100 |
688
+ | gl | 15000 | 10000 | 10000 |
689
+ | gn | 100 | 100 | 100 |
690
+ | gu | 100 | 100 | 100 |
691
+ | hak | 100 | 100 | 100 |
692
+ | he | 20000 | 10000 | 10000 |
693
+ | hi | 5000 | 1000 | 1000 |
694
+ | hr | 20000 | 10000 | 10000 |
695
+ | hsb | 100 | 100 | 100 |
696
+ | hu | 20000 | 10000 | 10000 |
697
+ | hy | 15000 | 1000 | 1000 |
698
+ | ia | 100 | 100 | 100 |
699
+ | id | 20000 | 10000 | 10000 |
700
+ | ig | 100 | 100 | 100 |
701
+ | ilo | 100 | 100 | 100 |
702
+ | io | 100 | 100 | 100 |
703
+ | is | 1000 | 1000 | 1000 |
704
+ | it | 20000 | 10000 | 10000 |
705
+ | ja | 20000 | 10000 | 10000 |
706
+ | jbo | 100 | 100 | 100 |
707
+ | jv | 100 | 100 | 100 |
708
+ | ka | 10000 | 10000 | 10000 |
709
+ | kk | 1000 | 1000 | 1000 |
710
+ | km | 100 | 100 | 100 |
711
+ | kn | 100 | 100 | 100 |
712
+ | ko | 20000 | 10000 | 10000 |
713
+ | ksh | 100 | 100 | 100 |
714
+ | ku | 100 | 100 | 100 |
715
+ | ky | 100 | 100 | 100 |
716
+ | la | 5000 | 1000 | 1000 |
717
+ | lb | 5000 | 1000 | 1000 |
718
+ | li | 100 | 100 | 100 |
719
+ | lij | 100 | 100 | 100 |
720
+ | lmo | 100 | 100 | 100 |
721
+ | ln | 100 | 100 | 100 |
722
+ | lt | 10000 | 10000 | 10000 |
723
+ | lv | 10000 | 10000 | 10000 |
724
+ | map-bms | 100 | 100 | 100 |
725
+ | mg | 100 | 100 | 100 |
726
+ | mhr | 100 | 100 | 100 |
727
+ | mi | 100 | 100 | 100 |
728
+ | min | 100 | 100 | 100 |
729
+ | mk | 10000 | 1000 | 1000 |
730
+ | ml | 10000 | 1000 | 1000 |
731
+ | mn | 100 | 100 | 100 |
732
+ | mr | 5000 | 1000 | 1000 |
733
+ | ms | 20000 | 1000 | 1000 |
734
+ | mt | 100 | 100 | 100 |
735
+ | mwl | 100 | 100 | 100 |
736
+ | my | 100 | 100 | 100 |
737
+ | mzn | 100 | 100 | 100 |
738
+ | nap | 100 | 100 | 100 |
739
+ | nds | 100 | 100 | 100 |
740
+ | ne | 100 | 100 | 100 |
741
+ | nl | 20000 | 10000 | 10000 |
742
+ | nn | 20000 | 1000 | 1000 |
743
+ | no | 20000 | 10000 | 10000 |
744
+ | nov | 100 | 100 | 100 |
745
+ | oc | 100 | 100 | 100 |
746
+ | or | 100 | 100 | 100 |
747
+ | os | 100 | 100 | 100 |
748
+ | pa | 100 | 100 | 100 |
749
+ | pdc | 100 | 100 | 100 |
750
+ | pl | 20000 | 10000 | 10000 |
751
+ | pms | 100 | 100 | 100 |
752
+ | pnb | 100 | 100 | 100 |
753
+ | ps | 100 | 100 | 100 |
754
+ | pt | 20000 | 10000 | 10000 |
755
+ | qu | 100 | 100 | 100 |
756
+ | rm | 100 | 100 | 100 |
757
+ | ro | 20000 | 10000 | 10000 |
758
+ | ru | 20000 | 10000 | 10000 |
759
+ | rw | 100 | 100 | 100 |
760
+ | sa | 100 | 100 | 100 |
761
+ | sah | 100 | 100 | 100 |
762
+ | scn | 100 | 100 | 100 |
763
+ | sco | 100 | 100 | 100 |
764
+ | sd | 100 | 100 | 100 |
765
+ | sh | 20000 | 10000 | 10000 |
766
+ | si | 100 | 100 | 100 |
767
+ | simple | 20000 | 1000 | 1000 |
768
+ | sk | 20000 | 10000 | 10000 |
769
+ | sl | 15000 | 10000 | 10000 |
770
+ | so | 100 | 100 | 100 |
771
+ | sq | 5000 | 1000 | 1000 |
772
+ | sr | 20000 | 10000 | 10000 |
773
+ | su | 100 | 100 | 100 |
774
+ | sv | 20000 | 10000 | 10000 |
775
+ | sw | 1000 | 1000 | 1000 |
776
+ | szl | 100 | 100 | 100 |
777
+ | ta | 15000 | 1000 | 1000 |
778
+ | te | 1000 | 1000 | 1000 |
779
+ | tg | 100 | 100 | 100 |
780
+ | th | 20000 | 10000 | 10000 |
781
+ | tk | 100 | 100 | 100 |
782
+ | tl | 10000 | 1000 | 1000 |
783
+ | tr | 20000 | 10000 | 10000 |
784
+ | tt | 1000 | 1000 | 1000 |
785
+ | ug | 100 | 100 | 100 |
786
+ | uk | 20000 | 10000 | 10000 |
787
+ | ur | 20000 | 1000 | 1000 |
788
+ | uz | 1000 | 1000 | 1000 |
789
+ | vec | 100 | 100 | 100 |
790
+ | vep | 100 | 100 | 100 |
791
+ | vi | 20000 | 10000 | 10000 |
792
+ | vls | 100 | 100 | 100 |
793
+ | vo | 100 | 100 | 100 |
794
+ | wa | 100 | 100 | 100 |
795
+ | war | 100 | 100 | 100 |
796
+ | wuu | 100 | 100 | 100 |
797
+ | xmf | 100 | 100 | 100 |
798
+ | yi | 100 | 100 | 100 |
799
+ | yo | 100 | 100 | 100 |
800
+ | zea | 100 | 100 | 100 |
801
+ | zh | 20000 | 10000 | 10000 |
802
+ | zh-classical | 100 | 100 | 100 |
803
+ | zh-min-nan | 100 | 100 | 100 |
804
+ | zh-yue | 20000 | 10000 | 10000 |
805
 
806
  ## Dataset Creation
807
 
dataset_infos.json CHANGED
The diff for this file is too large to render. See raw diff
 
wikiann.py CHANGED
@@ -42,8 +42,7 @@ _CITATION = """@inproceedings{pan-etal-2017-cross,
42
 
43
  _DESCRIPTION = """WikiANN (sometimes called PAN-X) is a multilingual named entity recognition dataset consisting of Wikipedia articles annotated with LOC (location), PER (person), and ORG (organisation) tags in the IOB2 format. This version corresponds to the balanced train, dev, and test splits of Rahimi et al. (2019), which supports 176 of the 282 languages from the original WikiANN corpus."""
44
 
45
- # use ?dl=1 to force browser to download data instead of displaying it
46
- _DATA_URL = "https://www.dropbox.com/s/12h3qqog6q4bjve/panx_dataset.tar?dl=1"
47
  _HOMEPAGE = "https://github.com/afshinrahimi/mmner"
48
  _VERSION = "1.1.0"
49
  _LANGS = [
 
42
 
43
  _DESCRIPTION = """WikiANN (sometimes called PAN-X) is a multilingual named entity recognition dataset consisting of Wikipedia articles annotated with LOC (location), PER (person), and ORG (organisation) tags in the IOB2 format. This version corresponds to the balanced train, dev, and test splits of Rahimi et al. (2019), which supports 176 of the 282 languages from the original WikiANN corpus."""
44
 
45
+ _DATA_URL = "https://s3.amazonaws.com/datasets.huggingface.co/wikiann/1.1.0/panx_dataset.zip"
 
46
  _HOMEPAGE = "https://github.com/afshinrahimi/mmner"
47
  _VERSION = "1.1.0"
48
  _LANGS = [