File size: 12,253 Bytes
af22a0d c7691bd a87f691 fc169ec c096080 45f2d1c fc169ec c096080 c7691bd 8e99545 c7691bd 45f2d1c c7691bd 8e99545 c7691bd 8e99545 c096080 c7691bd c096080 c7691bd a57cda3 15aa99c a57cda3 15aa99c c901ef5 3ffa22b afccd08 15aa99c afccd08 3ffa22b afccd08 ae9f263 1a85f63 15aa99c 1317bb1 fc169ec a87f691 fc169ec 15aa99c 1317bb1 a87f691 1317bb1 fc169ec 6b93965 15aa99c a87f691 15aa99c a87f691 15aa99c a87f691 1317bb1 a87f691 5621d2d 15aa99c a2ddadf 5621d2d a2ddadf 1317bb1 e04f5f0 15aa99c 1545557 15aa99c 1317bb1 c7691bd 15aa99c 1545557 e04f5f0 c7691bd a2ddadf 45f2d1c a2ddadf 15aa99c 1317bb1 15aa99c afccd08 1545557 15aa99c 1545557 15aa99c 1545557 afccd08 1545557 45f2d1c a2ddadf 15aa99c 1545557 15aa99c 1545557 15aa99c 1545557 c7691bd 1317bb1 15aa99c 1317bb1 15aa99c 1317bb1 15aa99c eca53cb c7691bd af22a0d eca53cb af22a0d f88c6c5 6f701a4 c096080 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import ast
import copy
import json
import re
import string
from difflib import get_close_matches
from typing import Any, Dict
import numpy as np
from .deprecation_utils import deprecation
from .error_utils import Documentation, UnitxtError
from .operator import MultiStreamOperator
from .operators import FieldOperator, InstanceFieldOperator
from .settings_utils import get_constants
from .type_utils import isoftype
constants = get_constants()
class PostProcess(MultiStreamOperator):
operator: InstanceFieldOperator
process_prediction: bool = True
process_references: bool = True
def prepare(self):
super().prepare()
if not isoftype(self.operator, InstanceFieldOperator):
raise UnitxtError(
f"PostProcess requires operator field to be of type InstanceFieldOperator. Got object of type <{type(self.operator).__name__}>.",
Documentation.POST_PROCESSORS,
)
self.prediction_operator = copy.copy(self.operator)
self.prediction_operator.field = "prediction"
self.references_operator = copy.copy(self.operator)
self.references_operator.field = "references"
self.references_operator.process_every_value = True
self.references_operator.dont_apply_to_streams = [constants.inference_stream]
def process(self, multi_stream):
if self.process_prediction:
multi_stream = self.prediction_operator(multi_stream)
if self.process_references:
multi_stream = self.references_operator(multi_stream)
return multi_stream
class ToString(FieldOperator):
def process_value(self, text: Any) -> Any:
return str(text)
class ToStringStripped(FieldOperator):
def process_value(self, text: Any) -> Any:
return str(text).strip()
class SplitStrip(FieldOperator):
delimiter: str = " "
strip_every_element: bool = False
def process_value(self, text: Any) -> Any:
return [
x.strip() if self.strip_every_element else x
for x in text.split(self.delimiter)
]
class ToListByComma(SplitStrip):
delimiter = ","
strip_every_element = True
class ToListByCommaSpace(SplitStrip):
delimiter = ", "
strip_every_element = True
class RegexParser(FieldOperator):
"""A processor that uses regex in order to parse a string."""
regex: str
termination_regex: str = None
def process_value(self, text: Any) -> Any:
if self.termination_regex is not None and re.fullmatch(
self.termination_regex, text
):
return []
return re.findall(self.regex, text)
class ExtractWithRegex(RegexParser):
def process_value(self, text: Any) -> Any:
matches = super().process_value(text)
if matches:
return matches[0]
return ""
class ListToEmptyEntitiesTuples(FieldOperator):
def process_value(self, lst: Any) -> Any:
try:
return [(str(item), "") for item in lst]
except json.JSONDecodeError:
return []
class DictOfListsToPairs(FieldOperator):
position_key_before_value: bool = True
def process_value(self, obj: Any) -> Any:
try:
result = []
for key, values in obj.items():
for value in values:
assert isinstance(value, str)
pair = (
(key, value) if self.position_key_before_value else (value, key)
)
result.append(pair)
return result
except:
return []
class TakeFirstNonEmptyLine(FieldOperator):
def process_value(self, text: Any) -> Any:
parts = str(text).strip().split("\n")
if len(parts) == 0:
return ""
return parts[0].strip()
class TakeLastNonEmptyLine(FieldOperator):
def process_value(self, text: Any) -> Any:
parts = str(text).strip().split("\n")
if len(parts) == 0:
return ""
return parts[-1].strip()
class ConvertToBoolean(FieldOperator):
def process_value(self, text: Any) -> Any:
clean_instance = str(text).strip().lower()
if any(w in clean_instance for w in ["no", "not", "wrong", "false"]):
return "FALSE"
if any(w in clean_instance for w in ["yes", "right", "correct", "true"]):
return "TRUE"
return "OTHER"
class LowerCaseTillPunc(FieldOperator):
def process_value(self, text: Any) -> Any:
non_empty_line = text.lower()
match = re.search(r"[.,!?;]", non_empty_line)
if match:
# Extract text up to the first punctuation
non_empty_line = non_empty_line[: match.start()]
return non_empty_line
class Lower(FieldOperator):
def process_value(self, text: Any) -> Any:
return text.lower()
class Upper(FieldOperator):
def process_value(self, text: Any) -> Any:
return str(text).upper()
@deprecation("2.0.0", alternative=Lower)
class LowerCase(Lower):
pass
class Capitalize(FieldOperator):
def process_value(self, text: Any) -> Any:
return text.capitalize()
class GetStringAfter(FieldOperator):
substring: str
def process_value(self, text: Any) -> Any:
return text.split(self.substring, 1)[-1].strip()
class MatchClosestOption(InstanceFieldOperator):
options_field: str = "options"
def process_instance_value(self, value: Any, instance: Dict[str, Any]):
options = instance["task_data"][self.options_field]
return get_close_matches(value, options, n=1, cutoff=0.0)[0]
def process_instance_value(self, value, instance):
options = instance[self.options_field]
# Get the closest match; n=1 returns the single closest match
closest_match = get_close_matches(value, options, n=1, cutoff=0)
return closest_match[0] if closest_match else None
class Substring(FieldOperator):
begin: int = 0
end: int = None
def process_value(self, text: Any) -> Any:
if self.end is None:
return text[self.begin :]
return text[self.begin : self.end]
class FirstCharacter(FieldOperator):
def process_value(self, text: Any) -> Any:
match = re.search(r"\s*(\w)", text)
if match:
return match.groups(0)[0]
return ""
class TakeFirstWord(FieldOperator):
def process_value(self, text: Any) -> Any:
match = re.search(r"([-]*[0-9]+(\.([0-9]+))*)|([\w]+)", text)
if match:
return text[match.start() : match.end()]
return ""
class YesNoToInt(FieldOperator):
def process_value(self, text: Any) -> Any:
if text == "yes":
return "1"
if text == "no":
return "0"
return text
class YesToOneElseZero(FieldOperator):
def process_value(self, text: Any) -> Any:
if text == "yes":
return "1"
return "0"
class StrToFloatFormat(FieldOperator):
def process_value(self, text: Any) -> Any:
try:
return str(float(text))
except Exception:
return str(text)
class ToYesOrNone(FieldOperator):
def process_value(self, text: Any) -> Any:
if text == "yes":
return "yes"
return "none"
class StanceToProCon(FieldOperator):
def process_value(self, text: Any) -> Any:
if text == "positive":
return "PRO"
if text in ["negative", "suggestion"]:
return "CON"
return "none"
class StringEquals(FieldOperator):
string: str
def process_value(self, text: Any) -> Any:
if "not " + self.string.lower() in text.lower():
return "not " + self.string.lower()
if self.string.lower() in text.lower():
return self.string.lower()
return text
@deprecation("2.0.0", alternative=StringEquals)
class StringOrNotString(StringEquals):
pass
class ExtractMtBenchRatingJudgment(FieldOperator):
def process_value(self, text: Any) -> Any:
match = re.search(r"\[\[([\d]+\.?[\d]*)\]\]", text)
try:
return float(match.group(1)) / 10
except:
return 0.0
class ExtractMtBenchLabelJudgment(FieldOperator):
def process_value(self, text: Any) -> Any:
match = re.search(r"\[\[([^\]]+)\]\]", text)
try:
return str(match.group(1))
except:
return "None"
class LiteralEval(FieldOperator):
def process_value(self, text: Any) -> Any:
if text is not None and not isinstance(text, str):
raise ValueError(
f"LiteralEval: field '{self.field}' is expected to be of 'str' input type, got: {type(text)}"
)
if text is None or text == "":
return text
return ast.literal_eval(text.strip())
class ExtractSafeUnsafeJudgment(FieldOperator):
def process_value(self, text: Any) -> Any:
first_line = str(text).strip().split("\n")[0].lower()
if first_line == "safe":
return 1.0
return 0.0
class ExtractArenaHardNumericalJudgment(FieldOperator):
def process_value(self, text: Any) -> Any:
match = re.search(r"\[\[([^\]]+)\]\]", text)
try:
res = str(match.group(1))
if res == "A>B":
return 1
if res == "A>>B":
return 3
if res == "B>A":
return -1
if res == "B>>A":
return -3
return 0
except:
return 0
class InferDictsToBinaryLogprobs(FieldOperator):
neg_class_name: str
pos_class_name: str
take_logprobs_from_end: bool = False
num_logprobs_to_take: int = 3
min_probability_mass = 0.0001
def verify(self):
super().verify()
if (
self.neg_class_name.lower() in self.pos_class_name.lower()
or self.pos_class_name.lower() in self.neg_class_name.lower()
):
raise ValueError(
f"""Class names in {self.__class__.__name__} should not overlap, got "{self.pos_class_name}" and "{self.neg_class_name}"""
)
def process_value(self, obj: Any) -> Any:
for i in self.get_token_range(obj):
try:
pos_probs, neg_probs = self.get_pos_neg_probs(pred_dict=obj[i])
if pos_probs or neg_probs:
sum_probs = sum(pos_probs) + sum(neg_probs)
if sum_probs > self.min_probability_mass:
return sum(pos_probs) / sum_probs
except:
pass
return 0
def get_pos_neg_probs(self, pred_dict):
token_logprobs = pred_dict["top_tokens"]
pos_and_neg_probs = []
for class_name in [self.pos_class_name, self.neg_class_name]:
# We need to capture different variants of model behavior and tokenizers, for example with opening space,
# punctuation etc. but avoid longer words that contain the class name.
# For example, for class "yes" we would capture "YES," and " Yes" but not "yesterday".
name_regex = re.compile(
rf"(\W|Ġ|_)*{class_name}(\W|Ġ|_)*", flags=re.IGNORECASE
)
class_probs = [
np.exp(d["logprob"])
for d in token_logprobs
if name_regex.fullmatch(d["text"])
]
pos_and_neg_probs.append(class_probs)
return pos_and_neg_probs
def get_token_range(self, obj: Any) -> range:
n_tokens = min([self.num_logprobs_to_take, len(obj)])
if self.take_logprobs_from_end:
return range(-1, -(n_tokens + 1), -1)
return range(n_tokens)
class RemoveArticles(FieldOperator):
def process_value(self, text: Any) -> Any:
return re.sub(r"\b(a|an|the)\b", " ", text)
class RemovePunctuations(FieldOperator):
def process_value(self, text: Any) -> Any:
puncs_to_exclude = set(string.punctuation)
return "".join(c for c in text if c not in puncs_to_exclude)
class FixWhiteSpace(FieldOperator):
def process_value(self, text: Any) -> Any:
return " ".join(text.split())
|