File size: 4,949 Bytes
5a87e4a c7691bd 33a5854 c7691bd 33a5854 d2c1791 c7691bd 009cdd3 c7691bd 33a5854 c7691bd 33a5854 5a87e4a 009cdd3 33a5854 c7691bd d2c1791 c7691bd 33a5854 af22a0d 92d07f8 c7691bd ba7196e 92d07f8 af22a0d 6f701a4 ba7196e af22a0d ba7196e c7691bd ba7196e c7691bd 5a87e4a 92d07f8 33a5854 f2b185f 33a5854 c7691bd f2b185f c7691bd ba7196e c7691bd d2c1791 c7691bd 33a5854 92d07f8 33a5854 92d07f8 c7691bd 33a5854 c7691bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import json
from typing import Any, Dict, List, Optional
from datasets import Audio, Features, Image, Sequence, Value
from .artifact import Artifact
from .dict_utils import dict_get
from .operator import InstanceOperatorValidator
from .settings_utils import get_constants
constants = get_constants()
UNITXT_DATASET_SCHEMA = Features(
{
"source": Value("string"),
"target": Value("string"),
"references": Sequence(Value("string")),
"metrics": Sequence(Value("string")),
"groups": Sequence(Value("string")),
"subset": Sequence(Value("string")),
"media": {
"images": Sequence(Image()),
"audios": Sequence(Audio()),
},
"postprocessors": Sequence(Value("string")),
"task_data": Value(dtype="string"),
"data_classification_policy": Sequence(Value("string")),
}
)
UNITXT_INFERENCE_SCHEMA = Features(
{
"source": Value("string"),
"metrics": Sequence(Value("string")),
"groups": Sequence(Value("string")),
"subset": Sequence(Value("string")),
"postprocessors": Sequence(Value("string")),
"task_data": Value(dtype="string"),
"data_classification_policy": Sequence(Value("string")),
}
)
def get_schema(stream_name):
if stream_name == constants.inference_stream:
return UNITXT_INFERENCE_SCHEMA
return UNITXT_DATASET_SCHEMA
class Finalize(InstanceOperatorValidator):
group_by: List[List[str]]
remove_unnecessary_fields: bool = True
@staticmethod
def artifact_to_jsonable(artifact):
if artifact.__id__ is None:
return artifact.to_dict()
return artifact.__id__
def _prepare_media(self, instance):
if "media" not in instance:
instance["media"] = {}
if "images" not in instance["media"]:
instance["media"]["images"] = []
if "audios" not in instance["media"]:
instance["media"]["audios"] = []
return instance
def _get_instance_task_data(
self, instance: Dict[str, Any], use_reference_fields=True
) -> Dict[str, Any]:
task_data = {
**instance["input_fields"],
"metadata": {
"data_classification_policy": instance["data_classification_policy"],
},
}
if use_reference_fields:
task_data = {**task_data, **instance["reference_fields"]}
return task_data
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
task_data = self._get_instance_task_data(
instance,
use_reference_fields=stream_name != constants.inference_stream,
)
task_data["metadata"]["num_demos"] = instance["recipe_metadata"]["num_demos"]
task_data["metadata"]["template"] = self.artifact_to_jsonable(
instance["recipe_metadata"]["template"]
)
if "demos" in instance:
task_data["demos"] = [
self._get_instance_task_data(instance)
for instance in instance.pop("demos")
]
instance["task_data"] = json.dumps(task_data)
if self.remove_unnecessary_fields:
keys_to_delete = []
for key in instance.keys():
if key not in get_schema(stream_name):
keys_to_delete.append(key)
for key in keys_to_delete:
del instance[key]
data = {**task_data, **task_data["metadata"]}
groups = []
for group_attributes in self.group_by:
group = {}
if isinstance(group_attributes, str):
group_attributes = [group_attributes]
for attribute in group_attributes:
group[attribute] = dict_get(data, attribute)
groups.append(json.dumps(group))
instance["groups"] = groups
instance["subset"] = []
instance = self._prepare_media(instance)
instance["metrics"] = [
metric.to_json() if isinstance(metric, Artifact) else metric
for metric in instance["metrics"]
]
instance["postprocessors"] = [
processor.to_json() if isinstance(processor, Artifact) else processor
for processor in instance["postprocessors"]
]
return instance
def validate(self, instance: Dict[str, Any], stream_name: Optional[str] = None):
# verify the instance has the required schema
assert instance is not None, "Instance is None"
assert isinstance(
instance, dict
), f"Instance should be a dict, got {type(instance)}"
schema = get_schema(stream_name)
assert all(
key in instance for key in schema
), f"Instance should have the following keys: {schema}. Instance is: {instance}"
schema.encode_example(instance)
|