Datasets:

ArXiv:
File size: 8,205 Bytes
0b30fa7
f6b5881
 
 
 
 
 
a8d3374
e46357a
009cdd3
f6b5881
a8d3374
f6b5881
009cdd3
a8d3374
 
 
0b30fa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6b5881
 
 
0b30fa7
 
f6b5881
62d3377
 
f6b5881
62d3377
 
f6b5881
62d3377
f6b5881
 
 
62d3377
f6b5881
 
 
 
 
 
e46357a
f6b5881
 
 
de8f5a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6b5881
de8f5a2
 
 
 
 
 
 
 
f6b5881
 
 
af22a0d
62d3377
af22a0d
f6b5881
e46357a
f6b5881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55dccb0
a8d3374
f6b5881
 
 
62d3377
 
 
 
 
 
 
 
 
a8d3374
f6b5881
62d3377
 
f6b5881
 
 
 
55dccb0
f6b5881
 
 
 
 
 
 
62d3377
 
 
 
e46357a
62d3377
f6b5881
 
 
62d3377
f6b5881
 
 
62d3377
e46357a
f6b5881
0b30fa7
f6b5881
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import re
from typing import (
    Any,
    Dict,
    List,
    Optional,
)

from .dataclass import OptionalField
from .operator import InstanceOperator
from .type_utils import isoftype


class Format(InstanceOperator):
    pass


def apply_capital_new_line_notation(text: str) -> str:
    r"""Transforms a given string by applying the Capital New Line Notation.

    The Capital New Line Notation (\N) is designed to manage newline behavior in a string efficiently.
    This custom notation aims to consolidate multiple newline characters (\n) into a single newline under
    specific conditions, with tailored handling based on whether there's preceding text. The function
    distinguishes between two primary scenarios:

    1. If there's text (referred to as a prefix) followed by any number of \n characters and then one or
    more \N, the entire sequence is replaced with a single \n. This effectively simplifies multiple
    newlines and notation characters into a single newline when there's preceding text.
    2. If the string starts with \n characters followed by \N without any text before this sequence, or if
    \N is at the very beginning of the string, the sequence is completely removed. This case is
    applicable when the notation should not introduce any newlines due to the absence of preceding text.

    Args:
        text (str): The input string to be transformed, potentially containing the Capital New Line Notation
                        (\N) mixed with actual newline characters (\n).

    Returns:
        str: The string after applying the Capital New Line Notation rules, which either consolidates multiple
            newlines and notation characters into a single newline when text precedes them, or removes the
            notation and any preceding newlines entirely if no text is present before the notation.

    Examples:
        >>> apply_capital_new_line_notation("Hello World\\n\\n\N")
        'Hello World\\n'

        >>> apply_capital_new_line_notation("\\n\\n\NGoodbye World")
        'Goodbye World'

        >>> apply_capital_new_line_notation("\N")
        ''
    """
    # If sequence of \N or \n that ends with \N has no characters before delete it
    text = re.sub(r"^(?:\n|\\N)*\\N", "", text)
    # Replace every sequence of \N or \n that ends with \N with \n
    return re.sub(r"[\n(\\N)]*(\\N)+", r"\n", text)


class SystemFormat(Format):
    r"""Generates the whole input to the model, from constant strings that are given as args, and from values found in specified fields of the instance.

    Important: formats can use '\N' notations that means new-line if no new-line before and no empty string before.

    SystemFormat expects the input instance to contain:
    1. A field named "system_prompt" whose value is a string (potentially empty) that delivers a task independent opening text.
    2. A field named "source" whose value is a string verbalizing the original values in the instance (as read
    from the source dataset), in the context of the underlying task.
    3. A field named "instruction" that contains a (non-None) string.
    4. A field named with the value in arg 'demos_field', containing a list of dicts, each dict with fields "source"
    and "target", representing a single demo.
    5. A field named "target_prefx" that contains a string to prefix the target in both each demo, and to end the whole generated prompt

    SystemFormat formats the above fields into a single string to be inputted to the model. This string overwrites
    field "source" of the instance. Formatting is driven by two args: 'demo_format' and 'model_input_format'.
    SystemFormat also pops fields "system_prompt", "instruction", "target_prefix",  and the field containing the demos out from the input instance.

    Args:
        demos_field (str): the name of the field that contains the demos, being a list of dicts, each with "source" and "target" keys
        demo_format (str): formatting string for a single demo, combining fields "source" and "target"
        model_input_format (str) overall product format, combining instruction and source (as read from fields "instruction"
        and "source" of the input instance), together with demos (as formatted into one string)
        format_args: Dict[str,str]: additional format args to be used when formatting the different format strings

    Example:
        when input instance:

        .. code-block::

            {
                "source": "1+1",
                "target": "2",
                "instruction": "Solve the math exercises.",
                "demos": [{"source": "1+2", "target": "3"}, {"source": "4-2", "target": "2"}]
            }

        is processed by

        .. code-block::

            system_format = SystemFormat(
                demos_field="demos",
                demo_format="Input: {source}\nOutput: {target}\n\n",
                model_input_format="Instruction: {instruction}\n\n{demos}Input: {source}\nOutput: ",
            )

        the resulting instance is:

        .. code-block::

            {
                "target": "2",
                "source": "Instruction: Solve the math exercises.\n\nInput: 1+2\nOutput: 3\n\nInput: 4-2\nOutput: 2\n\nInput: 1+1\nOutput: ",
            }

    """

    demos_field: str = "demos"
    demo_format: str = "{source}\\N{target_prefix}{target}\n\n"  #  example: "User: {source}\nAgent: {target}\n\n"
    model_input_format: str = (
        "{system_prompt}\\N{instruction}\\N{demos}{source}\\N{target_prefix}"
    )
    format_args: Dict[str, str] = OptionalField(default_factory=dict)

    @staticmethod
    def _retrieve_field_and_assert_not_none(instance, field_name) -> str:
        if field_name is not None and field_name in instance:
            field_value = instance[field_name]
            assert (
                field_value is not None
            ), f"Value in field '{field_name}' should not be none. Received instance: {instance}"
            return field_value
        return ""

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        assert (
            "source" in instance
        ), f"field 'source' is expected to be in the input instance. Received instance: {instance}"
        source = self._retrieve_field_and_assert_not_none(
            instance=instance, field_name="source"
        )

        instruction = self._retrieve_field_and_assert_not_none(
            instance=instance, field_name="instruction"
        )
        target_prefix = self._retrieve_field_and_assert_not_none(
            instance=instance, field_name="target_prefix"
        )
        system_prompt = self._retrieve_field_and_assert_not_none(
            instance=instance, field_name="system_prompt"
        )

        if "target_prefix" in instance:
            instance.pop("target_prefix")
        if "instruction" in instance:
            instance.pop("instruction")
        if "system_prompt" in instance:
            instance.pop("system_prompt")

        demo_instances = []
        if self.demos_field is not None and self.demos_field in instance:
            demos = instance[self.demos_field]
            assert (
                demos is not None and isoftype(demos, List[Dict[str, Any]])
            ), f"A list of dict-s is expected in field '{self.demos_field}'. Received instance: {instance}"
            demo_instances = demos
            instance.pop(self.demos_field)

        demos_string = ""
        for demo_instance in demo_instances:
            demo_str = self.demo_format.format(
                target_prefix=target_prefix,
                source=demo_instance["source"],
                target=demo_instance["target"],
                **self.format_args,
            )
            demos_string += demo_str

        output = self.model_input_format.format(
            system_prompt=system_prompt,
            instruction=instruction,
            demos=demos_string,
            source=source,
            target_prefix=target_prefix,
            **self.format_args,
        )
        output = apply_capital_new_line_notation(output)
        instance["source"] = output
        return instance