File size: 7,832 Bytes
f88c6c5 d6c8f43 f88c6c5 1a85f63 f88c6c5 e04f5f0 f88c6c5 ba7196e f88c6c5 be9ddcf 246d7cc be9ddcf 246d7cc be9ddcf 246d7cc be9ddcf 246d7cc be9ddcf 246d7cc be9ddcf 246d7cc be9ddcf 246d7cc f88c6c5 246d7cc f88c6c5 246d7cc 1a85f63 f88c6c5 1a85f63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
<div align="center">
<img src="https://raw.githubusercontent.com/IBM/unitxt/main/assets/banner.png" alt="Image Description" width="100%" />
</div>
[![Button](https://img.shields.io/badge/Video-pink?style=for-the-badge)](https://unitxt.readthedocs.io/en/latest/_static/video.mov)
[![Button](https://img.shields.io/badge/Documentation-pink?style=for-the-badge)](https://unitxt.readthedocs.io/en/latest/docs/introduction.html)
[![Button](https://img.shields.io/badge/Demo-pink?style=for-the-badge)](https://unitxt.readthedocs.io/en/latest/docs/demo.html)
[![Button](https://img.shields.io/badge/Tutorial-pink?style=for-the-badge)](https://unitxt.readthedocs.io/en/latest/docs/adding_dataset.html)
[![Button](https://img.shields.io/badge/Paper-pink?style=for-the-badge)](https://arxiv.org/abs/2401.14019)
[![Button](https://img.shields.io/badge/Catalog-pink?style=for-the-badge)](https://unitxt.readthedocs.io/en/latest/catalog/catalog.__dir__.html)
[![Button](https://img.shields.io/badge/Contributors-pink?style=for-the-badge)](https://github.com/IBM/unitxt/blob/main/CONTRIBUTING.md)
[![Button](https://img.shields.io/badge/PyPi-pink?style=for-the-badge)](https://pypi.org/project/unitxt/)
In the dynamic landscape of generative NLP, traditional text processing pipelines limit research flexibility and reproducibility, as they are tailored to specific dataset, task, and model combinations. The escalating complexity, involving system prompts, model-specific formats, instructions, and more, calls for a shift to a structured, modular, and customizable solution.
Addressing this need, we present Unitxt, an innovative library for customizable textual data preparation and evaluation tailored to generative language models. Unitxt natively integrates with common libraries like HuggingFace and LM-eval-harness and deconstructs processing flows into modular components, enabling easy customization and sharing between practitioners. These components encompass model-specific formats, task prompts, and many other comprehensive dataset processing definitions. The Unitxt-Catalog centralizes these components, fostering collaboration and exploration in modern textual data workflows. Beyond being a tool, Unitxt is a community-driven platform, empowering users to build, share, and advance their pipelines collaboratively.
#
[![version](https://img.shields.io/pypi/v/unitxt)](https://pypi.org/project/unitxt/)
![license](https://img.shields.io/github/license/ibm/unitxt)
![python](https://img.shields.io/badge/python-3.8%20|%203.9-blue)
![tests](https://img.shields.io/github/actions/workflow/status/ibm/unitxt/library_tests.yml?branch=main&label=tests)
[![Coverage Status](https://coveralls.io/repos/github/IBM/unitxt/badge.svg)](https://coveralls.io/github/IBM/unitxt)
![Read the Docs](https://img.shields.io/readthedocs/unitxt)
[![downloads](https://static.pepy.tech/personalized-badge/unitxt?period=total&units=international_system&left_color=grey&right_color=green&left_text=downloads)](https://pepy.tech/project/unitxt)
#
https://github.com/IBM/unitxt/assets/23455264/baef9131-39d4-4164-90b2-05da52919fdf
### 🦄 Currently on Unitxt Catalog
![NLP Tasks](https://img.shields.io/badge/NLP_tasks-48-blue)
![Dataset Cards](https://img.shields.io/badge/Dataset_Cards-537-blue)
![Templates](https://img.shields.io/badge/Templates-265-blue)
![Formats](https://img.shields.io/badge/Formats-23-blue)
![Metrics](https://img.shields.io/badge/Metrics-136-blue)
### 🦄 Run Unitxt Exploration Dashboard
To launch unitxt graphical user interface first install unitxt with ui requirements:
```
pip install unitxt[ui]
```
Then launch the ui by running:
```
unitxt-explore
```
# 🦄 Example
This is a simple example of running end-to-end evaluation in self contained python code over user data.
See more examples in examples subdirectory.
```python
# Import required components
from unitxt import evaluate, create_dataset
from unitxt.blocks import Task, InputOutputTemplate
from unitxt.inference import HFAutoModelInferenceEngine
# Question-answer dataset
data = [
{"question": "What is the capital of Texas?", "answer": "Austin"},
{"question": "What is the color of the sky?", "answer": "Blue"},
]
# Define the task and evaluation metric
task = Task(
input_fields={"question": str},
reference_fields={"answer": str},
prediction_type=str,
metrics=["metrics.accuracy"],
)
# Create a template to format inputs and outputs
template = InputOutputTemplate(
instruction="Answer the following question.",
input_format="{question}",
output_format="{answer}",
postprocessors=["processors.lower_case"],
)
# Prepare the dataset
dataset = create_dataset(
task=task,
template=template,
format="formats.chat_api",
test_set=data,
split="test",
)
# Set up the model (supports Hugging Face, WatsonX, OpenAI, etc.)
model = HFAutoModelInferenceEngine(
model_name="Qwen/Qwen1.5-0.5B-Chat", max_new_tokens=32
)
# Generate predictions and evaluate
predictions = model(dataset)
results = evaluate(predictions=predictions, data=dataset)
# Print results
print("Global Results:\n", results.global_scores.summary)
print("Instance Results:\n", results.instance_scores.summary)
```
# 🦄 Contributors
Please install Unitxt from source by:
```bash
git clone git@github.com:IBM/unitxt.git
cd unitxt
pip install -e ".[dev]"
pre-commit install
```
# 🦄 Citation
If you use Unitxt in your research, please cite our paper:
```bib
@inproceedings{bandel-etal-2024-unitxt,
title = "Unitxt: Flexible, Shareable and Reusable Data Preparation and Evaluation for Generative {AI}",
author = "Bandel, Elron and
Perlitz, Yotam and
Venezian, Elad and
Friedman, Roni and
Arviv, Ofir and
Orbach, Matan and
Don-Yehiya, Shachar and
Sheinwald, Dafna and
Gera, Ariel and
Choshen, Leshem and
Shmueli-Scheuer, Michal and
Katz, Yoav",
editor = "Chang, Kai-Wei and
Lee, Annie and
Rajani, Nazneen",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: System Demonstrations)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-demo.21",
pages = "207--215",
abstract = "In the dynamic landscape of generative NLP, traditional text processing pipelines limit research flexibility and reproducibility, as they are tailored to specific dataset, task, and model combinations. The escalating complexity, involving system prompts, model-specific formats, instructions, and more, calls for a shift to a structured, modular, and customizable solution.Addressing this need, we present Unitxt, an innovative library for customizable textual data preparation and evaluation tailored to generative language models. Unitxt natively integrates with common libraries like HuggingFace and LM-eval-harness and deconstructs processing flows into modular components, enabling easy customization and sharing between practitioners. These components encompass model-specific formats, task prompts, and many other comprehensive dataset processing definitions. The Unitxt Catalog centralizes these components, fostering collaboration and exploration in modern textual data workflows. Beyond being a tool, Unitxt is a community-driven platform, empowering users to build, share, and advance their pipelines collaboratively. Join the Unitxt community at https://github.com/IBM/unitxt",
}
```
Unitxt emoji designed by [OpenMoji](https://openmoji.org/#) - the open-source emoji and icon project. License: [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/#)
|