Datasets:

ArXiv:
File size: 7,616 Bytes
5a87e4a
c7691bd
33a5854
8e99545
 
33a5854
d2c1791
c7691bd
be9ddcf
009cdd3
8e99545
 
 
c7691bd
 
8e99545
33a5854
 
 
 
 
 
 
c7691bd
 
 
8e99545
c7691bd
 
 
 
 
 
 
 
 
 
 
 
 
 
33a5854
5a87e4a
009cdd3
8e99545
 
 
 
33a5854
 
 
 
c7691bd
 
 
 
 
 
be9ddcf
 
 
 
 
 
 
 
 
 
 
0b1ba24
8e99545
 
 
 
 
 
 
 
be9ddcf
8e99545
 
 
 
 
 
 
 
0b1ba24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e99545
 
c7691bd
33a5854
 
af22a0d
 
 
 
 
92d07f8
c7691bd
 
 
 
 
 
 
 
 
 
8e99545
 
 
 
c7691bd
 
ba7196e
 
92d07f8
af22a0d
6f701a4
ba7196e
 
 
af22a0d
ba7196e
c7691bd
ba7196e
 
8e99545
 
 
 
 
 
 
 
ba7196e
 
 
 
 
 
 
 
 
e04f5f0
 
 
ba7196e
 
 
be9ddcf
 
f352686
 
ba7196e
f352686
ba7196e
c7691bd
8e99545
92d07f8
33a5854
f2b185f
 
33a5854
c7691bd
f2b185f
 
 
 
c7691bd
ba7196e
c7691bd
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c1791
 
 
 
 
 
 
 
c7691bd
33a5854
 
92d07f8
33a5854
92d07f8
 
 
 
c7691bd
33a5854
c7691bd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import json
from typing import Any, Dict, List, Optional

from datasets import Audio, Features, Sequence, Value
from datasets import Image as DatasetImage

from .artifact import Artifact
from .dict_utils import dict_get
from .image_operators import ImageDataString
from .operator import InstanceOperatorValidator
from .settings_utils import get_constants, get_settings
from .type_utils import isoftype
from .types import Image

constants = get_constants()
settings = get_settings()

UNITXT_DATASET_SCHEMA = Features(
    {
        "source": Value("string"),
        "target": Value("string"),
        "references": Sequence(Value("string")),
        "metrics": Sequence(Value("string")),
        "groups": Sequence(Value("string")),
        "subset": Sequence(Value("string")),
        "media": {
            "images": Sequence(DatasetImage()),
            "audios": Sequence(Audio()),
        },
        "postprocessors": Sequence(Value("string")),
        "task_data": Value(dtype="string"),
        "data_classification_policy": Sequence(Value("string")),
    }
)

UNITXT_INFERENCE_SCHEMA = Features(
    {
        "source": Value("string"),
        "metrics": Sequence(Value("string")),
        "groups": Sequence(Value("string")),
        "subset": Sequence(Value("string")),
        "postprocessors": Sequence(Value("string")),
        "task_data": Value(dtype="string"),
        "data_classification_policy": Sequence(Value("string")),
        "media": {
            "images": Sequence(Image()),
            "audios": Sequence(Audio()),
        },
    }
)


def get_schema(stream_name):
    if stream_name == constants.inference_stream:
        return UNITXT_INFERENCE_SCHEMA
    return UNITXT_DATASET_SCHEMA


def load_chat_source(chat_str):
    chat = json.loads(chat_str)
    for turn in chat:
        if isinstance(turn["content"], list):
            for content in turn["content"]:
                if content["type"] == "image_url":
                    content["image_url"]["url"] = ImageDataString(
                        content["image_url"]["url"]
                    )
    return chat

def loads_batch(batch):
    if (
        "source" in batch
        and isinstance(batch["source"][0], str)
        and (
            batch["source"][0].startswith('[{"role":')
            or batch["source"][0].startswith('[{"content":')
        )
    ):
        batch["source"] = [load_chat_source(d) for d in batch["source"]]
    if (
        not settings.task_data_as_text
        and "task_data" in batch
        and isinstance(batch["task_data"][0], str)
    ):
        batch["task_data"] = [json.loads(d) for d in batch["task_data"]]
    return batch

def loads_instance(instance):
    if (
        "source" in instance
        and isinstance(instance["source"], str)
        and (
            instance["source"].startswith('[{"role":')
            or instance["source"].startswith('[{"content":')
        )
    ):
        instance["source"] = load_chat_source(instance["source"])
    if (
        not settings.task_data_as_text
        and "task_data" in instance
        and isinstance(instance["task_data"], str)
    ):
        instance["task_data"] = json.loads(instance["task_data"])
    return instance


class FinalizeDataset(InstanceOperatorValidator):
    group_by: List[List[str]]
    remove_unnecessary_fields: bool = True

    @staticmethod
    def artifact_to_jsonable(artifact):
        if artifact.__id__ is None:
            return artifact.to_dict()
        return artifact.__id__

    def _prepare_media(self, instance):
        if "media" not in instance:
            instance["media"] = {}

        if "images" not in instance["media"]:
            instance["media"]["images"] = []

        if "audios" not in instance["media"]:
            instance["media"]["audios"] = []

        for i in range(len(instance["media"]["images"])):
            if isoftype(instance["media"]["images"][i], Image):
                instance["media"]["images"][i] = instance["media"]["images"][i]["image"]

        return instance

    def _get_instance_task_data(
        self, instance: Dict[str, Any], use_reference_fields=True
    ) -> Dict[str, Any]:
        task_data = {
            **instance["input_fields"],
            "metadata": {
                "data_classification_policy": instance["data_classification_policy"],
            },
        }
        if use_reference_fields:
            task_data = {**task_data, **instance["reference_fields"]}
        return task_data

    def serialize_instance_fields(self, instance, task_data):
        if settings.task_data_as_text:
            instance["task_data"] = json.dumps(task_data)

        if not isinstance(instance["source"], str):
            instance["source"] = json.dumps(instance["source"])
        return instance

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        task_data = self._get_instance_task_data(
            instance,
            use_reference_fields=stream_name != constants.inference_stream,
        )

        task_data["metadata"]["num_demos"] = instance["recipe_metadata"]["num_demos"]
        task_data["metadata"]["demos_pool_size"] = instance["recipe_metadata"][
            "demos_pool_size"
        ]
        task_data["metadata"]["template"] = self.artifact_to_jsonable(
            instance["recipe_metadata"]["template"]
        )
        if "criteria" in task_data and isinstance(task_data["criteria"], Artifact):
            task_data["criteria"] = self.artifact_to_jsonable(task_data["criteria"])
        if constants.demos_field in instance:
            task_data[constants.demos_field] = [
                self._get_instance_task_data(instance)
                for instance in instance.pop(constants.demos_field)
            ]

        instance = self.serialize_instance_fields(instance, task_data)

        if self.remove_unnecessary_fields:
            keys_to_delete = []

            for key in instance.keys():
                if key not in get_schema(stream_name):
                    keys_to_delete.append(key)

            for key in keys_to_delete:
                del instance[key]

        data = {**task_data, **task_data["metadata"]}
        groups = []
        for group_attributes in self.group_by:
            group = {}
            if isinstance(group_attributes, str):
                group_attributes = [group_attributes]
            for attribute in group_attributes:
                group[attribute] = dict_get(data, attribute)
            groups.append(json.dumps(group))

        instance["groups"] = groups
        instance["subset"] = []

        instance = self._prepare_media(instance)

        instance["metrics"] = [
            metric.to_json() if isinstance(metric, Artifact) else metric
            for metric in instance["metrics"]
        ]
        instance["postprocessors"] = [
            processor.to_json() if isinstance(processor, Artifact) else processor
            for processor in instance["postprocessors"]
        ]

        return instance

    def validate(self, instance: Dict[str, Any], stream_name: Optional[str] = None):
        # verify the instance has the required schema
        assert instance is not None, "Instance is None"
        assert isinstance(
            instance, dict
        ), f"Instance should be a dict, got {type(instance)}"
        schema = get_schema(stream_name)
        assert all(
            key in instance for key in schema
        ), f"Instance should have the following keys: {schema}. Instance is: {instance}"
        schema.encode_example(instance)