|
import abc |
|
import dataclasses |
|
import os |
|
import re |
|
from typing import Any, Dict, List, Literal, Optional, Union |
|
|
|
from datasets import DatasetDict |
|
from tqdm import tqdm |
|
|
|
from .artifact import Artifact, fetch_artifact |
|
from .dataclass import InternalField, NonPositionalField |
|
from .deprecation_utils import deprecation |
|
from .image_operators import extract_images |
|
from .logging_utils import get_logger |
|
from .operator import PackageRequirementsMixin |
|
from .settings_utils import get_settings |
|
|
|
settings = get_settings() |
|
|
|
|
|
def get_model_and_label_id(model_name, label): |
|
model_id = model_name.split("/")[-1].replace("-", "_").replace(".", ",").lower() |
|
return f"{model_id}_{label}" |
|
|
|
|
|
@dataclasses.dataclass |
|
class TextGenerationInferenceOutput: |
|
"""Contains the prediction results and metadata for the inference. |
|
|
|
Args: |
|
prediction (Union[str, List[Dict[str, Any]]]): If this is the result of an _infer call, the string predicted by the model. |
|
If this is the results of an _infer_log_probs call, a list of dictionaries. The i'th dictionary represents |
|
the i'th token in the response. The entry "top_tokens" in the dictionary holds a sorted list of the top tokens |
|
for this position and their probabilities. |
|
For example: [ {.. "top_tokens": [ {"text": "a", 'logprob': }, {"text": "b", 'logprob': } ....]}, |
|
{.. "top_tokens": [ {"text": "c", 'logprob': }, {"text": "d", 'logprob': } ....]} |
|
] |
|
|
|
input_tokens (int) : number of input tokens to the model. |
|
output_tokens (int) : number of output tokens to the model. |
|
model_name (str): the model_name as kept in the InferenceEngine. |
|
inference_type (str): The label stating the type of the InferenceEngine. |
|
""" |
|
|
|
prediction: Union[str, List[Dict[str, Any]]] |
|
input_tokens: Optional[int] = None |
|
output_tokens: Optional[int] = None |
|
model_name: Optional[str] = None |
|
inference_type: Optional[str] = None |
|
|
|
|
|
class InferenceEngine(abc.ABC, Artifact): |
|
"""Abstract base class for inference.""" |
|
|
|
@abc.abstractmethod |
|
def _infer( |
|
self, |
|
dataset: Union[List[Dict[str, Any]], DatasetDict], |
|
return_meta_data: bool = False, |
|
) -> Union[List[str], List[TextGenerationInferenceOutput]]: |
|
"""Perform inference on the input dataset. |
|
|
|
If return_meta_data - returns a list of TextGenerationInferenceOutput, else returns a list of the string. |
|
return_meta_data is only supported for some InferenceEngines. |
|
predictions. |
|
""" |
|
pass |
|
|
|
@abc.abstractmethod |
|
def prepare_engine(self): |
|
"""Perform inference on the input dataset.""" |
|
pass |
|
|
|
def prepare(self): |
|
if not settings.mock_inference_mode: |
|
self.prepare_engine() |
|
|
|
def infer( |
|
self, |
|
dataset: Union[List[Dict[str, Any]], DatasetDict], |
|
return_meta_data: bool = False, |
|
) -> Union[List[str], List[TextGenerationInferenceOutput]]: |
|
"""Verifies instances of a dataset and perform inference on the input dataset. |
|
|
|
If return_meta_data - returns a list of TextGenerationInferenceOutput, else returns a list of the string |
|
predictions. |
|
""" |
|
if return_meta_data and not hasattr(self, "get_return_object"): |
|
raise NotImplementedError( |
|
f"Inference engine {self.__class__.__name__} does not support return_meta_data as it " |
|
f"does not contain a 'get_return_object' method. Please set return_meta_data=False." |
|
) |
|
|
|
[self.verify_instance(instance) for instance in dataset] |
|
if settings.mock_inference_mode: |
|
return [instance["source"] for instance in dataset] |
|
return self._infer(dataset, return_meta_data) |
|
|
|
def get_engine_id(self): |
|
raise NotImplementedError() |
|
|
|
@deprecation(version="2.0.0") |
|
def _set_inference_parameters(self): |
|
"""Sets inference parameters of an instance based on 'parameters' attribute (if given).""" |
|
if hasattr(self, "parameters") and self.parameters is not None: |
|
get_logger().warning( |
|
f"The 'parameters' attribute of '{self.get_pretty_print_name()}' " |
|
f"is deprecated. Please pass inference parameters directly to the " |
|
f"inference engine instance instead." |
|
) |
|
|
|
for param, param_dict_val in self.parameters.to_dict( |
|
[self.parameters] |
|
).items(): |
|
param_inst_val = getattr(self, param) |
|
if param_inst_val is None: |
|
setattr(self, param, param_dict_val) |
|
|
|
|
|
class LogProbInferenceEngine(abc.ABC, Artifact): |
|
"""Abstract base class for inference with log probs.""" |
|
|
|
@abc.abstractmethod |
|
def _infer_log_probs( |
|
self, |
|
dataset: Union[List[Dict[str, Any]], DatasetDict], |
|
return_meta_data: bool = False, |
|
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]: |
|
"""Perform inference on the input dataset that returns log probs. |
|
|
|
If return_meta_data - returns a list of TextGenerationInferenceOutput, else returns a list of the logprob dicts. |
|
return_meta_data is only supported for some InferenceEngines. |
|
predictions. |
|
""" |
|
pass |
|
|
|
def infer_log_probs( |
|
self, |
|
dataset: Union[List[Dict[str, Any]], DatasetDict], |
|
return_meta_data: bool = False, |
|
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]: |
|
"""Verifies instances of a dataset and performs inference that returns log probabilities of top tokens. |
|
|
|
For each instance , generates a list of top tokens per position. |
|
[ "top_tokens": [ { "text": ..., "logprob": ...} , ... ] |
|
If return_meta_data - returns a list of TextGenerationInferenceOutput, else returns the list of the logprob dicts. |
|
return_meta_data is only supported for some InferenceEngines. |
|
""" |
|
if return_meta_data and not hasattr(self, "get_return_object"): |
|
raise NotImplementedError( |
|
f"Inference engine {self.__class__.__name__} does not support return_meta_data as it " |
|
f"does not contain a 'get_return_object' method. Please set return_meta_data=False." |
|
) |
|
|
|
[self.verify_instance(instance) for instance in dataset] |
|
return self._infer_log_probs(dataset, return_meta_data) |
|
|
|
|
|
class LazyLoadMixin(Artifact): |
|
lazy_load: bool = NonPositionalField(default=False) |
|
|
|
@abc.abstractmethod |
|
def _is_loaded(self): |
|
pass |
|
|
|
|
|
class HFPipelineBasedInferenceEngine( |
|
InferenceEngine, PackageRequirementsMixin, LazyLoadMixin |
|
): |
|
model_name: str |
|
max_new_tokens: int |
|
use_fp16: bool = True |
|
|
|
_requirements_list = { |
|
"transformers": "Install huggingface package using 'pip install --upgrade transformers" |
|
} |
|
|
|
def get_engine_id(self): |
|
return get_model_and_label_id(self.model_name, "hf_pipeline") |
|
|
|
def _prepare_pipeline(self): |
|
import torch |
|
from transformers import AutoConfig, pipeline |
|
|
|
model_args: Dict[str, Any] = ( |
|
{"torch_dtype": torch.float16} if self.use_fp16 else {} |
|
) |
|
model_args.update({"max_new_tokens": self.max_new_tokens}) |
|
|
|
device = torch.device( |
|
"mps" |
|
if torch.backends.mps.is_available() |
|
else 0 |
|
if torch.cuda.is_available() |
|
else "cpu" |
|
) |
|
|
|
|
|
|
|
if torch.cuda.device_count() > 1: |
|
assert device == torch.device(0) |
|
model_args.update({"device_map": "auto"}) |
|
else: |
|
model_args.update({"device": device}) |
|
|
|
task = ( |
|
"text2text-generation" |
|
if AutoConfig.from_pretrained( |
|
self.model_name, trust_remote_code=True |
|
).is_encoder_decoder |
|
else "text-generation" |
|
) |
|
|
|
if task == "text-generation": |
|
model_args.update({"return_full_text": False}) |
|
|
|
self.model = pipeline( |
|
model=self.model_name, trust_remote_code=True, **model_args |
|
) |
|
|
|
def prepare_engine(self): |
|
if not self.lazy_load: |
|
self._prepare_pipeline() |
|
|
|
def _is_loaded(self): |
|
return hasattr(self, "model") and self.model is not None |
|
|
|
def _infer( |
|
self, |
|
dataset: Union[List[Dict[str, Any]], DatasetDict], |
|
return_meta_data: bool = False, |
|
) -> Union[List[str], List[TextGenerationInferenceOutput]]: |
|
if not self._is_loaded(): |
|
self._prepare_pipeline() |
|
|
|
outputs = [] |
|
for output in self.model([instance["source"] for instance in dataset]): |
|
if isinstance(output, list): |
|
output = output[0] |
|
outputs.append(output["generated_text"]) |
|
return outputs |
|
|
|
|
|
class MockInferenceEngine(InferenceEngine): |
|
model_name: str |
|
default_inference_value: str = "[[10]]" |
|
|
|
def get_engine_id(self): |
|
return get_model_and_label_id(self.model_name, "mock") |
|
|
|
def prepare_engine(self): |
|
return |
|
|
|
def _infer( |
|
self, |
|
dataset: Union[List[Dict[str, Any]], DatasetDict], |
|
return_meta_data: bool = False, |
|
) -> Union[List[str], List[TextGenerationInferenceOutput]]: |
|
return [self.default_inference_value for instance in dataset] |
|
|
|
|
|
class MockModeMixin(Artifact): |
|
mock_mode: bool = False |
|
|
|
|
|
class IbmGenAiInferenceEngineParamsMixin(Artifact): |
|
beam_width: Optional[int] = None |
|
decoding_method: Optional[Literal["greedy", "sample"]] = None |
|
include_stop_sequence: Optional[bool] = None |
|
length_penalty: Any = None |
|
max_new_tokens: Optional[int] = None |
|
min_new_tokens: Optional[int] = None |
|
random_seed: Optional[int] = None |
|
repetition_penalty: Optional[float] = None |
|
return_options: Any = None |
|
stop_sequences: Optional[List[str]] = None |
|
temperature: Optional[float] = None |
|
time_limit: Optional[int] = None |
|
top_k: Optional[int] = None |
|
top_p: Optional[float] = None |
|
truncate_input_tokens: Optional[int] = None |
|
typical_p: Optional[float] = None |
|
|
|
|
|
@deprecation(version="2.0.0", alternative=IbmGenAiInferenceEngineParamsMixin) |
|
class IbmGenAiInferenceEngineParams(Artifact): |
|
beam_width: Optional[int] = None |
|
decoding_method: Optional[Literal["greedy", "sample"]] = None |
|
include_stop_sequence: Optional[bool] = None |
|
length_penalty: Any = None |
|
max_new_tokens: Optional[int] = None |
|
min_new_tokens: Optional[int] = None |
|
random_seed: Optional[int] = None |
|
repetition_penalty: Optional[float] = None |
|
return_options: Any = None |
|
stop_sequences: Optional[List[str]] = None |
|
temperature: Optional[float] = None |
|
time_limit: Optional[int] = None |
|
top_k: Optional[int] = None |
|
top_p: Optional[float] = None |
|
truncate_input_tokens: Optional[int] = None |
|
typical_p: Optional[float] = None |
|
|
|
|
|
class GenericInferenceEngine(InferenceEngine): |
|
default: Optional[str] = None |
|
|
|
def prepare_engine(self): |
|
if "UNITXT_INFERENCE_ENGINE" in os.environ: |
|
engine_reference = os.environ["UNITXT_INFERENCE_ENGINE"] |
|
else: |
|
assert self.default is not None, ( |
|
"GenericInferenceEngine could not be initialized" |
|
'\nThis is since both the "UNITXT_INFERENCE_ENGINE" environmental variable is not set and no default engine was not inputted.' |
|
"\nFor example, you can fix it by setting" |
|
"\nexport UNITXT_INFERENCE_ENGINE=engines.ibm_gen_ai.llama_3_70b_instruct" |
|
"\nto your ~/.bashrc" |
|
"\nor passing a similar required engine in the default argument" |
|
) |
|
engine_reference = self.default |
|
self.engine, _ = fetch_artifact(engine_reference) |
|
|
|
def get_engine_id(self): |
|
return "generic_inference_engine" |
|
|
|
def _infer( |
|
self, |
|
dataset: Union[List[Dict[str, Any]], DatasetDict], |
|
return_meta_data: bool = False, |
|
) -> Union[List[str], List[TextGenerationInferenceOutput]]: |
|
return self.engine._infer(dataset) |
|
|
|
|
|
class OllamaInferenceEngine(InferenceEngine, PackageRequirementsMixin): |
|
label: str = "ollama" |
|
model_name: str |
|
_requirements_list = { |
|
"ollama": "Install ollama package using 'pip install --upgrade ollama" |
|
} |
|
data_classification_policy = ["public", "proprietary"] |
|
|
|
def get_engine_id(self): |
|
return get_model_and_label_id(self.model_name, self.label) |
|
|
|
def prepare_engine(self): |
|
pass |
|
|
|
def _infer( |
|
self, |
|
dataset: Union[List[Dict[str, Any]], DatasetDict], |
|
return_meta_data: bool = False, |
|
) -> Union[List[str], List[TextGenerationInferenceOutput]]: |
|
import ollama |
|
|
|
result = [ |
|
ollama.chat( |
|
model="llama2", |
|
messages=[ |
|
{ |
|
"role": "user", |
|
"content": instance["source"], |
|
}, |
|
], |
|
) |
|
for instance in dataset |
|
] |
|
return [element["message"]["content"] for element in result] |
|
|
|
|
|
class IbmGenAiInferenceEngine( |
|
InferenceEngine, |
|
IbmGenAiInferenceEngineParamsMixin, |
|
PackageRequirementsMixin, |
|
LogProbInferenceEngine, |
|
): |
|
label: str = "ibm_genai" |
|
model_name: str |
|
_requirements_list = { |
|
"genai": "Install ibm-genai package using 'pip install --upgrade ibm-generative-ai" |
|
} |
|
data_classification_policy = ["public", "proprietary"] |
|
parameters: Optional[IbmGenAiInferenceEngineParams] = None |
|
|
|
def get_engine_id(self): |
|
return get_model_and_label_id(self.model_name, self.label) |
|
|
|
def prepare_engine(self): |
|
from genai import Client, Credentials |
|
|
|
api_key_env_var_name = "GENAI_KEY" |
|
api_key = os.environ.get(api_key_env_var_name) |
|
|
|
assert api_key is not None, ( |
|
f"Error while trying to run IbmGenAiInferenceEngine." |
|
f" Please set the environment param '{api_key_env_var_name}'." |
|
) |
|
credentials = Credentials(api_key=api_key) |
|
self.client = Client(credentials=credentials) |
|
|
|
self._set_inference_parameters() |
|
|
|
def _infer( |
|
self, |
|
dataset: Union[List[Dict[str, Any]], DatasetDict], |
|
return_meta_data: bool = False, |
|
) -> Union[List[str], List[TextGenerationInferenceOutput]]: |
|
from genai.schema import TextGenerationParameters |
|
|
|
genai_params = TextGenerationParameters( |
|
**self.to_dict([IbmGenAiInferenceEngineParamsMixin]) |
|
) |
|
|
|
results = [] |
|
responses = self.client.text.generation.create( |
|
model_id=self.model_name, |
|
inputs=[instance["source"] for instance in dataset], |
|
parameters=genai_params, |
|
) |
|
for response in responses: |
|
generated_text = response.results[0].generated_text |
|
result = self.get_return_object( |
|
generated_text, response.results[0], return_meta_data |
|
) |
|
results.append(result) |
|
return results |
|
|
|
def _infer_log_probs( |
|
self, |
|
dataset: Union[List[Dict[str, Any]], DatasetDict], |
|
return_meta_data: bool = False, |
|
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]: |
|
from genai.schema import TextGenerationParameters |
|
|
|
logprobs_return_options = { |
|
"generated_tokens": True, |
|
"input_text": False, |
|
"input_tokens": False, |
|
"token_logprobs": True, |
|
"token_ranks": True, |
|
"top_n_tokens": 5, |
|
} |
|
genai_params = self.to_dict( |
|
[IbmGenAiInferenceEngineParamsMixin], keep_empty=False |
|
) |
|
genai_params = {**genai_params, "return_options": logprobs_return_options} |
|
genai_params = TextGenerationParameters(**genai_params) |
|
predictions = self.client.text.generation.create( |
|
model_id=self.model_name, |
|
inputs=[instance["source"] for instance in dataset], |
|
parameters=genai_params, |
|
) |
|
|
|
predict_results = [] |
|
for prediction in predictions: |
|
result = prediction.results[0] |
|
assert isinstance( |
|
result.generated_tokens, list |
|
), "result.generated_tokens should be a list" |
|
|
|
predict_result = [] |
|
for base_token in result.generated_tokens: |
|
res = {**base_token.__dict__, **base_token.model_extra} |
|
res["top_tokens"] = [ |
|
{"logprob": top_token.logprob, "text": top_token.text} |
|
for top_token in res["top_tokens"] |
|
] |
|
predict_result.append(res) |
|
final_results = self.get_return_object( |
|
predict_result, result, return_meta_data |
|
) |
|
predict_results.append(final_results) |
|
return predict_results |
|
|
|
def get_return_object(self, predict_result, result, return_meta_data): |
|
if return_meta_data: |
|
return TextGenerationInferenceOutput( |
|
prediction=predict_result, |
|
input_tokens=result.input_token_count, |
|
output_tokens=result.generated_token_count, |
|
model_name=self.model_name, |
|
inference_type=self.label, |
|
) |
|
return predict_result |
|
|
|
|
|
class OpenAiInferenceEngineParamsMixin(Artifact): |
|
frequency_penalty: Optional[float] = None |
|
presence_penalty: Optional[float] = None |
|
max_tokens: Optional[int] = None |
|
seed: Optional[int] = None |
|
stop: Union[Optional[str], List[str]] = None |
|
temperature: Optional[float] = None |
|
top_p: Optional[float] = None |
|
top_logprobs: Optional[int] = 20 |
|
logit_bias: Optional[Dict[str, int]] = None |
|
logprobs: Optional[bool] = True |
|
n: Optional[int] = None |
|
parallel_tool_calls: Optional[bool] = None |
|
service_tier: Optional[Literal["auto", "default"]] = None |
|
|
|
|
|
@deprecation(version="2.0.0", alternative=OpenAiInferenceEngineParamsMixin) |
|
class OpenAiInferenceEngineParams(Artifact): |
|
frequency_penalty: Optional[float] = None |
|
presence_penalty: Optional[float] = None |
|
max_tokens: Optional[int] = None |
|
seed: Optional[int] = None |
|
stop: Union[Optional[str], List[str]] = None |
|
temperature: Optional[float] = None |
|
top_p: Optional[float] = None |
|
top_logprobs: Optional[int] = 20 |
|
logit_bias: Optional[Dict[str, int]] = None |
|
logprobs: Optional[bool] = True |
|
n: Optional[int] = None |
|
parallel_tool_calls: Optional[bool] = None |
|
service_tier: Optional[Literal["auto", "default"]] = None |
|
|
|
|
|
class OpenAiInferenceEngine( |
|
InferenceEngine, |
|
LogProbInferenceEngine, |
|
OpenAiInferenceEngineParamsMixin, |
|
PackageRequirementsMixin, |
|
): |
|
label: str = "openai" |
|
model_name: str |
|
_requirements_list = { |
|
"openai": "Install openai package using 'pip install --upgrade openai" |
|
} |
|
data_classification_policy = ["public"] |
|
parameters: Optional[OpenAiInferenceEngineParams] = None |
|
|
|
def get_engine_id(self): |
|
return get_model_and_label_id(self.model_name, self.label) |
|
|
|
@classmethod |
|
def get_api_param(cls, inference_engine: str, api_param_env_var_name: str): |
|
api_key = os.environ.get(api_param_env_var_name) |
|
assert api_key is not None, ( |
|
f"Error while trying to run {inference_engine}." |
|
f" Please set the environment param '{api_param_env_var_name}'." |
|
) |
|
return api_key |
|
|
|
def create_client(self): |
|
from openai import OpenAI |
|
|
|
api_key = self.get_api_param( |
|
inference_engine="OpenAiInferenceEngine", |
|
api_param_env_var_name="OPENAI_API_KEY", |
|
) |
|
return OpenAI(api_key=api_key) |
|
|
|
def prepare_engine(self): |
|
self.client = self.create_client() |
|
self._set_inference_parameters() |
|
|
|
def _get_completion_kwargs(self): |
|
return { |
|
k: v |
|
for k, v in self.to_dict([OpenAiInferenceEngineParamsMixin]).items() |
|
if v is not None |
|
} |
|
|
|
def _infer( |
|
self, |
|
dataset: Union[List[Dict[str, Any]], DatasetDict], |
|
return_meta_data: bool = False, |
|
) -> Union[List[str], List[TextGenerationInferenceOutput]]: |
|
outputs = [] |
|
for instance in tqdm(dataset, desc="Inferring with openAI API"): |
|
response = self.client.chat.completions.create( |
|
messages=[ |
|
|
|
|
|
|
|
|
|
{ |
|
"role": "user", |
|
"content": instance["source"], |
|
} |
|
], |
|
model=self.model_name, |
|
**self._get_completion_kwargs(), |
|
) |
|
prediction = response.choices[0].message.content |
|
output = self.get_return_object(prediction, response, return_meta_data) |
|
|
|
outputs.append(output) |
|
|
|
return outputs |
|
|
|
def _infer_log_probs( |
|
self, |
|
dataset: Union[List[Dict[str, Any]], DatasetDict], |
|
return_meta_data: bool = False, |
|
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]: |
|
outputs = [] |
|
for instance in tqdm(dataset, desc="Inferring with openAI API"): |
|
response = self.client.chat.completions.create( |
|
messages=[ |
|
|
|
|
|
|
|
|
|
{ |
|
"role": "user", |
|
"content": instance["source"], |
|
} |
|
], |
|
model=self.model_name, |
|
**self._get_completion_kwargs(), |
|
) |
|
top_logprobs_response = response.choices[0].logprobs.content |
|
pred_output = [ |
|
{ |
|
"top_tokens": [ |
|
{"text": obj.token, "logprob": obj.logprob} |
|
for obj in generated_token.top_logprobs |
|
] |
|
} |
|
for generated_token in top_logprobs_response |
|
] |
|
output = self.get_return_object(pred_output, response, return_meta_data) |
|
outputs.append(output) |
|
return outputs |
|
|
|
def get_return_object(self, predict_result, response, return_meta_data): |
|
if return_meta_data: |
|
return TextGenerationInferenceOutput( |
|
prediction=predict_result, |
|
input_tokens=response.usage.prompt_tokens, |
|
output_tokens=response.usage.completion_tokens, |
|
model_name=self.model_name, |
|
inference_type=self.label, |
|
) |
|
return predict_result |
|
|
|
|
|
class TogetherAiInferenceEngineParamsMixin(Artifact): |
|
max_tokens: Optional[int] = None |
|
stop: Optional[List[str]] = None |
|
temperature: Optional[float] = None |
|
top_p: Optional[float] = None |
|
top_k: Optional[int] = None |
|
repetition_penalty: Optional[float] = None |
|
logprobs: Optional[int] = None |
|
echo: Optional[bool] = None |
|
n: Optional[int] = None |
|
min_p: Optional[float] = None |
|
presence_penalty: Optional[float] = None |
|
frequency_penalty: Optional[float] = None |
|
|
|
|
|
class TogetherAiInferenceEngine( |
|
InferenceEngine, TogetherAiInferenceEngineParamsMixin, PackageRequirementsMixin |
|
): |
|
label: str = "together" |
|
model_name: str |
|
_requirements_list = { |
|
"together": "Install together package using 'pip install --upgrade together" |
|
} |
|
data_classification_policy = ["public"] |
|
parameters: Optional[TogetherAiInferenceEngineParamsMixin] = None |
|
|
|
def get_engine_id(self): |
|
return get_model_and_label_id(self.model_name, self.label) |
|
|
|
def prepare_engine(self): |
|
from together import Together |
|
from together.types.models import ModelType |
|
|
|
api_key_env_var_name = "TOGETHER_API_KEY" |
|
api_key = os.environ.get(api_key_env_var_name) |
|
assert api_key is not None, ( |
|
f"Error while trying to run TogetherAiInferenceEngine." |
|
f" Please set the environment param '{api_key_env_var_name}'." |
|
) |
|
self.client = Together(api_key=api_key) |
|
self._set_inference_parameters() |
|
|
|
|
|
together_models = self.client.models.list() |
|
together_model_id_to_type = { |
|
together_model.id: together_model.type for together_model in together_models |
|
} |
|
model_type = together_model_id_to_type.get(self.model_name) |
|
assert model_type is not None, ( |
|
f"Could not find model {self.model_name} " "in Together AI model list" |
|
) |
|
assert model_type in [ModelType.CHAT, ModelType.LANGUAGE, ModelType.CODE], ( |
|
f"Together AI model type {model_type} is not supported; " |
|
"supported types are 'chat', 'language' and 'code'." |
|
) |
|
self.model_type = model_type |
|
|
|
def _get_infer_kwargs(self): |
|
return { |
|
k: v |
|
for k, v in self.to_dict([TogetherAiInferenceEngineParamsMixin]).items() |
|
if v is not None |
|
} |
|
|
|
def _infer_chat(self, prompt: str) -> str: |
|
response = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=[{"role": "user", "content": prompt}], |
|
**self._get_infer_kwargs(), |
|
) |
|
return response.choices[0].message.content |
|
|
|
def _infer_text(self, prompt: str) -> str: |
|
response = self.client.completions.create( |
|
model=self.model_name, |
|
prompt=prompt, |
|
**self._get_infer_kwargs(), |
|
) |
|
return response.choices[0].text |
|
|
|
def _infer( |
|
self, |
|
dataset: Union[List[Dict[str, Any]], DatasetDict], |
|
return_meta_data: bool = False, |
|
) -> Union[List[str], List[TextGenerationInferenceOutput]]: |
|
from together.types.models import ModelType |
|
|
|
outputs = [] |
|
if self.model_type == ModelType.CHAT: |
|
for instance in tqdm(dataset, desc="Inferring with Together AI Chat API"): |
|
outputs.append(self._infer_chat(instance["source"])) |
|
else: |
|
for instance in tqdm(dataset, desc="Inferring with Together AI Text API"): |
|
outputs.append(self._infer_text(instance["source"])) |
|
return outputs |
|
|
|
|
|
class VLLMRemoteInferenceEngine(OpenAiInferenceEngine): |
|
label: str = "vllm" |
|
|
|
def create_client(self): |
|
from openai import OpenAI |
|
|
|
api_key = self.get_api_param( |
|
inference_engine="VLLMRemoteInferenceEngine", |
|
api_param_env_var_name="VLLM_API_KEY", |
|
) |
|
api_url = self.get_api_param( |
|
inference_engine="VLLMRemoteInferenceEngine", |
|
api_param_env_var_name="VLLM_API_URL", |
|
) |
|
return OpenAI(api_key=api_key, base_url=api_url) |
|
|
|
|
|
class WMLInferenceEngineParamsMixin(Artifact): |
|
decoding_method: Optional[Literal["greedy", "sample"]] = None |
|
length_penalty: Optional[Dict[str, Union[int, float]]] = None |
|
temperature: Optional[float] = None |
|
top_p: Optional[float] = None |
|
top_k: Optional[int] = None |
|
random_seed: Optional[int] = None |
|
repetition_penalty: Optional[float] = None |
|
min_new_tokens: Optional[int] = None |
|
max_new_tokens: Optional[int] = None |
|
stop_sequences: Optional[List[str]] = None |
|
time_limit: Optional[int] = None |
|
truncate_input_tokens: Optional[int] = None |
|
prompt_variables: Optional[Dict[str, Any]] = None |
|
return_options: Optional[Dict[str, bool]] = None |
|
|
|
|
|
@deprecation(version="2.0.0", alternative=WMLInferenceEngineParamsMixin) |
|
class WMLInferenceEngineParams(Artifact): |
|
decoding_method: Optional[Literal["greedy", "sample"]] = None |
|
length_penalty: Optional[Dict[str, Union[int, float]]] = None |
|
temperature: Optional[float] = None |
|
top_p: Optional[float] = None |
|
top_k: Optional[int] = None |
|
random_seed: Optional[int] = None |
|
repetition_penalty: Optional[float] = None |
|
min_new_tokens: Optional[int] = None |
|
max_new_tokens: Optional[int] = None |
|
stop_sequences: Optional[List[str]] = None |
|
time_limit: Optional[int] = None |
|
truncate_input_tokens: Optional[int] = None |
|
prompt_variables: Optional[Dict[str, Any]] = None |
|
return_options: Optional[Dict[str, bool]] = None |
|
|
|
|
|
class WMLInferenceEngine( |
|
InferenceEngine, |
|
WMLInferenceEngineParamsMixin, |
|
PackageRequirementsMixin, |
|
LogProbInferenceEngine, |
|
): |
|
"""Runs inference using ibm-watsonx-ai. |
|
|
|
Attributes: |
|
credentials (Dict[str, str], optional): By default, it is created by a class |
|
instance which tries to retrieve proper environment variables |
|
("WML_URL", "WML_PROJECT_ID", "WML_APIKEY"). However, a dictionary with |
|
the following keys: "url", "apikey", "project_id" can be directly provided |
|
instead. |
|
model_name (str, optional): ID of a model to be used for inference. Mutually |
|
exclusive with 'deployment_id'. |
|
deployment_id (str, optional): Deployment ID of a tuned model to be used for |
|
inference. Mutually exclusive with 'model_name'. |
|
parameters (WMLInferenceEngineParams, optional): Instance of WMLInferenceEngineParams |
|
which defines inference parameters and their values. Deprecated attribute, please |
|
pass respective parameters directly to the WMLInferenceEngine class instead. |
|
concurrency_limit (int): number of requests that will be sent in parallel, max is 10. |
|
|
|
Examples: |
|
from .api import load_dataset |
|
|
|
wml_credentials = { |
|
"url": "some_url", "project_id": "some_id", "api_key": "some_key" |
|
} |
|
model_name = "google/flan-t5-xxl" |
|
wml_inference = WMLInferenceEngine( |
|
credentials=wml_credentials, |
|
model_name=model_name, |
|
data_classification_policy=["public"], |
|
top_p=0.5, |
|
random_seed=123, |
|
) |
|
|
|
dataset = load_dataset( |
|
dataset_query="card=cards.argument_topic,template_card_index=0,loader_limit=5" |
|
) |
|
results = wml_inference.infer(dataset["test"]) |
|
""" |
|
|
|
credentials: Optional[Dict[Literal["url", "apikey", "project_id"], str]] = None |
|
model_name: Optional[str] = None |
|
deployment_id: Optional[str] = None |
|
label: str = "wml" |
|
_requirements_list = { |
|
"ibm_watsonx_ai": "Install ibm-watsonx-ai package using 'pip install --upgrade ibm-watsonx-ai'. " |
|
"It is advised to have Python version >=3.10 installed, as at lower version this package " |
|
"may cause conflicts with other installed packages." |
|
} |
|
data_classification_policy = ["public", "proprietary"] |
|
parameters: Optional[WMLInferenceEngineParams] = None |
|
concurrency_limit: int = 10 |
|
_client: Any = InternalField(default=None, name="WML client") |
|
|
|
def get_engine_id(self): |
|
return get_model_and_label_id(self.model_name, self.label) |
|
|
|
def verify(self): |
|
super().verify() |
|
|
|
if self.credentials is not None: |
|
for key in self.credentials: |
|
if key not in ["url", "apikey", "project_id", "space_id"]: |
|
raise ValueError( |
|
f'Illegal credential key: {key}, use only ["url", "apikey", "project_id", "space_id"]' |
|
) |
|
|
|
assert ( |
|
self.model_name |
|
or self.deployment_id |
|
and not (self.model_name and self.deployment_id) |
|
), "Either 'model_name' or 'deployment_id' must be specified, but not both at the same time." |
|
|
|
def process_data_before_dump(self, data): |
|
if "credentials" in data: |
|
for key, value in data["credentials"].items(): |
|
if key != "url": |
|
data["credentials"][key] = "<hidden>" |
|
else: |
|
data["credentials"][key] = value |
|
return data |
|
|
|
@staticmethod |
|
def _read_wml_credentials_from_env() -> ( |
|
Dict[Literal["url", "apikey", "project_id", "space_id"], str] |
|
): |
|
credentials = {} |
|
project_or_deployment_var_name = ( |
|
"WML_SPACE_ID" if "WML_SPACE_ID" in os.environ else "WML_PROJECT_ID" |
|
) |
|
|
|
for env_var_name in ["WML_URL", project_or_deployment_var_name, "WML_APIKEY"]: |
|
env_var = os.environ.get(env_var_name) |
|
assert env_var, ( |
|
f"Error while trying to run 'WMLInferenceEngine'. " |
|
f"Please set the env variable: '{env_var_name}', or " |
|
f"directly provide an instance of ibm-watsonx-ai 'Credentials' " |
|
f"to the engine." |
|
) |
|
|
|
name = env_var_name.lower().replace("wml_", "") |
|
credentials[name] = env_var |
|
|
|
return credentials |
|
|
|
def _initialize_wml_client(self): |
|
from ibm_watsonx_ai.client import APIClient |
|
|
|
if self.credentials is None: |
|
self.credentials = self._read_wml_credentials_from_env() |
|
|
|
client = APIClient(credentials=self.credentials) |
|
if "space_id" in self.credentials: |
|
client.set.default_space(self.credentials["space_id"]) |
|
else: |
|
client.set.default_project(self.credentials["project_id"]) |
|
return client |
|
|
|
def prepare_engine(self): |
|
self._client = self._initialize_wml_client() |
|
|
|
self._set_inference_parameters() |
|
|
|
def _load_model_and_params(self): |
|
from ibm_watsonx_ai.foundation_models import ModelInference |
|
|
|
model = ModelInference( |
|
model_id=self.model_name, |
|
deployment_id=self.deployment_id, |
|
api_client=self._client, |
|
) |
|
params = self.to_dict([WMLInferenceEngineParamsMixin], keep_empty=False) |
|
|
|
return model, params |
|
|
|
def _infer( |
|
self, |
|
dataset: Union[List[Dict[str, Any]], DatasetDict], |
|
return_meta_data: bool = False, |
|
) -> Union[List[str], List[TextGenerationInferenceOutput]]: |
|
model, params = self._load_model_and_params() |
|
|
|
result = [] |
|
for instance in dataset: |
|
instance_result = model.generate( |
|
prompt=instance["source"], |
|
params=self.to_dict([WMLInferenceEngineParamsMixin], keep_empty=False), |
|
) |
|
prediction = instance_result["results"][0]["generated_text"] |
|
instance_final_results = self.get_return_object( |
|
prediction, instance_result, return_meta_data |
|
) |
|
result.append(instance_final_results) |
|
|
|
return result |
|
|
|
def _infer_log_probs( |
|
self, |
|
dataset: Union[List[Dict[str, Any]], DatasetDict], |
|
return_meta_data: bool = False, |
|
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]: |
|
model, params = self._load_model_and_params() |
|
|
|
user_return_options = params.pop("return_options", {}) |
|
|
|
logprobs_return_options = { |
|
"input_tokens": True, |
|
"generated_tokens": True, |
|
"token_logprobs": True, |
|
"top_n_tokens": user_return_options.get("top_n_tokens", 5), |
|
} |
|
for key, value in logprobs_return_options.items(): |
|
if key in user_return_options and user_return_options[key] != value: |
|
raise ValueError( |
|
f"'{key}={user_return_options[key]}' is not supported for the 'infer_log_probs' " |
|
f"method of {self.__class__.__name__}. For obtaining the logprobs of generated tokens " |
|
f"please use '{key}={value}'." |
|
) |
|
|
|
params = { |
|
**params, |
|
"return_options": logprobs_return_options, |
|
} |
|
|
|
results = model.generate( |
|
prompt=[instance["source"] for instance in dataset], |
|
params=params, |
|
) |
|
final_results = [] |
|
for result in results: |
|
generated_tokens = result["results"][0]["generated_tokens"] |
|
final_results.append( |
|
self.get_return_object(generated_tokens, result, return_meta_data) |
|
) |
|
return final_results |
|
|
|
def get_return_object(self, predict_result, result, return_meta_data): |
|
if return_meta_data: |
|
return TextGenerationInferenceOutput( |
|
prediction=predict_result, |
|
input_tokens=result["results"][0]["input_token_count"], |
|
output_tokens=result["results"][0]["generated_token_count"], |
|
model_name=self.model_name, |
|
inference_type=self.label, |
|
) |
|
return predict_result |
|
|
|
|
|
class HFLlavaInferenceEngine(InferenceEngine, LazyLoadMixin): |
|
model_name: str |
|
max_new_tokens: int |
|
lazy_load = True |
|
|
|
_requirements_list = { |
|
"transformers": "Install huggingface package using 'pip install --upgrade transformers", |
|
"torch": "Install torch, go on PyTorch website for mode details.", |
|
"accelerate": "pip install accelerate", |
|
} |
|
|
|
def get_engine_id(self): |
|
return get_model_and_label_id(self.model_name, "hf_lava") |
|
|
|
def _prepare_engine(self): |
|
import torch |
|
from transformers import AutoProcessor, LlavaForConditionalGeneration |
|
|
|
self.device = torch.device( |
|
"mps" |
|
if torch.backends.mps.is_available() |
|
else 0 |
|
if torch.cuda.is_available() |
|
else "cpu" |
|
) |
|
|
|
self.model = LlavaForConditionalGeneration.from_pretrained( |
|
self.model_name, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
).to(self.device) |
|
|
|
self.processor = AutoProcessor.from_pretrained(self.model_name) |
|
|
|
def prepare_engine(self): |
|
if not self.lazy_load: |
|
self._prepare_engine() |
|
|
|
def _is_loaded(self): |
|
return hasattr(self, "model") and self.model is not None |
|
|
|
def _infer( |
|
self, |
|
dataset: Union[List[Dict[str, Any]], DatasetDict], |
|
return_meta_data: bool = False, |
|
) -> Union[List[str], List[TextGenerationInferenceOutput]]: |
|
if not self._is_loaded(): |
|
self._prepare_engine() |
|
|
|
import torch |
|
|
|
results = [] |
|
for instance in tqdm(dataset): |
|
text = instance["source"] |
|
images = extract_images(text, instance) |
|
|
|
regex = r'<img\s+src=["\'](.*?)["\']\s*/?>' |
|
model_input = re.sub(regex, "<image>", text) |
|
if len(images) == 1: |
|
images = images[0] |
|
inputs = self.processor( |
|
images=images, text=model_input, return_tensors="pt" |
|
).to(self.device, torch.float16) |
|
input_len = len(inputs["input_ids"][0]) |
|
output = self.model.generate( |
|
**inputs, |
|
max_new_tokens=self.max_new_tokens, |
|
do_sample=False, |
|
pad_token_id=self.processor.tokenizer.eos_token_id, |
|
) |
|
result = self.processor.decode( |
|
output[0][input_len:], skip_special_tokens=True |
|
) |
|
results.append(result) |
|
|
|
return results |
|
|