Upload metric_utils.py with huggingface_hub
Browse files- metric_utils.py +97 -9
metric_utils.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
-
|
|
|
2 |
|
3 |
from datasets import Features, Value
|
4 |
|
|
|
5 |
from .operator import (
|
6 |
MultiStreamOperator,
|
7 |
SequentialOperatorInitilizer,
|
@@ -17,6 +19,7 @@ from .operators import (
|
|
17 |
)
|
18 |
from .register import _reset_env_local_catalogs, register_all_artifacts
|
19 |
from .schema import UNITXT_DATASET_SCHEMA
|
|
|
20 |
from .stream import MultiStream, Stream
|
21 |
|
22 |
|
@@ -83,16 +86,12 @@ class FromPredictionsAndOriginalData(StreamInitializerOperator):
|
|
83 |
)
|
84 |
|
85 |
|
86 |
-
# The
|
87 |
# Sequence({"key": Value(dtype="string"), "value": Value("string")})
|
88 |
# When receiving instances from this scheme, the keys and values are returned as two separate
|
89 |
# lists, and are converted to a dictionary.
|
90 |
|
91 |
|
92 |
-
def _from_key_value_pairs(key_value_list: Dict[str, list]) -> Dict[str, str]:
|
93 |
-
return dict(zip(key_value_list["key"], key_value_list["value"]))
|
94 |
-
|
95 |
-
|
96 |
class MetricRecipe(SequentialOperatorInitilizer):
|
97 |
calc_confidence_intervals: bool = True
|
98 |
|
@@ -101,9 +100,9 @@ class MetricRecipe(SequentialOperatorInitilizer):
|
|
101 |
self.steps = [
|
102 |
FromPredictionsAndOriginalData(),
|
103 |
Apply(
|
104 |
-
"
|
105 |
-
function=
|
106 |
-
to_field="
|
107 |
),
|
108 |
ApplyOperatorsField(
|
109 |
operators_field="postprocessors",
|
@@ -144,3 +143,92 @@ def _compute(
|
|
144 |
|
145 |
stream = multi_stream[split_name]
|
146 |
return list(stream)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from typing import Any, Dict, Iterable, List, Optional
|
3 |
|
4 |
from datasets import Features, Value
|
5 |
|
6 |
+
from .dataclass import Dataclass
|
7 |
from .operator import (
|
8 |
MultiStreamOperator,
|
9 |
SequentialOperatorInitilizer,
|
|
|
19 |
)
|
20 |
from .register import _reset_env_local_catalogs, register_all_artifacts
|
21 |
from .schema import UNITXT_DATASET_SCHEMA
|
22 |
+
from .settings_utils import get_settings
|
23 |
from .stream import MultiStream, Stream
|
24 |
|
25 |
|
|
|
86 |
)
|
87 |
|
88 |
|
89 |
+
# The task_data field in the schema is defined as
|
90 |
# Sequence({"key": Value(dtype="string"), "value": Value("string")})
|
91 |
# When receiving instances from this scheme, the keys and values are returned as two separate
|
92 |
# lists, and are converted to a dictionary.
|
93 |
|
94 |
|
|
|
|
|
|
|
|
|
95 |
class MetricRecipe(SequentialOperatorInitilizer):
|
96 |
calc_confidence_intervals: bool = True
|
97 |
|
|
|
100 |
self.steps = [
|
101 |
FromPredictionsAndOriginalData(),
|
102 |
Apply(
|
103 |
+
"task_data",
|
104 |
+
function="json.loads",
|
105 |
+
to_field="task_data",
|
106 |
),
|
107 |
ApplyOperatorsField(
|
108 |
operators_field="postprocessors",
|
|
|
143 |
|
144 |
stream = multi_stream[split_name]
|
145 |
return list(stream)
|
146 |
+
|
147 |
+
|
148 |
+
"""
|
149 |
+
The API of a metric service:
|
150 |
+
- MetricRequest: A single input request to the metrics service.
|
151 |
+
- MetricResponse: A response returned from a metrics service.
|
152 |
+
"""
|
153 |
+
|
154 |
+
|
155 |
+
class InstanceInput(Dataclass):
|
156 |
+
"""A single instance inputted to a metric service."""
|
157 |
+
|
158 |
+
prediction: Any
|
159 |
+
references: List[Any]
|
160 |
+
additional_inputs: Optional[Dict] = None
|
161 |
+
|
162 |
+
|
163 |
+
class MetricRequest(Dataclass):
|
164 |
+
"""A request to a metrics service, includes a list of input instances."""
|
165 |
+
|
166 |
+
instance_inputs: List[InstanceInput]
|
167 |
+
|
168 |
+
|
169 |
+
class MetricResponse(Dataclass):
|
170 |
+
"""A response produced by a metrics service, includes the computed scores."""
|
171 |
+
|
172 |
+
# A list of instance score dictionaries. Each dictionary contains the
|
173 |
+
# score names and score values for a single instance.
|
174 |
+
instances_scores: List[Dict[str, Any]]
|
175 |
+
# The global scores dictionary, containing global score names and values.
|
176 |
+
# These are scores computed over the entire set of input instances, e.g.
|
177 |
+
# an average over a score computed per instance.
|
178 |
+
global_score: Dict[str, Any]
|
179 |
+
|
180 |
+
|
181 |
+
"""
|
182 |
+
Functionality for loading the remote metrics configuration from local environment variables.
|
183 |
+
"""
|
184 |
+
|
185 |
+
# A list of metrics to be executed remotely.
|
186 |
+
# For example: '["metrics.rag.context_relevance","metrics.rag.bert_k_precision"]'
|
187 |
+
# This value should be a valid json list
|
188 |
+
UNITXT_REMOTE_METRICS = "UNITXT_REMOTE_METRICS"
|
189 |
+
|
190 |
+
# The remote endpoint on which the remote metrics are available.
|
191 |
+
# For example, 'http://127.0.0.1:8000/compute'
|
192 |
+
UNITXT_REMOTE_METRICS_ENDPOINT = "UNITXT_REMOTE_METRICS_ENDPOINT"
|
193 |
+
|
194 |
+
|
195 |
+
def get_remote_metrics_names() -> List[str]:
|
196 |
+
"""Load the remote metrics names from an environment variable.
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
List[str] - names of metrics to be executed remotely.
|
200 |
+
"""
|
201 |
+
settings = get_settings()
|
202 |
+
remote_metrics = settings.remote_metrics
|
203 |
+
if remote_metrics:
|
204 |
+
remote_metrics = json.loads(remote_metrics)
|
205 |
+
if not isinstance(remote_metrics, list):
|
206 |
+
raise RuntimeError(
|
207 |
+
f"Unexpected value {remote_metrics} for the '{UNITXT_REMOTE_METRICS}' environment variable. "
|
208 |
+
f"The value is expected to be a list of metric names in json format."
|
209 |
+
)
|
210 |
+
for remote_metric in remote_metrics:
|
211 |
+
if not isinstance(remote_metric, str):
|
212 |
+
raise RuntimeError(
|
213 |
+
f"Unexpected value {remote_metric} within the '{UNITXT_REMOTE_METRICS}' environment variable. "
|
214 |
+
f"The value is expected to be a string but its type is {type(remote_metric)}."
|
215 |
+
)
|
216 |
+
return remote_metrics
|
217 |
+
|
218 |
+
|
219 |
+
def get_remote_metrics_endpoint() -> str:
|
220 |
+
"""Load the remote metrics endpoint from an environment variable.
|
221 |
+
|
222 |
+
Returns:
|
223 |
+
str - The remote endpoint on which the remote metrics are available.
|
224 |
+
"""
|
225 |
+
settings = get_settings()
|
226 |
+
try:
|
227 |
+
remote_metrics_endpoint = settings.remote_metrics_endpoint
|
228 |
+
except AttributeError as e:
|
229 |
+
raise RuntimeError(
|
230 |
+
f"Unexpected None value for '{UNITXT_REMOTE_METRICS_ENDPOINT}'. "
|
231 |
+
f"Running remote metrics requires defining an "
|
232 |
+
f"endpoint in the environment variable '{UNITXT_REMOTE_METRICS_ENDPOINT}'."
|
233 |
+
) from e
|
234 |
+
return remote_metrics_endpoint
|