Datasets:

ArXiv:
Elron commited on
Commit
85300cd
·
verified ·
1 Parent(s): f1c3297

Upload folder using huggingface_hub

Browse files
api.py CHANGED
@@ -1,7 +1,6 @@
1
  import hashlib
2
  import inspect
3
  import json
4
- import tempfile
5
  from datetime import datetime
6
  from functools import lru_cache
7
  from typing import Any, Dict, List, Optional, Union
@@ -135,36 +134,39 @@ def create_dataset(
135
 
136
 
137
  def _source_to_dataset(
138
- source: SourceOperator, split=None, use_cache=False, streaming=False
 
 
 
139
  ):
140
  from .dataset import Dataset as UnitxtDataset
141
 
142
  stream = source()
143
 
144
- with tempfile.TemporaryDirectory() as dir_to_be_deleted:
145
- cache_dir = dir_to_be_deleted if not use_cache else None
146
  ds_builder = UnitxtDataset(
147
  dataset_name="unitxt",
148
  config_name="recipe-" + short_hex_hash(repr(source)),
149
- hash=hash(repr(source)),
150
  version=constants.version,
151
- cache_dir=cache_dir,
152
  )
153
  if split is not None:
154
  stream = {split: stream[split]}
155
  ds_builder._generators = stream
156
 
157
- try:
158
- ds_builder.download_and_prepare()
 
 
159
 
160
- if streaming:
161
- return ds_builder.as_streaming_dataset(split=split)
162
 
163
- return ds_builder.as_dataset(
164
- split=split, run_post_process=False, verification_mode="no_checks"
165
- )
166
- except DatasetGenerationError as e:
167
- raise e.__cause__
 
168
 
169
 
170
  def load_dataset(
 
1
  import hashlib
2
  import inspect
3
  import json
 
4
  from datetime import datetime
5
  from functools import lru_cache
6
  from typing import Any, Dict, List, Optional, Union
 
134
 
135
 
136
  def _source_to_dataset(
137
+ source: SourceOperator,
138
+ split=None,
139
+ use_cache=False,
140
+ streaming=False,
141
  ):
142
  from .dataset import Dataset as UnitxtDataset
143
 
144
  stream = source()
145
 
146
+ try:
 
147
  ds_builder = UnitxtDataset(
148
  dataset_name="unitxt",
149
  config_name="recipe-" + short_hex_hash(repr(source)),
 
150
  version=constants.version,
 
151
  )
152
  if split is not None:
153
  stream = {split: stream[split]}
154
  ds_builder._generators = stream
155
 
156
+ ds_builder.download_and_prepare(
157
+ verification_mode="no_checks",
158
+ download_mode=None if use_cache else "force_redownload",
159
+ )
160
 
161
+ if streaming:
162
+ return ds_builder.as_streaming_dataset(split=split)
163
 
164
+ return ds_builder.as_dataset(
165
+ split=split, run_post_process=False, verification_mode="no_checks"
166
+ )
167
+
168
+ except DatasetGenerationError as e:
169
+ raise e.__cause__
170
 
171
 
172
  def load_dataset(
card.py CHANGED
@@ -21,8 +21,6 @@ class TaskCard(Artifact):
21
  specifies the fields (of the already (pre)processed instance) making the inputs, the fields making the outputs, and the metrics to be used for evaluating the model output.
22
  templates:
23
  format strings to be applied on the input fields (specified by the task) and the output fields. The template also carries the instructions and the list of postprocessing steps, to be applied to the model output.
24
- default_template:
25
- a default template for tasks with very specific task dataset specific template
26
  """
27
 
28
  loader: Loader
@@ -31,5 +29,4 @@ class TaskCard(Artifact):
31
  templates: Union[
32
  TemplatesDict, TemplatesList, Dict[str, Template], List[Template]
33
  ] = None
34
- default_template: Template = None
35
  sampler: Sampler = OptionalField(default_factory=RandomSampler)
 
21
  specifies the fields (of the already (pre)processed instance) making the inputs, the fields making the outputs, and the metrics to be used for evaluating the model output.
22
  templates:
23
  format strings to be applied on the input fields (specified by the task) and the output fields. The template also carries the instructions and the list of postprocessing steps, to be applied to the model output.
 
 
24
  """
25
 
26
  loader: Loader
 
29
  templates: Union[
30
  TemplatesDict, TemplatesList, Dict[str, Template], List[Template]
31
  ] = None
 
32
  sampler: Sampler = OptionalField(default_factory=RandomSampler)
collections.py CHANGED
@@ -22,6 +22,10 @@ class Collection(Artifact):
22
  def keys(self) -> List[Hashable]:
23
  pass
24
 
 
 
 
 
25
 
26
  class ListCollection(Collection):
27
  items: List[Artifact] = field(default_factory=list)
@@ -48,6 +52,11 @@ class DictCollection(Collection):
48
  def keys(self) -> List[Hashable]:
49
  return list(self.items.keys())
50
 
 
 
 
 
 
51
 
52
  class ItemPicker(Artifact):
53
  item: object = None
 
22
  def keys(self) -> List[Hashable]:
23
  pass
24
 
25
+ @abstractmethod
26
+ def __len__(self):
27
+ pass
28
+
29
 
30
  class ListCollection(Collection):
31
  items: List[Artifact] = field(default_factory=list)
 
52
  def keys(self) -> List[Hashable]:
53
  return list(self.items.keys())
54
 
55
+ def len(self):
56
+ return len(self.items)
57
+
58
+ def __len__(self):
59
+ return len(self.items)
60
 
61
  class ItemPicker(Artifact):
62
  item: object = None
data.py CHANGED
@@ -15,7 +15,6 @@ from .collections_operators import __file__ as _
15
  from .dataclass import __file__ as _
16
  from .dataset_utils import __file__ as _
17
  from .dataset_utils import get_dataset_artifact
18
- from .db_utils import __file__ as _
19
  from .deprecation_utils import __file__ as _
20
  from .dialog_operators import __file__ as _
21
  from .dict_utils import __file__ as _
@@ -58,6 +57,7 @@ from .settings_utils import get_constants
58
  from .span_lableing_operators import __file__ as _
59
  from .split_utils import __file__ as _
60
  from .splitters import __file__ as _
 
61
  from .standard import __file__ as _
62
  from .stream import __file__ as _
63
  from .stream_operators import __file__ as _
 
15
  from .dataclass import __file__ as _
16
  from .dataset_utils import __file__ as _
17
  from .dataset_utils import get_dataset_artifact
 
18
  from .deprecation_utils import __file__ as _
19
  from .dialog_operators import __file__ as _
20
  from .dict_utils import __file__ as _
 
57
  from .span_lableing_operators import __file__ as _
58
  from .split_utils import __file__ as _
59
  from .splitters import __file__ as _
60
+ from .sql_utils import __file__ as _
61
  from .standard import __file__ as _
62
  from .stream import __file__ as _
63
  from .stream_operators import __file__ as _
fusion.py CHANGED
@@ -34,11 +34,7 @@ class BaseFusion(SourceOperator):
34
  for i in range(len(self.subsets)):
35
  self.named_subsets[i] = self.subsets[i]
36
  else:
37
- for name, origin in self.subsets.items():
38
- try:
39
- self.named_subsets[name] = origin
40
- except Exception as e:
41
- raise RuntimeError(f"Exception in subset: {name}") from e
42
 
43
  def splits(self) -> List[str]:
44
  self.prepare_subsets()
 
34
  for i in range(len(self.subsets)):
35
  self.named_subsets[i] = self.subsets[i]
36
  else:
37
+ self.named_subsets = self.subsets
 
 
 
 
38
 
39
  def splits(self) -> List[str]:
40
  self.prepare_subsets()
image_operators.py CHANGED
@@ -41,7 +41,9 @@ def image_to_data_url(image: Image, default_format="JPEG"):
41
  https://developer.mozilla.org/en-US/docs/Web/URI/Schemes/data
42
  """
43
  image_format = image["format"] if image["format"] else default_format
44
- base64_image = _image_to_bytes(image["image"], format=image_format.upper())
 
 
45
  return ImageDataString(f"data:image/{image_format.lower()};base64,{base64_image}")
46
 
47
 
 
41
  https://developer.mozilla.org/en-US/docs/Web/URI/Schemes/data
42
  """
43
  image_format = image["format"] if image["format"] else default_format
44
+ base64_image = _image_to_bytes(
45
+ image["image"].convert("RGB"), format=image_format.upper()
46
+ )
47
  return ImageDataString(f"data:image/{image_format.lower()};base64,{base64_image}")
48
 
49
 
inference.py CHANGED
@@ -1,6 +1,8 @@
1
  import abc
2
  import asyncio
 
3
  import dataclasses
 
4
  import json
5
  import logging
6
  import os
@@ -26,14 +28,14 @@ from typing import (
26
  Union,
27
  )
28
 
29
- from datasets import Dataset, DatasetDict
30
  from tqdm import tqdm, trange
31
  from tqdm.asyncio import tqdm_asyncio
32
 
33
  from .artifact import Artifact
34
  from .dataclass import InternalField, NonPositionalField
35
  from .deprecation_utils import deprecation
36
- from .error_utils import UnitxtError
37
  from .image_operators import (
38
  EncodeImageToString,
39
  ImageDataString,
@@ -277,6 +279,12 @@ class LogProbInferenceEngine(abc.ABC, Artifact):
277
  """
278
  pass
279
 
 
 
 
 
 
 
280
  def infer_log_probs(
281
  self,
282
  dataset: Union[List[Dict[str, Any]], Dataset],
@@ -296,7 +304,12 @@ class LogProbInferenceEngine(abc.ABC, Artifact):
296
  )
297
 
298
  [self.verify_instance(instance) for instance in dataset]
299
- return self._infer_log_probs(dataset, return_meta_data)
 
 
 
 
 
300
 
301
 
302
  class LazyLoadMixin(Artifact):
@@ -811,9 +824,12 @@ class HFPeftInferenceEngine(HFAutoModelInferenceEngine):
811
  if AutoConfig.from_pretrained(self.model_name).is_encoder_decoder
812
  else AutoPeftModelForCausalLM
813
  )
 
 
 
814
 
815
  self.model = model_class.from_pretrained(
816
- pretrained_model_name_or_path=self.peft_config.base_model_name_or_path,
817
  trust_remote_code=True,
818
  device_map=self.device_map,
819
  low_cpu_mem_usage=self.low_cpu_mem_usage,
@@ -858,10 +874,15 @@ class HFPipelineBasedInferenceEngine(
858
  def _define_task(self):
859
  from transformers import AutoConfig
860
 
 
 
 
 
861
  self.task = (
862
  "text2text-generation"
863
  if AutoConfig.from_pretrained(
864
- self.model_name, trust_remote_code=True
 
865
  ).is_encoder_decoder
866
  else "text-generation"
867
  )
@@ -899,11 +920,15 @@ class HFPipelineBasedInferenceEngine(
899
  def _create_pipeline(self, model_args: Dict[str, Any]):
900
  from transformers import pipeline
901
 
 
 
 
 
902
  self.model = pipeline(
903
- model=self.model_name,
904
  task=self.task,
905
  use_fast=self.use_fast_tokenizer,
906
- trust_remote_code=True,
907
  **model_args,
908
  **self.to_dict(
909
  [HFGenerationParamsMixin],
@@ -1143,15 +1168,14 @@ class OllamaInferenceEngine(
1143
  import ollama
1144
 
1145
  args = self.to_dict([StandardAPIParamsMixin])
1146
-
1147
  results = []
1148
-
1149
  for instance in dataset:
1150
  messages = self.to_messages(instance)
1151
  response = ollama.chat(
1152
- model=self.model,
1153
  messages=messages,
1154
- **args,
 
1155
  )
1156
  results.append(response)
1157
 
@@ -1610,34 +1634,52 @@ class OpenAiInferenceEngine(
1610
 
1611
  @run_with_imap
1612
  def _get_chat_completion(self, instance, return_meta_data):
 
1613
  messages = self.to_messages(instance)
1614
- response = self.client.chat.completions.create(
1615
- messages=messages,
1616
- model=self.model_name,
1617
- **self._get_completion_kwargs(),
1618
- )
1619
- prediction = response.choices[0].message.content
1620
- return self.get_return_object(prediction, response, return_meta_data)
 
 
 
 
 
 
1621
 
1622
  @run_with_imap
1623
  def _get_logprobs(self, instance, return_meta_data):
 
1624
  messages = self.to_messages(instance)
1625
- response = self.client.chat.completions.create(
1626
- messages=messages,
1627
- model=self.model_name,
1628
- **self._get_completion_kwargs(),
1629
- )
1630
- top_logprobs_response = response.choices[0].logprobs.content
1631
- pred_output = [
1632
- {
1633
- "top_tokens": [
1634
- {"text": obj.token, "logprob": obj.logprob}
1635
- for obj in generated_token.top_logprobs
1636
- ]
1637
- }
1638
- for generated_token in top_logprobs_response
1639
- ]
1640
- return self.get_return_object(pred_output, response, return_meta_data)
 
 
 
 
 
 
 
 
 
 
1641
 
1642
  def get_return_object(self, predict_result, response, return_meta_data):
1643
  if return_meta_data:
@@ -1887,7 +1929,7 @@ class WMLGenerationParamsMixin(Artifact):
1887
 
1888
  class WMLChatParamsMixin(Artifact):
1889
  frequency_penalty: Optional[float] = None
1890
- top_logprobs: Optional[int] = 5
1891
  presence_penalty: Optional[float] = None
1892
  response_format: Optional[Dict[str, Any]] = None
1893
  temperature: Optional[float] = None
@@ -1898,7 +1940,7 @@ class WMLChatParamsMixin(Artifact):
1898
 
1899
 
1900
  CredentialsWML = Dict[
1901
- Literal["url", "username", "password", "apikey", "project_id", "space_id"], str
1902
  ]
1903
 
1904
 
@@ -1958,28 +2000,28 @@ class WMLInferenceEngineBase(
1958
  and not (self.model_name and self.deployment_id)
1959
  ), "Either 'model_name' or 'deployment_id' must be specified, but not both at the same time."
1960
 
1961
- def process_data_before_dump(self, data):
1962
- if "credentials" in data:
1963
- for key, value in data["credentials"].items():
1964
- if key != "url":
1965
- data["credentials"][key] = "<hidden>"
1966
- else:
1967
- data["credentials"][key] = value
1968
- return data
1969
 
1970
  def _initialize_wml_client(self):
1971
- from ibm_watsonx_ai.client import APIClient
1972
 
1973
- if self.credentials is None:
1974
  self.credentials = self._read_wml_credentials_from_env()
1975
  self._verify_wml_credentials(self.credentials)
1976
-
1977
- client = APIClient(credentials=self.credentials)
1978
- if "space_id" in self.credentials:
1979
- client.set.default_space(self.credentials["space_id"])
1980
- else:
1981
- client.set.default_project(self.credentials["project_id"])
1982
- return client
1983
 
1984
  @staticmethod
1985
  def _read_wml_credentials_from_env() -> CredentialsWML:
@@ -2002,6 +2044,8 @@ class WMLInferenceEngineBase(
2002
  "only one of those defined in the env."
2003
  )
2004
  credentials["space_id"] = space_id
 
 
2005
  elif project_id:
2006
  credentials["project_id"] = project_id
2007
  else:
@@ -2024,7 +2068,7 @@ class WMLInferenceEngineBase(
2024
  )
2025
 
2026
  if apikey:
2027
- credentials["apikey"] = apikey
2028
  elif username and password:
2029
  credentials["username"] = username
2030
  credentials["password"] = password
@@ -2042,7 +2086,7 @@ class WMLInferenceEngineBase(
2042
  assert isoftype(credentials, CredentialsWML), (
2043
  "WML credentials object must be a dictionary which may "
2044
  "contain only the following keys: "
2045
- "['url', 'apikey', 'username', 'password']."
2046
  )
2047
 
2048
  assert credentials.get(
@@ -2052,10 +2096,10 @@ class WMLInferenceEngineBase(
2052
  "Either 'space_id' or 'project_id' must be provided "
2053
  "as keys for WML credentials dict."
2054
  )
2055
- assert "apikey" in credentials or (
2056
  "username" in credentials and "password" in credentials
2057
  ), (
2058
- "Either 'apikey' or both 'username' and 'password' must be provided "
2059
  "as keys for WML credentials dict."
2060
  )
2061
 
@@ -2229,7 +2273,8 @@ class WMLInferenceEngineGeneration(WMLInferenceEngineBase, WMLGenerationParamsMi
2229
  # currently this is the only configuration that returns generated
2230
  # logprobs and behaves as expected
2231
  logprobs_return_options = {
2232
- "input_tokens": True,
 
2233
  "generated_tokens": True,
2234
  "token_logprobs": True,
2235
  "top_n_tokens": user_return_options.get("top_n_tokens", 5),
@@ -2346,7 +2391,9 @@ class WMLInferenceEngineChat(WMLInferenceEngineBase, WMLChatParamsMixin):
2346
  results = wml_inference.infer(dataset["test"])
2347
  """
2348
 
2349
- image_encoder: Optional[EncodeImageToString] = None
 
 
2350
 
2351
  @staticmethod
2352
  def _extract_queries(instance: Dict[str, Any]) -> Tuple[Optional[str], List]:
@@ -2386,21 +2433,26 @@ class WMLInferenceEngineChat(WMLInferenceEngineBase, WMLChatParamsMixin):
2386
  if image is not None:
2387
  encoded_image = image
2388
  if not isinstance(encoded_image, str):
 
2389
  if self.image_encoder is None:
2390
  raise ValueError(
2391
  "If sending image queries as well, and they are not "
2392
  "already encoded to base64 strings, you must specify "
2393
  "the 'image_encoder' to be used."
2394
  )
2395
- encoded_image = self.image_encoder.encode_image_to_base64(image)
 
 
 
 
 
 
2396
 
2397
  message["content"].append(
2398
  {
2399
  "type": "image_url",
2400
  "image_url": {
2401
- "url": ImageDataString(
2402
- "data:image/jpeg;base64," + encoded_image
2403
- ),
2404
  },
2405
  }
2406
  )
@@ -2550,7 +2602,7 @@ class LMMSEvalBaseInferenceEngine(
2550
  model_type: str
2551
  model_args: Dict[str, str]
2552
  batch_size: int = 1
2553
- image_token = "<image>"
2554
 
2555
  _requirements_list = {
2556
  "lmms_eval": "Install llms-eval package using 'pip install lmms-eval==0.2.4'",
@@ -2576,6 +2628,7 @@ class LMMSEvalBaseInferenceEngine(
2576
  {
2577
  "batch_size": self.batch_size,
2578
  "device": self.device,
 
2579
  },
2580
  )
2581
 
@@ -2714,7 +2767,7 @@ class VLLMParamsMixin(Artifact):
2714
  presence_penalty: float = 0.0
2715
  frequency_penalty: float = 0.0
2716
  repetition_penalty: float = 1.0
2717
- temperature: float = 1.0
2718
  top_p: float = 1.0
2719
  top_k: int = -1
2720
  min_p: float = 0.0
@@ -2731,13 +2784,21 @@ class VLLMParamsMixin(Artifact):
2731
 
2732
  class VLLMInferenceEngine(InferenceEngine, PackageRequirementsMixin, VLLMParamsMixin):
2733
  def prepare_engine(self):
2734
- from vllm import LLM, SamplingParams
2735
-
2736
  args = self.to_dict([VLLMParamsMixin])
2737
  args.pop("model")
 
2738
 
2739
  self.sampling_params = SamplingParams(**args)
2740
- self.llm = LLM(model=self.model, trust_remote_code=True)
 
 
 
 
 
 
 
 
 
2741
 
2742
  def _infer(
2743
  self,
@@ -2749,6 +2810,7 @@ class VLLMInferenceEngine(InferenceEngine, PackageRequirementsMixin, VLLMParamsM
2749
  inputs.append(instance["source"])
2750
 
2751
  if isinstance(inputs[0], list):
 
2752
  outputs = self.llm.chat(inputs, self.sampling_params)
2753
  else:
2754
  outputs = self.llm.generate(inputs, self.sampling_params)
@@ -2862,12 +2924,12 @@ class LiteLLMInferenceEngine(
2862
  self, dataset: List[Dict[str, Any]]
2863
  ) -> List[TextGenerationInferenceOutput]:
2864
  """Process multiple inference requests concurrently with a progress bar."""
2865
- tasks = [
2866
  self._infer_instance(i, instance) for i, instance in enumerate(dataset)
2867
- ]
2868
  # Use tqdm_asyncio.gather to display progress bar
2869
  return await tqdm_asyncio.gather(
2870
- *tasks, desc=f"LiteLLM Inference ({self.model})", total=len(tasks)
2871
  )
2872
 
2873
  def _infer(
@@ -2923,10 +2985,12 @@ class CrossProviderInferenceEngine(InferenceEngine, StandardAPIParamsMixin):
2923
  mapping each supported API to a corresponding
2924
  model identifier string. This mapping allows consistent access to models
2925
  across different API backends.
 
2926
  """
2927
 
2928
  label: str = "cross_provider"
2929
  provider: Optional[_supported_apis] = None
 
2930
 
2931
  provider_model_map: Dict[_supported_apis, Dict[str, str]] = {
2932
  "watsonx": {
@@ -2939,8 +3003,10 @@ class CrossProviderInferenceEngine(InferenceEngine, StandardAPIParamsMixin):
2939
  "llama-3-2-1b-instruct": "watsonx/meta-llama/llama-3-2-1b-instruct",
2940
  "llama-3-2-11b-vision-instruct": "watsonx/meta-llama/llama-3-2-11b-vision-instruct",
2941
  "llama-3-2-90b-vision-instruct": "watsonx/meta-llama/llama-3-2-90b-vision-instruct",
 
2942
  },
2943
  "watsonx-sdk": {
 
2944
  "llama-3-8b-instruct": "meta-llama/llama-3-8b-instruct",
2945
  "llama-3-70b-instruct": "meta-llama/llama-3-70b-instruct",
2946
  "granite-3-8b-instruct": "ibm/granite-3-8b-instruct",
@@ -3084,12 +3150,18 @@ class CrossProviderInferenceEngine(InferenceEngine, StandardAPIParamsMixin):
3084
  f"{provider} is not a configured API for CrossProviderInferenceEngine. Supported apis: {','.join(self.provider_model_map.keys())}"
3085
  )
3086
  if self.model not in self.provider_model_map[provider]:
3087
- raise UnitxtError(
3088
- f"{self.model} is not configured for provider {provider}. Supported models: {','.join(self.provider_model_map[provider].keys())}"
3089
  )
3090
  cls = self.__class__._provider_to_base_class[provider]
3091
  args = self.to_dict([StandardAPIParamsMixin])
3092
- args["model"] = self.provider_model_map[provider][self.model]
 
 
 
 
 
 
3093
  params = list(args.keys())
3094
  if provider in self._provider_param_renaming:
3095
  for param in params:
@@ -3135,8 +3207,16 @@ class HFOptionSelectingInferenceEngine(InferenceEngine, TorchDeviceMixin):
3135
  self.device = self.get_device()
3136
 
3137
  # Load model and tokenizer
3138
- self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
3139
- self.model = AutoModelForCausalLM.from_pretrained(self.model_name).to(
 
 
 
 
 
 
 
 
3140
  self.device
3141
  )
3142
  # Set pad_token if it doesn't exist
 
1
  import abc
2
  import asyncio
3
+ import base64
4
  import dataclasses
5
+ import io
6
  import json
7
  import logging
8
  import os
 
28
  Union,
29
  )
30
 
31
+ from datasets import Dataset, DatasetDict, Image
32
  from tqdm import tqdm, trange
33
  from tqdm.asyncio import tqdm_asyncio
34
 
35
  from .artifact import Artifact
36
  from .dataclass import InternalField, NonPositionalField
37
  from .deprecation_utils import deprecation
38
+ from .error_utils import UnitxtError, UnitxtWarning
39
  from .image_operators import (
40
  EncodeImageToString,
41
  ImageDataString,
 
279
  """
280
  pass
281
 
282
+ def _mock_infer_log_probs(
283
+ self,
284
+ dataset: Union[List[Dict[str, Any]], Dataset],
285
+ ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
286
+ return [mock_logprobs_default_value_factory() for instance in dataset]
287
+
288
  def infer_log_probs(
289
  self,
290
  dataset: Union[List[Dict[str, Any]], Dataset],
 
304
  )
305
 
306
  [self.verify_instance(instance) for instance in dataset]
307
+
308
+ if settings.mock_inference_mode:
309
+ result = self._mock_infer_log_probs(dataset)
310
+ else:
311
+ result = self._infer_log_probs(dataset, return_meta_data)
312
+ return result
313
 
314
 
315
  class LazyLoadMixin(Artifact):
 
824
  if AutoConfig.from_pretrained(self.model_name).is_encoder_decoder
825
  else AutoPeftModelForCausalLM
826
  )
827
+ path = self.peft_config.base_model_name_or_path
828
+ if settings.hf_offline_models_path is not None:
829
+ path = os.path.join(settings.hf_offline_models_path, path)
830
 
831
  self.model = model_class.from_pretrained(
832
+ pretrained_model_name_or_path=path,
833
  trust_remote_code=True,
834
  device_map=self.device_map,
835
  low_cpu_mem_usage=self.low_cpu_mem_usage,
 
874
  def _define_task(self):
875
  from transformers import AutoConfig
876
 
877
+ path = self.model_name
878
+ if settings.hf_offline_models_path is not None:
879
+ path = os.path.join(settings.hf_offline_models_path, path)
880
+
881
  self.task = (
882
  "text2text-generation"
883
  if AutoConfig.from_pretrained(
884
+ path,
885
+ trust_remote_code=True,
886
  ).is_encoder_decoder
887
  else "text-generation"
888
  )
 
920
  def _create_pipeline(self, model_args: Dict[str, Any]):
921
  from transformers import pipeline
922
 
923
+ path = self.model_name
924
+ if settings.hf_offline_models_path is not None:
925
+ path = os.path.join(settings.hf_offline_models_path, path)
926
+
927
  self.model = pipeline(
928
+ model=path,
929
  task=self.task,
930
  use_fast=self.use_fast_tokenizer,
931
+ trust_remote_code=settings.allow_unverified_code,
932
  **model_args,
933
  **self.to_dict(
934
  [HFGenerationParamsMixin],
 
1168
  import ollama
1169
 
1170
  args = self.to_dict([StandardAPIParamsMixin])
 
1171
  results = []
1172
+ model = args.pop("model")
1173
  for instance in dataset:
1174
  messages = self.to_messages(instance)
1175
  response = ollama.chat(
 
1176
  messages=messages,
1177
+ model=model,
1178
+ options=args,
1179
  )
1180
  results.append(response)
1181
 
 
1634
 
1635
  @run_with_imap
1636
  def _get_chat_completion(self, instance, return_meta_data):
1637
+ import openai
1638
  messages = self.to_messages(instance)
1639
+ try:
1640
+ response = self.client.chat.completions.create(
1641
+ messages=messages,
1642
+ model=self.model_name,
1643
+ **self._get_completion_kwargs(),
1644
+ )
1645
+ prediction = response.choices[0].message.content
1646
+ return self.get_return_object(prediction, response, return_meta_data)
1647
+ # catch in case of content_filtering failure
1648
+ except openai.BadRequestError as e:
1649
+ logging.error(f"Error predicting instance {messages}:{e}. Returning empty prediction")
1650
+ return TextGenerationInferenceOutput(prediction = "-", input_tokens=0, output_tokens=0)
1651
+
1652
 
1653
  @run_with_imap
1654
  def _get_logprobs(self, instance, return_meta_data):
1655
+ import openai
1656
  messages = self.to_messages(instance)
1657
+ try:
1658
+ response = self.client.chat.completions.create(
1659
+ messages=messages,
1660
+ model=self.model_name,
1661
+ **self._get_completion_kwargs(),
1662
+ )
1663
+ top_logprobs_response = response.choices[0].logprobs.content
1664
+ pred_output = [
1665
+ {
1666
+ "top_tokens": [
1667
+ {"text": obj.token, "logprob": obj.logprob}
1668
+ for obj in generated_token.top_logprobs
1669
+ ]
1670
+ }
1671
+ for generated_token in top_logprobs_response
1672
+ ]
1673
+ return self.get_return_object(pred_output, response, return_meta_data)
1674
+ # catch in case of content_filtering failure
1675
+ except openai.BadRequestError as e:
1676
+ logging.error(f"Error predicting instance {messages}:{e}. Returning empty prediction")
1677
+ prediction = [{"top_tokens": [
1678
+ {"text": "-", "logprob": 0}
1679
+ ]
1680
+ }]
1681
+ return TextGenerationInferenceOutput(prediction=prediction, input_tokens=0, output_tokens=0)
1682
+
1683
 
1684
  def get_return_object(self, predict_result, response, return_meta_data):
1685
  if return_meta_data:
 
1929
 
1930
  class WMLChatParamsMixin(Artifact):
1931
  frequency_penalty: Optional[float] = None
1932
+ top_logprobs: Optional[int] = None
1933
  presence_penalty: Optional[float] = None
1934
  response_format: Optional[Dict[str, Any]] = None
1935
  temperature: Optional[float] = None
 
1940
 
1941
 
1942
  CredentialsWML = Dict[
1943
+ Literal["url", "username", "password", "api_key", "project_id", "space_id"], str
1944
  ]
1945
 
1946
 
 
2000
  and not (self.model_name and self.deployment_id)
2001
  ), "Either 'model_name' or 'deployment_id' must be specified, but not both at the same time."
2002
 
2003
+ # def process_data_before_dump(self, data):
2004
+ # if "credentials" in data:
2005
+ # for key, value in data["credentials"].items():
2006
+ # if key != "url":
2007
+ # data["credentials"][key] = "<hidden>"
2008
+ # else:
2009
+ # data["credentials"][key] = value
2010
+ # return data
2011
 
2012
  def _initialize_wml_client(self):
2013
+ from ibm_watsonx_ai.client import APIClient, Credentials
2014
 
2015
+ if self.credentials is None or len(self.credentials) == 0: # TODO: change
2016
  self.credentials = self._read_wml_credentials_from_env()
2017
  self._verify_wml_credentials(self.credentials)
2018
+ return APIClient(
2019
+ credentials=Credentials(
2020
+ api_key=self.credentials["api_key"],
2021
+ url=self.credentials["url"]
2022
+ ),
2023
+ project_id=self.credentials.get("project_id", None),
2024
+ space_id=self.credentials.get("space_id", None))
2025
 
2026
  @staticmethod
2027
  def _read_wml_credentials_from_env() -> CredentialsWML:
 
2044
  "only one of those defined in the env."
2045
  )
2046
  credentials["space_id"] = space_id
2047
+ elif space_id:
2048
+ credentials["space_id"] = space_id
2049
  elif project_id:
2050
  credentials["project_id"] = project_id
2051
  else:
 
2068
  )
2069
 
2070
  if apikey:
2071
+ credentials["api_key"] = apikey
2072
  elif username and password:
2073
  credentials["username"] = username
2074
  credentials["password"] = password
 
2086
  assert isoftype(credentials, CredentialsWML), (
2087
  "WML credentials object must be a dictionary which may "
2088
  "contain only the following keys: "
2089
+ "['url', 'api_key', 'username', 'password']."
2090
  )
2091
 
2092
  assert credentials.get(
 
2096
  "Either 'space_id' or 'project_id' must be provided "
2097
  "as keys for WML credentials dict."
2098
  )
2099
+ assert "api_key" in credentials or (
2100
  "username" in credentials and "password" in credentials
2101
  ), (
2102
+ "Either 'api_key' or both 'username' and 'password' must be provided "
2103
  "as keys for WML credentials dict."
2104
  )
2105
 
 
2273
  # currently this is the only configuration that returns generated
2274
  # logprobs and behaves as expected
2275
  logprobs_return_options = {
2276
+ "input_tokens": user_return_options.get("input_tokens", True),
2277
+ "input_text": user_return_options.get("input_text", False),
2278
  "generated_tokens": True,
2279
  "token_logprobs": True,
2280
  "top_n_tokens": user_return_options.get("top_n_tokens", 5),
 
2391
  results = wml_inference.infer(dataset["test"])
2392
  """
2393
 
2394
+ image_encoder: Optional[EncodeImageToString] = NonPositionalField(
2395
+ default_factory=EncodeImageToString
2396
+ )
2397
 
2398
  @staticmethod
2399
  def _extract_queries(instance: Dict[str, Any]) -> Tuple[Optional[str], List]:
 
2433
  if image is not None:
2434
  encoded_image = image
2435
  if not isinstance(encoded_image, str):
2436
+ image = Image().decode_example(image)
2437
  if self.image_encoder is None:
2438
  raise ValueError(
2439
  "If sending image queries as well, and they are not "
2440
  "already encoded to base64 strings, you must specify "
2441
  "the 'image_encoder' to be used."
2442
  )
2443
+
2444
+ buffer = io.BytesIO()
2445
+ image.save(buffer, format=image.format)
2446
+ image_data_url = ImageDataString(
2447
+ f"data:image/{image.format.lower()};base64,"
2448
+ + base64.b64encode(buffer.getvalue()).decode("utf-8")
2449
+ )
2450
 
2451
  message["content"].append(
2452
  {
2453
  "type": "image_url",
2454
  "image_url": {
2455
+ "url": image_data_url,
 
 
2456
  },
2457
  }
2458
  )
 
2602
  model_type: str
2603
  model_args: Dict[str, str]
2604
  batch_size: int = 1
2605
+ image_token: str = "<image>"
2606
 
2607
  _requirements_list = {
2608
  "lmms_eval": "Install llms-eval package using 'pip install lmms-eval==0.2.4'",
 
2628
  {
2629
  "batch_size": self.batch_size,
2630
  "device": self.device,
2631
+ "device_map": self.device,
2632
  },
2633
  )
2634
 
 
2767
  presence_penalty: float = 0.0
2768
  frequency_penalty: float = 0.0
2769
  repetition_penalty: float = 1.0
2770
+ temperature: float = 0.0
2771
  top_p: float = 1.0
2772
  top_k: int = -1
2773
  min_p: float = 0.0
 
2784
 
2785
  class VLLMInferenceEngine(InferenceEngine, PackageRequirementsMixin, VLLMParamsMixin):
2786
  def prepare_engine(self):
 
 
2787
  args = self.to_dict([VLLMParamsMixin])
2788
  args.pop("model")
2789
+ from vllm import LLM, SamplingParams
2790
 
2791
  self.sampling_params = SamplingParams(**args)
2792
+ self.llm = LLM(
2793
+ model=self.model,
2794
+ device="auto",
2795
+ trust_remote_code=True,
2796
+ max_num_batched_tokens=4096,
2797
+ gpu_memory_utilization=0.7,
2798
+ max_model_len=4096,
2799
+ max_num_seqs=64,
2800
+ enforce_eager=True,
2801
+ )
2802
 
2803
  def _infer(
2804
  self,
 
2810
  inputs.append(instance["source"])
2811
 
2812
  if isinstance(inputs[0], list):
2813
+ # outputs = self.llm.chat(inputs, self.sampling_params, chat_template="{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- set user_supplied_system_message = true %}\n{%- else %}\n {%- set system_message = \"\" %}\n {%- set user_supplied_system_message = false %}\n{%- endif %}\n\n{#- Find out if there are any images #}\n{% set image_ns = namespace(has_images=false) %} \n{%- for message in messages %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {%- set image_ns.has_images = true %}\n {%- endif %}\n {%- endfor %}\n{%- endfor %}\n\n{#- System message if there are no images, or if the user supplied one #}\n{%- if user_supplied_system_message or not image_ns.has_images %}\n {{- \"<|start_header_id|>system<|end_header_id|>\\n\" }}\n {%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n {%- endif %}\n {{- \"Cutting Knowledge Date: December 2023\\n\" }}\n {{- \"Today Date: \" + date_string + \"\\n\" }}\n {%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\" }}\n {%- endfor %}\n {%- endif %}\n {{- system_message }}\n {{- \"<|eot_id|>\" }}\n{%- endif %}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n' }}\n {%- if message['content'] is string %}\n {{- message['content'] }}\n {%- else %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {{- '<|image|>' }}\n {%- elif content['type'] == 'text' %}\n {{- content['text'] }}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n {{- '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n' }}\n{%- endif %}")
2814
  outputs = self.llm.chat(inputs, self.sampling_params)
2815
  else:
2816
  outputs = self.llm.generate(inputs, self.sampling_params)
 
2924
  self, dataset: List[Dict[str, Any]]
2925
  ) -> List[TextGenerationInferenceOutput]:
2926
  """Process multiple inference requests concurrently with a progress bar."""
2927
+ tasks = (
2928
  self._infer_instance(i, instance) for i, instance in enumerate(dataset)
2929
+ )
2930
  # Use tqdm_asyncio.gather to display progress bar
2931
  return await tqdm_asyncio.gather(
2932
+ *tasks, desc=f"LiteLLM Inference ({self.model})", total=len(dataset)
2933
  )
2934
 
2935
  def _infer(
 
2985
  mapping each supported API to a corresponding
2986
  model identifier string. This mapping allows consistent access to models
2987
  across different API backends.
2988
+ provider_specific_args: (Optional[Dict[str, Dict[str,str]]]) Args specific to a provider for example provider_specific_args={"watsonx": {"max_requests_per_second": 4}}
2989
  """
2990
 
2991
  label: str = "cross_provider"
2992
  provider: Optional[_supported_apis] = None
2993
+ provider_specific_args: Optional[Dict[str, Dict[str,str]]] = None
2994
 
2995
  provider_model_map: Dict[_supported_apis, Dict[str, str]] = {
2996
  "watsonx": {
 
3003
  "llama-3-2-1b-instruct": "watsonx/meta-llama/llama-3-2-1b-instruct",
3004
  "llama-3-2-11b-vision-instruct": "watsonx/meta-llama/llama-3-2-11b-vision-instruct",
3005
  "llama-3-2-90b-vision-instruct": "watsonx/meta-llama/llama-3-2-90b-vision-instruct",
3006
+ "mistral-large-instruct": "watsonx/mistralai/mistral-large",
3007
  },
3008
  "watsonx-sdk": {
3009
+ "llama-3-2-11b-vision-instruct": "meta-llama/llama-3-2-11b-vision-instruct",
3010
  "llama-3-8b-instruct": "meta-llama/llama-3-8b-instruct",
3011
  "llama-3-70b-instruct": "meta-llama/llama-3-70b-instruct",
3012
  "granite-3-8b-instruct": "ibm/granite-3-8b-instruct",
 
3150
  f"{provider} is not a configured API for CrossProviderInferenceEngine. Supported apis: {','.join(self.provider_model_map.keys())}"
3151
  )
3152
  if self.model not in self.provider_model_map[provider]:
3153
+ UnitxtWarning(
3154
+ f"{self.model} is not configured for provider {provider}. Supported models: {','.join(self.provider_model_map[provider].keys())}. Using un normalized name will make it impossible to switch to different provider on request."
3155
  )
3156
  cls = self.__class__._provider_to_base_class[provider]
3157
  args = self.to_dict([StandardAPIParamsMixin])
3158
+ args["model"] = self.provider_model_map[provider].get(self.model, self.model)
3159
+
3160
+ if self.provider_specific_args is not None:
3161
+ provider_args = self.provider_specific_args.get(provider)
3162
+ if provider_args is not None:
3163
+ args.update(provider_args)
3164
+
3165
  params = list(args.keys())
3166
  if provider in self._provider_param_renaming:
3167
  for param in params:
 
3207
  self.device = self.get_device()
3208
 
3209
  # Load model and tokenizer
3210
+ path = self.model_name
3211
+ if settings.hf_offline_models_path is not None:
3212
+ path = os.path.join(settings.hf_offline_models_path, path)
3213
+
3214
+ self.tokenizer = AutoTokenizer.from_pretrained(
3215
+ path,
3216
+ )
3217
+ self.model = AutoModelForCausalLM.from_pretrained(
3218
+ path,
3219
+ ).to(
3220
  self.device
3221
  )
3222
  # Set pad_token if it doesn't exist
llm_as_judge_chat_templates.py CHANGED
@@ -8,14 +8,19 @@ The context includes information relevant to the nature or generation of the res
8
  You will assess the quality of the response subject to an evaluation criteria.
9
  ###Context:
10
  {context_variables}
 
11
  ###Response:
12
  {response}
 
13
  ###Evaluation criteria:
14
  {criteria_description}
15
  {display_options_instruction}
 
16
  Briefly assess the quality of the response subject to the evaluation criteria.
17
  Focus on the evaluation criteria during assessment, do not provide a general assessment.
18
- Assessment: """
 
 
19
  ),
20
  "summarization": InputOutputTemplate(
21
  input_format="""Transform the following assessment into a concise summary that focuses on the key details, excluding references to the assessment itself.
@@ -41,9 +46,11 @@ You will choose the better quality response subject to the evaluation criteria.
41
 
42
  This is the context:
43
  {context_variables}
 
44
  This is the evaluation criteria:
45
  {criteria_name}
46
  {criteria_description}
 
47
  Response {option_a}:
48
  {response_a}
49
  Response {option_b}:
@@ -51,7 +58,9 @@ Response {option_b}:
51
 
52
  Keeping the evaluation criteria in mind, briefly assess which response is better.
53
  Focus on the evaluation criteria during assessment, do not provide a general assessment.
54
- Assessment: """
 
 
55
  ),
56
  "summarization": InputOutputTemplate(
57
  input_format="""Transform the following assessment into a concise summary that focuses on the key details, excluding references to the assessment itself. The summary must clearly state which response won.
 
8
  You will assess the quality of the response subject to an evaluation criteria.
9
  ###Context:
10
  {context_variables}
11
+
12
  ###Response:
13
  {response}
14
+
15
  ###Evaluation criteria:
16
  {criteria_description}
17
  {display_options_instruction}
18
+
19
  Briefly assess the quality of the response subject to the evaluation criteria.
20
  Focus on the evaluation criteria during assessment, do not provide a general assessment.
21
+ Assessment:
22
+
23
+ Lets think step by step """
24
  ),
25
  "summarization": InputOutputTemplate(
26
  input_format="""Transform the following assessment into a concise summary that focuses on the key details, excluding references to the assessment itself.
 
46
 
47
  This is the context:
48
  {context_variables}
49
+
50
  This is the evaluation criteria:
51
  {criteria_name}
52
  {criteria_description}
53
+
54
  Response {option_a}:
55
  {response_a}
56
  Response {option_b}:
 
58
 
59
  Keeping the evaluation criteria in mind, briefly assess which response is better.
60
  Focus on the evaluation criteria during assessment, do not provide a general assessment.
61
+ Assessment:
62
+
63
+ Lets think step by step """
64
  ),
65
  "summarization": InputOutputTemplate(
66
  input_format="""Transform the following assessment into a concise summary that focuses on the key details, excluding references to the assessment itself. The summary must clearly state which response won.
llm_as_judge_constants.py CHANGED
@@ -84,8 +84,6 @@ class EvaluatorNameEnum(str, Enum):
84
  GRANITE3_8B = "Granite3.0-8b"
85
  GRANITE3_1_2B = "Granite3.1-2b"
86
  GRANITE3_1_8B = "Granite3.1-8b"
87
- GRANITE_GUARDIAN_2B = "Granite Guardian 3.0 2B"
88
- GRANITE_GUARDIAN_8B = "Granite Guardian 3.0 8B"
89
 
90
 
91
  class ModelProviderEnum(str, Enum):
@@ -112,8 +110,6 @@ EVALUATOR_TO_MODEL_ID = {
112
  EvaluatorNameEnum.GRANITE3_8B: "ibm/granite-3-8b-instruct",
113
  EvaluatorNameEnum.GRANITE3_1_2B: "ibm/granite-3.1-2b-instruct",
114
  EvaluatorNameEnum.GRANITE3_1_8B: "ibm/granite-3.1-8b-instruct",
115
- EvaluatorNameEnum.GRANITE_GUARDIAN_2B: "ibm/granite-guardian-3-2b",
116
- EvaluatorNameEnum.GRANITE_GUARDIAN_8B: "ibm/granite-guardian-3-8b",
117
  }
118
 
119
  MODEL_RENAMINGS = {
@@ -189,14 +185,6 @@ EVALUATORS_METADATA = [
189
  EvaluatorNameEnum.LLAMA3_1_405B,
190
  [ModelProviderEnum.WATSONX, ModelProviderEnum.RITS],
191
  ),
192
- EvaluatorMetadata(
193
- EvaluatorNameEnum.GRANITE_GUARDIAN_2B,
194
- [ModelProviderEnum.WATSONX],
195
- ),
196
- EvaluatorMetadata(
197
- EvaluatorNameEnum.GRANITE_GUARDIAN_8B,
198
- [ModelProviderEnum.WATSONX],
199
- ),
200
  ]
201
 
202
  ################################ Direct Assessment Criterias ################################
@@ -946,6 +934,30 @@ class DirectCriteriaCatalogEnum(Enum):
946
  },
947
  )
948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
949
 
950
  DIRECT_CRITERIA = [c.value for c in DirectCriteriaCatalogEnum]
951
 
 
84
  GRANITE3_8B = "Granite3.0-8b"
85
  GRANITE3_1_2B = "Granite3.1-2b"
86
  GRANITE3_1_8B = "Granite3.1-8b"
 
 
87
 
88
 
89
  class ModelProviderEnum(str, Enum):
 
110
  EvaluatorNameEnum.GRANITE3_8B: "ibm/granite-3-8b-instruct",
111
  EvaluatorNameEnum.GRANITE3_1_2B: "ibm/granite-3.1-2b-instruct",
112
  EvaluatorNameEnum.GRANITE3_1_8B: "ibm/granite-3.1-8b-instruct",
 
 
113
  }
114
 
115
  MODEL_RENAMINGS = {
 
185
  EvaluatorNameEnum.LLAMA3_1_405B,
186
  [ModelProviderEnum.WATSONX, ModelProviderEnum.RITS],
187
  ),
 
 
 
 
 
 
 
 
188
  ]
189
 
190
  ################################ Direct Assessment Criterias ################################
 
934
  },
935
  )
936
 
937
+ CORRECTNESS_BASED_ON_GROUND_TRUTH = CriteriaWithOptions(
938
+ name="correctness_based_on_ground_truth",
939
+ description="Does the response correctly convey the same factual information as the ground truth?",
940
+ options=[
941
+ CriteriaOption(
942
+ name="correct",
943
+ description="The response conveys the same factual meaning as the ground truth. Minor rewording, synonyms, or grammatical differences are acceptable. The response is relevant to the question and does not introduce unrelated or misleading information.",
944
+ ),
945
+ CriteriaOption(
946
+ name="partially_correct",
947
+ description="The response contains some correct information but is incomplete or lacks essential details. It may also contain minor inaccuracies or extraneous information that slightly misrepresents the ground truth.",
948
+ ),
949
+ CriteriaOption(
950
+ name="incorrect",
951
+ description="The response does not align with the ground truth. It either presents incorrect, unrelated, or misleading information, or omits key details that change the intended meaning.",
952
+ ),
953
+ ],
954
+ option_map={
955
+ "correct": 1.0,
956
+ "partially_correct": 0.5,
957
+ "incorrect": 0.0,
958
+ },
959
+ )
960
+
961
 
962
  DIRECT_CRITERIA = [c.value for c in DirectCriteriaCatalogEnum]
963
 
llm_as_judge_from_template.py CHANGED
@@ -459,12 +459,12 @@ class TaskBasedLLMasJudge(LLMAsJudgeBase):
459
  judge_task_input_field, judge_task_input_field
460
  )
461
  new_val = input_instance.get(orig_task_field_name)
462
- if not new_val and isinstance(prediction, dict):
463
  new_val = prediction.get(orig_task_field_name)
464
- if new_val:
465
  instance_task_data[judge_task_input_field] = new_val
466
 
467
- if self.prediction_field and prediction:
468
  if isinstance(prediction, dict):
469
  prediction = prediction[self.prediction_field]
470
  instance_task_data[self.prediction_field] = prediction
 
459
  judge_task_input_field, judge_task_input_field
460
  )
461
  new_val = input_instance.get(orig_task_field_name)
462
+ if new_val is None and isinstance(prediction, dict):
463
  new_val = prediction.get(orig_task_field_name)
464
+ if new_val is not None:
465
  instance_task_data[judge_task_input_field] = new_val
466
 
467
+ if self.prediction_field and prediction is not None:
468
  if isinstance(prediction, dict):
469
  prediction = prediction[self.prediction_field]
470
  instance_task_data[self.prediction_field] = prediction
loaders.py CHANGED
@@ -36,12 +36,14 @@ import itertools
36
  import json
37
  import os
38
  import tempfile
 
39
  from abc import abstractmethod
40
  from pathlib import Path
41
  from tempfile import TemporaryDirectory
42
  from typing import (
43
  Any,
44
  Dict,
 
45
  Iterable,
46
  List,
47
  Literal,
@@ -53,24 +55,44 @@ from typing import (
53
 
54
  import pandas as pd
55
  import requests
56
- from datasets import DatasetDict, IterableDatasetDict
57
- from datasets import load_dataset as hf_load_dataset
 
 
 
 
 
 
58
  from huggingface_hub import HfApi
59
  from tqdm import tqdm
60
 
61
- from .dataclass import OptionalField
 
62
  from .fusion import FixedFusion
63
  from .logging_utils import get_logger
64
  from .operator import SourceOperator
65
  from .operators import Set
66
  from .settings_utils import get_settings
67
- from .stream import MultiStream
68
  from .type_utils import isoftype
69
- from .utils import LRUCache
70
 
71
  logger = get_logger()
72
  settings = get_settings()
73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
  class Loader(SourceOperator):
76
  """A base class for all loaders.
@@ -114,9 +136,11 @@ class Loader(SourceOperator):
114
  return f"{self.__class__.__name__}.loader_limit"
115
 
116
  def log_limited_loading(self):
117
- logger.info(
118
- f"\nLoading limited to {self.get_limit()} instances by setting {self.get_limiter()};"
119
- )
 
 
120
 
121
  def add_data_classification(self, multi_stream: MultiStream) -> MultiStream:
122
  if self.data_classification_policy is None:
@@ -156,19 +180,46 @@ class Loader(SourceOperator):
156
  pass
157
 
158
  def load_data(self) -> MultiStream:
159
- iterables = self.__class__._loader_cache.get(str(self), None)
160
- if iterables is None:
161
  iterables = self.load_iterables()
162
- self.__class__._loader_cache.max_size = settings.loader_cache_size
163
- self.__class__._loader_cache[str(self)] = iterables
 
 
164
  return MultiStream.from_iterables(iterables, copying=True)
165
 
166
  def process(self) -> MultiStream:
167
  self._maybe_set_classification_policy()
168
  return self.add_data_classification(self.load_data())
169
 
 
 
 
 
 
 
 
 
 
 
170
 
171
- class LoadHF(Loader):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
  """Loads datasets from the HuggingFace Hub.
173
 
174
  It supports loading with or without streaming,
@@ -213,13 +264,7 @@ class LoadHF(Loader):
213
  streaming: bool = None
214
  filtering_lambda: Optional[str] = None
215
  num_proc: Optional[int] = None
216
- requirements_list: List[str] = OptionalField(default_factory=list)
217
-
218
- def verify(self):
219
- for requirement in self.requirements_list:
220
- if requirement not in self._requirements_list:
221
- self._requirements_list.append(requirement)
222
- super().verify()
223
 
224
  def filter_load(self, dataset: DatasetDict):
225
  if not settings.allow_unverified_code:
@@ -234,12 +279,15 @@ class LoadHF(Loader):
234
  return settings.stream_hf_datasets_by_default
235
  return self.streaming
236
 
237
- def stream_dataset(self):
238
- with tempfile.TemporaryDirectory() as dir_to_be_deleted:
239
- if settings.disable_hf_datasets_cache and not self.is_streaming():
240
- cache_dir = dir_to_be_deleted
241
- else:
242
- cache_dir = None
 
 
 
243
  try:
244
  dataset = hf_load_dataset(
245
  self.path,
@@ -247,44 +295,8 @@ class LoadHF(Loader):
247
  data_dir=self.data_dir,
248
  data_files=self.data_files,
249
  revision=self.revision,
250
- streaming=self.is_streaming(),
251
- cache_dir=cache_dir,
252
- split=self.split,
253
- trust_remote_code=settings.allow_unverified_code,
254
- num_proc=self.num_proc,
255
- )
256
- except ValueError as e:
257
- if "trust_remote_code" in str(e):
258
- raise ValueError(
259
- f"{self.__class__.__name__} cannot run remote code from huggingface without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE."
260
- ) from e
261
- raise e
262
-
263
- if self.split is not None:
264
- dataset = {self.split: dataset}
265
-
266
- if self.filtering_lambda is not None:
267
- dataset = self.filter_load(dataset)
268
-
269
- return dataset
270
-
271
- def load_dataset(self):
272
- with tempfile.TemporaryDirectory() as dir_to_be_deleted:
273
- if settings.disable_hf_datasets_cache:
274
- cache_dir = dir_to_be_deleted
275
- else:
276
- cache_dir = None
277
- try:
278
- dataset = hf_load_dataset(
279
- self.path,
280
- name=self.name,
281
- data_dir=self.data_dir,
282
- data_files=self.data_files,
283
- streaming=False,
284
- keep_in_memory=True,
285
- cache_dir=cache_dir,
286
- split=self.split,
287
- trust_remote_code=settings.allow_unverified_code,
288
  num_proc=self.num_proc,
289
  )
290
  except ValueError as e:
@@ -292,11 +304,10 @@ class LoadHF(Loader):
292
  raise ValueError(
293
  f"{self.__class__.__name__} cannot run remote code from huggingface without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE."
294
  ) from e
295
-
296
- if self.split is not None:
297
- dataset = {self.split: dataset}
298
-
299
- return dataset
300
 
301
  def _maybe_set_classification_policy(self):
302
  if os.path.exists(self.path):
@@ -309,34 +320,57 @@ class LoadHF(Loader):
309
  None, # No warning when loading from public hub
310
  )
311
 
312
- def load_iterables(self) -> IterableDatasetDict:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313
  try:
314
- dataset = self.stream_dataset()
315
  except (
316
  NotImplementedError
317
  ): # streaming is not supported for zipped files so we load without streaming
318
- dataset = self.load_dataset()
319
 
320
  if self.filtering_lambda is not None:
321
  dataset = self.filter_load(dataset)
322
 
323
  limit = self.get_limit()
324
- if limit is not None:
325
- self.log_limited_loading()
326
- result = {}
327
- for split_name in dataset:
328
- try:
329
- split_limit = min(limit, len(dataset[split_name]))
330
- except:
331
- split_limit = limit
332
- result[split_name] = dataset[split_name].take(split_limit)
333
-
334
- return result
335
-
336
- return dataset
337
 
338
 
339
- class LoadCSV(Loader):
340
  """Loads data from CSV files.
341
 
342
  Supports streaming and can handle large files by loading them in chunks.
@@ -381,6 +415,7 @@ class LoadCSV(Loader):
381
  args = {}
382
  if self.file_type == "csv":
383
  args["sep"] = self.sep
 
384
  if self.compression is not None:
385
  args["compression"] = self.compression
386
  if self.lines is not None:
@@ -389,19 +424,44 @@ class LoadCSV(Loader):
389
  args["nrows"] = self.get_limit()
390
  return args
391
 
392
- def load_iterables(self):
393
- iterables = {}
394
- for split_name, file_path in self.files.items():
395
- reader = self.get_reader()
 
 
 
396
  if self.get_limit() is not None:
397
  self.log_limited_loading()
398
- iterables[split_name] = reader(file_path, **self.get_args()).to_dict(
399
- "records"
400
- )
401
- return iterables
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
402
 
403
 
404
- class LoadFromSklearn(Loader):
405
  """Loads datasets from the sklearn library.
406
 
407
  This loader does not support streaming and is intended for use with sklearn's dataset fetch functions.
@@ -437,15 +497,22 @@ class LoadFromSklearn(Loader):
437
 
438
  self.downloader = getattr(sklearn_datatasets, f"fetch_{self.dataset_name}")
439
 
440
- def load_iterables(self):
441
- with TemporaryDirectory() as temp_directory:
442
- for split in self.splits:
443
- split_data = self.downloader(subset=split)
444
- targets = [split_data["target_names"][t] for t in split_data["target"]]
445
- df = pd.DataFrame([split_data["data"], targets]).T
446
- df.columns = ["data", "target"]
447
- df.to_csv(os.path.join(temp_directory, f"{split}.csv"), index=None)
448
- return hf_load_dataset(temp_directory, streaming=False)
 
 
 
 
 
 
 
449
 
450
 
451
  class MissingKaggleCredentialsError(ValueError):
@@ -683,7 +750,7 @@ class LoadFromIBMCloud(Loader):
683
  return dataset
684
 
685
 
686
- class MultipleSourceLoader(Loader):
687
  """Allows loading data from multiple sources, potentially mixing different types of loaders.
688
 
689
  Args:
@@ -707,20 +774,23 @@ class MultipleSourceLoader(Loader):
707
 
708
  sources: List[Loader]
709
 
710
- # MultipleSourceLoaders uses the the data classification from source loaders,
711
- # so only need to add it, if explicitly requested to override.
712
  def add_data_classification(self, multi_stream: MultiStream) -> MultiStream:
713
  if self.data_classification_policy is None:
714
  return multi_stream
715
  return super().add_data_classification(multi_stream)
716
 
717
- def load_iterables(self):
718
- pass
 
 
 
719
 
720
- def load_data(self):
721
- return FixedFusion(
722
- subsets=self.sources, max_instances_per_subset=self.get_limit()
723
- ).process()
 
 
724
 
725
 
726
  class LoadFromDictionary(Loader):
@@ -775,11 +845,8 @@ class LoadFromDictionary(Loader):
775
  return self.data
776
 
777
 
778
- class LoadFromHFSpace(LoadHF):
779
- """Used to load data from HuggingFace Spaces.
780
-
781
- Loaders firstly tries to download all files specified in the 'data_files' parameter
782
- from the given space and then reads them as a HuggingFace Dataset.
783
 
784
  Args:
785
  space_name (str):
@@ -800,22 +867,6 @@ class LoadFromHFSpace(LoadHF):
800
  token_env (str, optional):
801
  Key of an env variable which value will be used for
802
  authentication when accessing the HuggingFace Space - if necessary.
803
-
804
- Example:
805
- Loading from a HuggingFace Space
806
-
807
- .. code-block:: python
808
-
809
- loader = LoadFromHFSpace(
810
- space_name="lmsys/mt-bench",
811
- data_files={
812
- "train": [
813
- "data/mt_bench/model_answer/gpt-3.5-turbo.jsonl",
814
- "data/mt_bench/model_answer/gpt-4.jsonl",
815
- ],
816
- "test": "data/mt_bench/model_answer/tulu-30b.jsonl",
817
- },
818
- )
819
  """
820
 
821
  space_name: str
@@ -840,123 +891,78 @@ class LoadFromHFSpace(LoadHF):
840
  return token
841
  return self.use_token
842
 
843
- def _download_file_from_space(self, filename: str) -> str:
844
- from huggingface_hub import hf_hub_download
845
- from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError
 
846
 
847
- token = self._get_token()
848
 
849
- try:
850
- file_path = hf_hub_download(
851
- repo_id=self.space_name,
852
- filename=filename,
853
- repo_type="space",
854
- token=token,
855
- revision=self.revision,
856
- local_dir=self.path,
857
  )
858
- except EntryNotFoundError as e:
859
- raise ValueError(
860
- f"The file '{filename}' was not found in the space '{self.space_name}'. "
861
- f"Please check if the filename is correct, or if it exists in that "
862
- f"Huggingface space."
863
- ) from e
864
- except RepositoryNotFoundError as e:
865
- raise ValueError(
866
- f"The Huggingface space '{self.space_name}' was not found. "
867
- f"Please check if the name is correct and you have access to the space."
868
- ) from e
869
 
870
- return file_path
 
 
 
871
 
872
- def _download_data(self) -> str:
873
- if isinstance(self.data_files, str):
874
- data_files = [self.data_files]
875
- elif isinstance(self.data_files, Mapping):
876
- data_files = list(self.data_files.values())
877
- else:
878
- data_files = self.data_files
879
 
880
- dir_paths_list = []
881
- for files in data_files:
882
- if isinstance(files, str):
883
- files = [files]
884
 
885
- paths = [self._download_file_from_space(file) for file in files]
886
- dir_paths = [
887
- path.replace(file_url, "") for path, file_url in zip(paths, files)
888
- ]
889
- dir_paths_list.extend(dir_paths)
890
 
891
- # All files - within the same space - are downloaded into the same base directory:
892
- assert len(set(dir_paths_list)) == 1
893
 
894
- return f"{dir_paths_list.pop()}"
 
 
895
 
896
- @staticmethod
897
- def _is_wildcard(path: str) -> bool:
898
- wildcard_characters = ["*", "?", "[", "]"]
899
- return any(char in path for char in wildcard_characters)
900
 
901
- def _get_file_list_from_wildcard_path(
902
- self, pattern: str, repo_files: List
903
- ) -> List[str]:
904
- if self._is_wildcard(pattern):
905
- return fnmatch.filter(repo_files, pattern)
906
- return [pattern]
907
-
908
- def _map_wildcard_path_to_full_paths(self):
909
- api = HfApi()
910
- repo_files = api.list_repo_files(
911
- self.space_name, repo_type="space", revision=self.revision
912
- )
913
- if isinstance(self.data_files, str):
914
- self.data_files = self._get_file_list_from_wildcard_path(
915
- self.data_files, repo_files
916
- )
917
- elif isinstance(self.data_files, Mapping):
918
- new_mapping = {}
919
- for k, v in self.data_files.items():
920
- if isinstance(v, list):
921
- assert all(isinstance(s, str) for s in v)
922
- new_mapping[k] = [
923
- file
924
- for p in v
925
- for file in self._get_file_list_from_wildcard_path(
926
- p, repo_files
927
- )
928
- ]
929
- elif isinstance(v, str):
930
- new_mapping[k] = self._get_file_list_from_wildcard_path(
931
- v, repo_files
932
- )
933
- else:
934
- raise NotImplementedError(
935
- f"Loader does not support input 'data_files' of type Mapping[{type(v)}]"
936
  )
 
 
 
 
 
 
 
 
 
 
 
937
 
938
- self.data_files = new_mapping
939
- elif isinstance(self.data_files, list):
940
- assert all(isinstance(s, str) for s in self.data_files)
941
- self.data_files = [
942
- file
943
- for p in self.data_files
944
- for file in self._get_file_list_from_wildcard_path(p, repo_files)
945
- ]
946
- else:
947
- raise NotImplementedError(
948
- f"Loader does not support input 'data_files' of type {type(self.data_files)}"
949
- )
950
-
951
- def _maybe_set_classification_policy(self):
952
- self.set_default_data_classification(
953
- ["public"], "when loading from Huggingface spaces"
954
- )
955
 
956
- def load_data(self):
957
- self._map_wildcard_path_to_full_paths()
958
- self.path = self._download_data()
959
- return super().load_data()
960
 
961
 
962
  class LoadFromAPI(Loader):
@@ -985,6 +991,9 @@ class LoadFromAPI(Loader):
985
  Defaults to "data".
986
  method (str, optional):
987
  The HTTP method to use for API requests. Defaults to "GET".
 
 
 
988
  """
989
 
990
  urls: Dict[str, str]
@@ -995,6 +1004,7 @@ class LoadFromAPI(Loader):
995
  headers: Optional[Dict[str, Any]] = None
996
  data_field: str = "data"
997
  method: str = "GET"
 
998
 
999
  # class level shared cache:
1000
  _loader_cache = LRUCache(max_size=settings.loader_cache_size)
@@ -1026,13 +1036,13 @@ class LoadFromAPI(Loader):
1026
  response = requests.get(
1027
  url,
1028
  headers=base_headers,
1029
- verify=True,
1030
  )
1031
  elif self.method == "POST":
1032
  response = requests.post(
1033
  url,
1034
  headers=base_headers,
1035
- verify=True,
1036
  json={},
1037
  )
1038
  else:
 
36
  import json
37
  import os
38
  import tempfile
39
+ import time
40
  from abc import abstractmethod
41
  from pathlib import Path
42
  from tempfile import TemporaryDirectory
43
  from typing import (
44
  Any,
45
  Dict,
46
+ Generator,
47
  Iterable,
48
  List,
49
  Literal,
 
55
 
56
  import pandas as pd
57
  import requests
58
+ from datasets import (
59
+ DatasetDict,
60
+ DownloadConfig,
61
+ IterableDataset,
62
+ IterableDatasetDict,
63
+ get_dataset_split_names,
64
+ )
65
+ from datasets import load_dataset as _hf_load_dataset
66
  from huggingface_hub import HfApi
67
  from tqdm import tqdm
68
 
69
+ from .dataclass import NonPositionalField
70
+ from .error_utils import UnitxtError, UnitxtWarning
71
  from .fusion import FixedFusion
72
  from .logging_utils import get_logger
73
  from .operator import SourceOperator
74
  from .operators import Set
75
  from .settings_utils import get_settings
76
+ from .stream import DynamicStream, MultiStream
77
  from .type_utils import isoftype
78
+ from .utils import LRUCache, recursive_copy
79
 
80
  logger = get_logger()
81
  settings = get_settings()
82
 
83
+ def hf_load_dataset(path: str, *args, **kwargs):
84
+ if settings.hf_offline_datasets_path is not None:
85
+ path = os.path.join(settings.hf_offline_datasets_path, path)
86
+ return _hf_load_dataset(
87
+ path,
88
+ *args, **kwargs,
89
+ download_config=DownloadConfig(
90
+ max_retries=settings.loaders_max_retries,
91
+ ),
92
+ verification_mode="no_checks",
93
+ trust_remote_code=settings.allow_unverified_code,
94
+ download_mode= "force_redownload" if settings.disable_hf_datasets_cache else "reuse_dataset_if_exists"
95
+ )
96
 
97
  class Loader(SourceOperator):
98
  """A base class for all loaders.
 
136
  return f"{self.__class__.__name__}.loader_limit"
137
 
138
  def log_limited_loading(self):
139
+ if not hasattr(self, "_already_logged_limited_loading") or not self._already_logged_limited_loading:
140
+ self._already_logged_limited_loading = True
141
+ logger.info(
142
+ f"\nLoading limited to {self.get_limit()} instances by setting {self.get_limiter()};"
143
+ )
144
 
145
  def add_data_classification(self, multi_stream: MultiStream) -> MultiStream:
146
  if self.data_classification_policy is None:
 
180
  pass
181
 
182
  def load_data(self) -> MultiStream:
183
+ try:
 
184
  iterables = self.load_iterables()
185
+ except Exception as e:
186
+ raise UnitxtError(f"Error in loader:\n{self}") from e
187
+ if isoftype(iterables, MultiStream):
188
+ return iterables
189
  return MultiStream.from_iterables(iterables, copying=True)
190
 
191
  def process(self) -> MultiStream:
192
  self._maybe_set_classification_policy()
193
  return self.add_data_classification(self.load_data())
194
 
195
+ def get_splits(self):
196
+ return list(self().keys())
197
+
198
+
199
+ class LazyLoader(Loader):
200
+ split: Optional[str] = NonPositionalField(default=None)
201
+
202
+ @abstractmethod
203
+ def get_splits(self) -> List[str]:
204
+ pass
205
 
206
+ @abstractmethod
207
+ def split_generator(self, split: str) -> Generator:
208
+ pass
209
+
210
+ def load_iterables(self) -> Union[Dict[str, DynamicStream], IterableDatasetDict]:
211
+ if self.split is not None:
212
+ splits = [self.split]
213
+ else:
214
+ splits = self.get_splits()
215
+
216
+ return MultiStream({
217
+ split: DynamicStream(self.split_generator, gen_kwargs={"split": split})
218
+ for split in splits
219
+ })
220
+
221
+
222
+ class LoadHF(LazyLoader):
223
  """Loads datasets from the HuggingFace Hub.
224
 
225
  It supports loading with or without streaming,
 
264
  streaming: bool = None
265
  filtering_lambda: Optional[str] = None
266
  num_proc: Optional[int] = None
267
+ splits: Optional[List[str]] = None
 
 
 
 
 
 
268
 
269
  def filter_load(self, dataset: DatasetDict):
270
  if not settings.allow_unverified_code:
 
279
  return settings.stream_hf_datasets_by_default
280
  return self.streaming
281
 
282
+ # returns Dict when split names are not known in advance, and just the the single split dataset - if known
283
+ def load_dataset(
284
+ self, split: str, streaming=None, disable_memory_caching=False
285
+ ) -> Union[IterableDatasetDict, IterableDataset]:
286
+ dataset_id = str(self) + "_" + str(split)
287
+ dataset = self.__class__._loader_cache.get(dataset_id, None)
288
+ if dataset is None:
289
+ if streaming is None:
290
+ streaming = self.is_streaming()
291
  try:
292
  dataset = hf_load_dataset(
293
  self.path,
 
295
  data_dir=self.data_dir,
296
  data_files=self.data_files,
297
  revision=self.revision,
298
+ streaming=streaming,
299
+ split=split,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300
  num_proc=self.num_proc,
301
  )
302
  except ValueError as e:
 
304
  raise ValueError(
305
  f"{self.__class__.__name__} cannot run remote code from huggingface without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE."
306
  ) from e
307
+ self.__class__._loader_cache.max_size = settings.loader_cache_size
308
+ if not disable_memory_caching:
309
+ self.__class__._loader_cache[dataset_id] = dataset
310
+ return self.__class__._loader_cache[dataset_id]
 
311
 
312
  def _maybe_set_classification_policy(self):
313
  if os.path.exists(self.path):
 
320
  None, # No warning when loading from public hub
321
  )
322
 
323
+ def get_splits(self):
324
+ if self.splits is not None:
325
+ return self.splits
326
+ try:
327
+ return get_dataset_split_names(
328
+ path=self.path,
329
+ config_name=self.name,
330
+ trust_remote_code=settings.allow_unverified_code,
331
+ download_config=DownloadConfig(
332
+ max_retries=settings.loaders_max_retries,
333
+ extract_on_the_fly=True,
334
+ ),
335
+ )
336
+ except:
337
+ UnitxtWarning(
338
+ f'LoadHF(path="{self.path}", name="{self.name}") could not retrieve split names without loading the dataset. Consider defining "splits" in the LoadHF definition to improve loading time.'
339
+ )
340
+ try:
341
+ dataset = self.load_dataset(
342
+ split=None, disable_memory_caching=True, streaming=True
343
+ )
344
+ except (
345
+ NotImplementedError
346
+ ): # streaming is not supported for zipped files so we load without streaming
347
+ dataset = self.load_dataset(split=None, streaming=False)
348
+ return list(dataset.keys())
349
+
350
+ def split_generator(self, split: str) -> Generator:
351
+ if self.get_limit() is not None:
352
+ self.log_limited_loading()
353
  try:
354
+ dataset = self.load_dataset(split=split)
355
  except (
356
  NotImplementedError
357
  ): # streaming is not supported for zipped files so we load without streaming
358
+ dataset = self.load_dataset(split=split, streaming=False)
359
 
360
  if self.filtering_lambda is not None:
361
  dataset = self.filter_load(dataset)
362
 
363
  limit = self.get_limit()
364
+ if limit is None:
365
+ yield from dataset
366
+ else:
367
+ for i, instance in enumerate(dataset):
368
+ yield instance
369
+ if i + 1 >= limit:
370
+ break
 
 
 
 
 
 
371
 
372
 
373
+ class LoadCSV(LazyLoader):
374
  """Loads data from CSV files.
375
 
376
  Supports streaming and can handle large files by loading them in chunks.
 
415
  args = {}
416
  if self.file_type == "csv":
417
  args["sep"] = self.sep
418
+ args["low_memory"] = self.streaming
419
  if self.compression is not None:
420
  args["compression"] = self.compression
421
  if self.lines is not None:
 
424
  args["nrows"] = self.get_limit()
425
  return args
426
 
427
+ def get_splits(self) -> List[str]:
428
+ return list(self.files.keys())
429
+
430
+ def split_generator(self, split: str) -> Generator:
431
+ dataset_id = str(self) + "_" + split
432
+ dataset = self.__class__._loader_cache.get(dataset_id, None)
433
+ if dataset is None:
434
  if self.get_limit() is not None:
435
  self.log_limited_loading()
436
+ for attempt in range(settings.loaders_max_retries):
437
+ try:
438
+ reader = self.get_reader()
439
+ if self.get_limit() is not None:
440
+ self.log_limited_loading()
441
+
442
+ try:
443
+ dataset = reader(self.files[split], **self.get_args()).to_dict(
444
+ "records"
445
+ )
446
+ except ValueError:
447
+ import fsspec
448
+
449
+ with fsspec.open(self.files[split], mode="rt") as f:
450
+ dataset = reader(f, **self.get_args()).to_dict("records")
451
+ except Exception as e:
452
+ logger.debug(f"Attempt csv load {attempt + 1} failed: {e}")
453
+ if attempt < settings.loaders_max_retries - 1:
454
+ time.sleep(2)
455
+ else:
456
+ raise e
457
+ self.__class__._loader_cache.max_size = settings.loader_cache_size
458
+ self.__class__._loader_cache[dataset_id] = dataset
459
+
460
+ for instance in self.__class__._loader_cache[dataset_id]:
461
+ yield recursive_copy(instance)
462
 
463
 
464
+ class LoadFromSklearn(LazyLoader):
465
  """Loads datasets from the sklearn library.
466
 
467
  This loader does not support streaming and is intended for use with sklearn's dataset fetch functions.
 
497
 
498
  self.downloader = getattr(sklearn_datatasets, f"fetch_{self.dataset_name}")
499
 
500
+ def get_splits(self):
501
+ return self.splits
502
+
503
+ def split_generator(self, split: str) -> Generator:
504
+ dataset_id = str(self) + "_" + split
505
+ dataset = self.__class__._loader_cache.get(dataset_id, None)
506
+ if dataset is None:
507
+ split_data = self.downloader(subset=split)
508
+ targets = [split_data["target_names"][t] for t in split_data["target"]]
509
+ df = pd.DataFrame([split_data["data"], targets]).T
510
+ df.columns = ["data", "target"]
511
+ dataset = df.to_dict("records")
512
+ self.__class__._loader_cache.max_size = settings.loader_cache_size
513
+ self.__class__._loader_cache[dataset_id] = dataset
514
+ for instance in self.__class__._loader_cache[dataset_id]:
515
+ yield recursive_copy(instance)
516
 
517
 
518
  class MissingKaggleCredentialsError(ValueError):
 
750
  return dataset
751
 
752
 
753
+ class MultipleSourceLoader(LazyLoader):
754
  """Allows loading data from multiple sources, potentially mixing different types of loaders.
755
 
756
  Args:
 
774
 
775
  sources: List[Loader]
776
 
 
 
777
  def add_data_classification(self, multi_stream: MultiStream) -> MultiStream:
778
  if self.data_classification_policy is None:
779
  return multi_stream
780
  return super().add_data_classification(multi_stream)
781
 
782
+ def get_splits(self):
783
+ splits = []
784
+ for loader in self.sources:
785
+ splits.extend(loader.get_splits())
786
+ return list(set(splits))
787
 
788
+ def split_generator(self, split: str) -> Generator[Any, None, None]:
789
+ yield from FixedFusion(
790
+ subsets=self.sources,
791
+ max_instances_per_subset=self.get_limit(),
792
+ include_splits=[split],
793
+ )()[split]
794
 
795
 
796
  class LoadFromDictionary(Loader):
 
845
  return self.data
846
 
847
 
848
+ class LoadFromHFSpace(LazyLoader):
849
+ """Used to load data from HuggingFace Spaces lazily.
 
 
 
850
 
851
  Args:
852
  space_name (str):
 
867
  token_env (str, optional):
868
  Key of an env variable which value will be used for
869
  authentication when accessing the HuggingFace Space - if necessary.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
870
  """
871
 
872
  space_name: str
 
891
  return token
892
  return self.use_token
893
 
894
+ @staticmethod
895
+ def _is_wildcard(path: str) -> bool:
896
+ wildcard_characters = ["*", "?", "[", "]"]
897
+ return any(char in path for char in wildcard_characters)
898
 
 
899
 
900
+
901
+ def _get_repo_files(self):
902
+ if not hasattr(self, "_repo_files") or self._repo_files is None:
903
+ api = HfApi()
904
+ self._repo_files = api.list_repo_files(
905
+ self.space_name, repo_type="space", revision=self.revision
 
 
906
  )
907
+ return self._repo_files
 
 
 
 
 
 
 
 
 
 
908
 
909
+ def _get_sub_files(self, file: str) -> List[str]:
910
+ if self._is_wildcard(file):
911
+ return fnmatch.filter(self._get_repo_files(), file)
912
+ return [file]
913
 
 
 
 
 
 
 
 
914
 
915
+ def get_splits(self) -> List[str]:
916
+ if isinstance(self.data_files, Mapping):
917
+ return list(self.data_files.keys())
918
+ return ["train"] # Default to 'train' if not specified
919
 
920
+ def split_generator(self, split: str) -> Generator:
921
+ from huggingface_hub import hf_hub_download
922
+ from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError
 
 
923
 
924
+ token = self._get_token()
925
+ files = self.data_files.get(split, self.data_files) if isinstance(self.data_files, Mapping) else self.data_files
926
 
927
+ if isinstance(files, str):
928
+ files = [files]
929
+ limit = self.get_limit()
930
 
931
+ if limit is not None:
932
+ total = 0
933
+ self.log_limited_loading()
 
934
 
935
+ for file in files:
936
+ for sub_file in self._get_sub_files(file):
937
+ try:
938
+ file_path = hf_hub_download(
939
+ repo_id=self.space_name,
940
+ filename=sub_file,
941
+ repo_type="space",
942
+ token=token,
943
+ revision=self.revision,
944
+ local_dir=self.path,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
945
  )
946
+ except EntryNotFoundError as e:
947
+ raise ValueError(
948
+ f"The file '{file}' was not found in the space '{self.space_name}'. "
949
+ f"Please check if the filename is correct, or if it exists in that "
950
+ f"Huggingface space."
951
+ ) from e
952
+ except RepositoryNotFoundError as e:
953
+ raise ValueError(
954
+ f"The Huggingface space '{self.space_name}' was not found. "
955
+ f"Please check if the name is correct and you have access to the space."
956
+ ) from e
957
 
958
+ with open(file_path, encoding="utf-8") as f:
959
+ for line in f:
960
+ yield json.loads(line.strip())
961
+ if limit is not None:
962
+ total += 1
963
+ if total >= limit:
964
+ return
 
 
 
 
 
 
 
 
 
 
965
 
 
 
 
 
966
 
967
 
968
  class LoadFromAPI(Loader):
 
991
  Defaults to "data".
992
  method (str, optional):
993
  The HTTP method to use for API requests. Defaults to "GET".
994
+ verify_cert (bool):
995
+ Apply verification of the SSL certificate
996
+ Defaults as True
997
  """
998
 
999
  urls: Dict[str, str]
 
1004
  headers: Optional[Dict[str, Any]] = None
1005
  data_field: str = "data"
1006
  method: str = "GET"
1007
+ verify_cert: bool = True
1008
 
1009
  # class level shared cache:
1010
  _loader_cache = LRUCache(max_size=settings.loader_cache_size)
 
1036
  response = requests.get(
1037
  url,
1038
  headers=base_headers,
1039
+ verify=self.verify_cert,
1040
  )
1041
  elif self.method == "POST":
1042
  response = requests.post(
1043
  url,
1044
  headers=base_headers,
1045
+ verify=self.verify_cert,
1046
  json={},
1047
  )
1048
  else:
metric.py CHANGED
@@ -13,7 +13,6 @@ from .collections import __file__ as _
13
  from .collections_operators import __file__ as _
14
  from .dataclass import __file__ as _
15
  from .dataset_utils import __file__ as _
16
- from .db_utils import __file__ as _
17
  from .deprecation_utils import __file__ as _
18
  from .dialog_operators import __file__ as _
19
  from .dict_utils import __file__ as _
@@ -55,6 +54,7 @@ from .settings_utils import get_constants
55
  from .span_lableing_operators import __file__ as _
56
  from .split_utils import __file__ as _
57
  from .splitters import __file__ as _
 
58
  from .standard import __file__ as _
59
  from .stream import __file__ as _
60
  from .stream_operators import __file__ as _
 
13
  from .collections_operators import __file__ as _
14
  from .dataclass import __file__ as _
15
  from .dataset_utils import __file__ as _
 
16
  from .deprecation_utils import __file__ as _
17
  from .dialog_operators import __file__ as _
18
  from .dict_utils import __file__ as _
 
54
  from .span_lableing_operators import __file__ as _
55
  from .split_utils import __file__ as _
56
  from .splitters import __file__ as _
57
+ from .sql_utils import __file__ as _
58
  from .standard import __file__ as _
59
  from .stream import __file__ as _
60
  from .stream_operators import __file__ as _
metrics.py CHANGED
@@ -1,4 +1,3 @@
1
- FINQA_HASH = "42430b8613082bb4b85d49210284135d"
2
  import ast
3
  import json
4
  import math
@@ -10,14 +9,27 @@ import warnings
10
  from abc import ABC, abstractmethod
11
  from collections import Counter, defaultdict
12
  from dataclasses import field
 
13
  from functools import lru_cache
14
- from typing import Any, Dict, Generator, List, Literal, Optional, Tuple, Union
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  import evaluate
17
  import numpy
18
  import numpy as np
19
  import pandas as pd
20
  import requests
 
21
  from scipy.stats import bootstrap
22
  from scipy.stats._warnings_errors import DegenerateDataWarning
23
 
@@ -29,12 +41,12 @@ from .dataclass import (
29
  NonPositionalField,
30
  OptionalField,
31
  )
32
- from .db_utils import get_db_connector
33
  from .deprecation_utils import deprecation
34
- from .error_utils import Documentation, UnitxtWarning
35
  from .inference import (
36
  HFPipelineBasedInferenceEngine,
37
  InferenceEngine,
 
38
  TorchDeviceMixin,
39
  WMLInferenceEngineGeneration,
40
  )
@@ -51,15 +63,33 @@ from .operator import (
51
  from .operators import ArtifactFetcherMixin, Copy, Set
52
  from .random_utils import get_seed
53
  from .settings_utils import get_settings
 
54
  from .stream import MultiStream, Stream
55
  from .type_utils import Type, isoftype, parse_type_string, to_type_string
56
  from .utils import deep_copy, recursive_copy
57
 
 
 
58
  logger = get_logger()
59
  settings = get_settings()
60
 
61
  warnings.filterwarnings("ignore", category=DegenerateDataWarning)
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
  class MetricsList(ListCollection):
65
  def verify(self):
@@ -378,8 +408,6 @@ class ConfidenceIntervalMixin(Artifact):
378
  return result
379
 
380
 
381
- from typing import Generic, TypeVar
382
-
383
  IntermediateType = TypeVar("IntermediateType")
384
  PredictionType = TypeVar("PredictionType")
385
 
@@ -1779,7 +1807,7 @@ class ExactMatchMM(InstanceMetric):
1779
  @staticmethod
1780
  @lru_cache(maxsize=10000)
1781
  def exact_match(pred, gt):
1782
- """Brought from MMStar"""
1783
  answer = gt.lower().strip().replace("\n", " ")
1784
  predict = pred.lower().strip().replace("\n", " ")
1785
  try:
@@ -1894,12 +1922,11 @@ class RelaxedCorrectness(GlobalMetric):
1894
  return_dict["relaxed_human_split"].append(score)
1895
  else:
1896
  return_dict["relaxed_augmented_split"].append(score)
1897
- return_dict = {
1898
  key: sum(value) / len(value)
1899
  for key, value in return_dict.items()
1900
  if len(value) > 0
1901
  }
1902
- return return_dict
1903
 
1904
  @staticmethod
1905
  def _to_float(text: str):
@@ -2010,15 +2037,12 @@ class WebsrcSquadF1(GlobalMetric):
2010
  string = string.lower()
2011
 
2012
  # strip leading and trailing whitespaces
2013
- string = string.strip()
2014
-
2015
- return string
2016
 
2017
  def _tokenize(text):
2018
  # Regex pattern to match words and isolate punctuation
2019
  pattern = r"\w+|[^\w\s]"
2020
- tokens = re.findall(pattern, text)
2021
- return tokens
2022
 
2023
  def _compute_f1(sa, sb):
2024
  sa = _normalize_str(sa)
@@ -2036,8 +2060,7 @@ class WebsrcSquadF1(GlobalMetric):
2036
  comm = sa.intersection(sb)
2037
  prec = len(comm) / len(sb)
2038
  rec = len(comm) / len(sa)
2039
- f1 = 2 * prec * rec / (prec + rec) if prec + rec > 0 else 0
2040
- return f1
2041
 
2042
  judge_list = []
2043
  for sample in samples:
@@ -2302,9 +2325,7 @@ class HuggingfaceMetric(GlobalMetric):
2302
  def prepare(self):
2303
  super().prepare()
2304
 
2305
- self.metric = evaluate.load(
2306
- self.hf_metric_name, experiment_id=str(uuid.uuid4())
2307
- )
2308
 
2309
  def compute(
2310
  self,
@@ -2379,9 +2400,7 @@ class HuggingfaceBulkMetric(BulkInstanceMetric):
2379
  def prepare(self):
2380
  super().prepare()
2381
 
2382
- self.metric = evaluate.load(
2383
- self.hf_metric_name, experiment_id=str(uuid.uuid4())
2384
- )
2385
 
2386
  def compute(
2387
  self,
@@ -2426,9 +2445,7 @@ class HuggingfaceInstanceMetric(InstanceMetric):
2426
  def prepare(self):
2427
  super().prepare()
2428
 
2429
- self.metric = evaluate.load(
2430
- self.hf_metric_name, experiment_id=str(uuid.uuid4())
2431
- )
2432
 
2433
  def compute(self, references: List[Any], prediction: Any, task_data: Dict) -> dict:
2434
  # invokes module.compute, which invokes, e.g., meteor's _compute
@@ -2463,6 +2480,8 @@ class MeteorFast(ReductionInstanceMetric[str, Dict[str, float]]):
2463
 
2464
  nltk.download("wordnet", quiet=True)
2465
  nltk.download("omw-1.4", quiet=True)
 
 
2466
  from nltk import word_tokenize
2467
  from nltk.translate import meteor_score
2468
 
@@ -2530,7 +2549,7 @@ class F1(GlobalMetric):
2530
  def prepare(self):
2531
  super().prepare()
2532
 
2533
- self._metric = evaluate.load(self.metric, experiment_id=str(uuid.uuid4()))
2534
 
2535
  def get_str_id(self, str):
2536
  if str not in self.str_to_id:
@@ -2807,8 +2826,8 @@ class F1MultiLabel(GlobalMetric, PackageRequirementsMixin):
2807
  def prepare(self):
2808
  super().prepare()
2809
 
2810
- self._metric = evaluate.load(
2811
- self.metric, "multilabel", experiment_id=str(uuid.uuid4())
2812
  )
2813
 
2814
  def add_str_to_id(self, str):
@@ -3443,13 +3462,16 @@ class BertScore(MapReduceMetric[str, Dict[str, float]], TorchDeviceMixin):
3443
 
3444
  def prepare(self):
3445
  super().prepare()
3446
- from evaluate import load
3447
-
3448
- self.bertscore = load("bertscore", experiment_id=str(uuid.uuid4()))
3449
 
3450
  def map_stream(
3451
  self, evaluation_inputs_stream: Generator[EvaluationInput[str], None, None]
3452
  ):
 
 
 
 
 
3453
  predictions = []
3454
  references = []
3455
  for prediction, reference, _ in evaluation_inputs_stream:
@@ -3495,17 +3517,17 @@ class SentenceBert(MapReduceMetric[str, float], TorchDeviceMixin):
3495
 
3496
  def prepare(self):
3497
  super().prepare()
3498
- from sentence_transformers import SentenceTransformer
3499
-
3500
- self.model = SentenceTransformer(self.model_name, device=self.get_device_id())
3501
 
3502
  def map_stream(
3503
  self, evaluation_inputs_stream: Generator[EvaluationInput, None, None]
3504
  ):
3505
- # if settings.mock_inference_mode:
3506
- # return [0.5 for _ in evaluation_inputs_stream]
3507
 
3508
- from sentence_transformers import util
 
 
 
3509
 
3510
  scores = []
3511
 
@@ -3553,15 +3575,23 @@ class Reward(MapReduceMetric[str, float], TorchDeviceMixin):
3553
 
3554
  def prepare(self):
3555
  super().prepare()
3556
- from transformers import pipeline
3557
-
3558
- self.model = pipeline(
3559
- "text-classification", model=self.model_name, device=self.get_device()
3560
- )
3561
 
3562
  def map_stream(
3563
  self, evaluation_inputs_stream: Generator[EvaluationInput[str], None, None]
3564
  ):
 
 
 
 
 
 
 
 
 
 
 
 
3565
  inputs = []
3566
  for prediction, references, _ in evaluation_inputs_stream:
3567
  inputs.append({"text": references[0], "text_pair": prediction})
@@ -3591,8 +3621,11 @@ class Detector(BulkInstanceMetric):
3591
  from transformers import pipeline
3592
 
3593
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
 
 
3594
  self.pipe = pipeline(
3595
- "text-classification", model=self.model_name, device=device
3596
  )
3597
 
3598
  def compute(
@@ -3624,10 +3657,14 @@ class RegardMetric(GlobalMetric):
3624
  super().prepare()
3625
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
3626
 
 
 
 
3627
  self.regard_model = AutoModelForSequenceClassification.from_pretrained(
3628
- self.model_name
 
3629
  )
3630
- self.regard_tokenizer = AutoTokenizer.from_pretrained(self.model_name)
3631
 
3632
  def _evaluate(self, predictions, inputs):
3633
  import torch
@@ -3810,10 +3847,14 @@ class SafetyMetric(MapReduceMetric[str, Tuple[float, str]], TorchDeviceMixin):
3810
  super().prepare()
3811
  from transformers import pipeline
3812
 
 
 
 
 
3813
  if not settings.mock_inference_mode:
3814
  self.model = pipeline(
3815
  "text-classification",
3816
- model=self.reward_name,
3817
  device=self.get_device(),
3818
  )
3819
 
@@ -3997,7 +4038,11 @@ class Perplexity(BulkInstanceMetric):
3997
  if self.lm is None:
3998
  from transformers import AutoConfig
3999
 
4000
- config = AutoConfig.from_pretrained(self.model_name, trust_remote_code=True)
 
 
 
 
4001
  self.lm = (
4002
  self.EncoderDecoderLM(
4003
  model_name=self.model_name, single_token_mode=self.single_token_mode
@@ -4075,10 +4120,13 @@ class Perplexity(BulkInstanceMetric):
4075
 
4076
  self.model_name = model_name
4077
  self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
 
 
4078
  self.model = (
4079
- self.model_class().from_pretrained(self.model_name).to(self.device)
4080
  )
4081
- self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
4082
  if self.tokenizer.pad_token_id is None:
4083
  self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
4084
  self.single_token_mode = single_token_mode
@@ -4243,7 +4291,7 @@ class FaithfulnessHHEM(BulkInstanceMetric):
4243
  batch_size: int = 2
4244
  model_name: str = "vectara/hallucination_evaluation_model"
4245
  prediction_type = str
4246
- single_reference_per_prediction = True
4247
  max_context_words = 4096
4248
  reduction_map = {"mean": [main_score]}
4249
 
@@ -4260,9 +4308,11 @@ class FaithfulnessHHEM(BulkInstanceMetric):
4260
  else:
4261
  device = "cpu"
4262
  from transformers import AutoModelForSequenceClassification
4263
-
 
 
4264
  self.model = AutoModelForSequenceClassification.from_pretrained(
4265
- self.model_name, trust_remote_code=True
4266
  ).to(device)
4267
 
4268
  def compute(
@@ -4275,7 +4325,8 @@ class FaithfulnessHHEM(BulkInstanceMetric):
4275
 
4276
  # treat the references as the contexts and the predictions as answers
4277
  # concat references
4278
- contexts = ["\n".join(refs) for refs in references]
 
4279
  contexts = [" ".join(c.split(" ")[: self.max_context_words]) for c in contexts]
4280
  answers = predictions
4281
 
@@ -5620,9 +5671,9 @@ class MetricsEnsemble(InstanceMetric, ArtifactFetcherMixin):
5620
 
5621
  def create_ensemble_scores(self, instance):
5622
  score = self.ensemble(instance)
5623
- instance[
5624
- "prediction"
5625
- ] = score # We use here the prediction field to pass the score to the compute method.
5626
  return instance
5627
 
5628
  def ensemble(self, instance):
@@ -5835,77 +5886,153 @@ class PredictionLength(InstanceMetric):
5835
  return {self.main_score: [len(prediction)], "score_name": self.main_score}
5836
 
5837
 
5838
- class GraniteGuardianWMLMetric(InstanceMetric):
 
 
 
 
 
 
 
 
 
 
5839
  """Return metric for different kinds of "risk" from the Granite-3.0 Guardian model."""
5840
 
5841
- main_score = "granite_guardian"
5842
  reduction_map: Dict[str, List[str]] = None
5843
  prediction_type = float
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5844
 
5845
- model_name: str = "ibm/granite-guardian-3-8b"
5846
- hf_model_name: str = "ibm-granite/granite-guardian-3.0-8b"
5847
  safe_token = "No"
5848
  unsafe_token = "Yes"
5849
 
5850
- inference_engine: WMLInferenceEngineGeneration = None
5851
  generation_params: Dict = None
5852
  risk_name: str = None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5853
 
5854
- _requirements_list: List[str] = ["ibm_watsonx_ai", "torch", "transformers"]
5855
 
5856
  def prepare(self):
5857
- self.reduction_map = {"mean": [self.main_score]}
5858
-
5859
- def compute(self, references: List[Any], prediction: Any, task_data: Dict) -> dict:
5860
  from transformers import AutoTokenizer
5861
-
 
5862
  if not hasattr(self, "_tokenizer") or self._tokenizer is None:
 
 
 
5863
  self._tokenizer = AutoTokenizer.from_pretrained(self.hf_model_name)
5864
- self.inference_engine = WMLInferenceEngineGeneration(
5865
- model_name=self.model_name,
5866
- )
5867
- self.inference_engine._load_model()
5868
- self.model = self.inference_engine._model
5869
- self.generation_params = self.inference_engine._set_logprobs_params({})
5870
 
5871
- messages = self.process_input_fields(task_data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5872
  guardian_config = {"risk_name": self.risk_name}
5873
- processed_input = self._tokenizer.apply_chat_template(
 
 
 
5874
  messages,
5875
  guardian_config=guardian_config,
5876
  tokenize=False,
5877
  add_generation_prompt=True,
5878
  )
5879
 
5880
- result = self.model.generate(
5881
- prompt=[processed_input],
5882
- params=self.generation_params,
 
 
 
 
 
 
 
 
5883
  )
5884
- generated_tokens_list = result[0]["results"][0]["generated_tokens"]
 
 
 
5885
  label, prob_of_risk = self.parse_output(generated_tokens_list)
5886
- score = 1 - prob_of_risk if label is not None else np.nan
5887
- return {self.main_score: score}
5888
-
5889
- def process_input_fields(self, task_data):
5890
- if self.risk_name == "groundedness":
5891
- messages = [
5892
- {"role": "context", "content": "\n".join(task_data["contexts"])},
5893
- {"role": "assistant", "content": task_data["answer"]},
5894
- ]
5895
- elif self.risk_name == "answer_relevance":
5896
- messages = [
5897
- {"role": "user", "content": task_data["question"]},
5898
- {"role": "assistant", "content": task_data["answer"]},
5899
- ]
5900
- elif self.risk_name == "context_relevance":
5901
- messages = [
5902
- {"role": "user", "content": task_data["question"]},
5903
- {"role": "context", "content": "\n".join(task_data["contexts"])},
5904
- ]
5905
- else:
5906
- raise NotImplementedError()
5907
 
5908
- return messages
 
5909
 
5910
  def parse_output(self, generated_tokens_list):
5911
  top_tokens_list = [
@@ -5944,10 +6071,179 @@ class GraniteGuardianWMLMetric(InstanceMetric):
5944
  ).numpy()
5945
 
5946
 
5947
- class ExecutionAccuracy(InstanceMetric):
5948
- reduction_map = {"mean": ["execution_accuracy"]}
5949
- main_score = "execution_accuracy"
5950
- ci_scores = ["execution_accuracy"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5951
 
5952
  prediction_type = "Any" # string representation is compared
5953
  sql_timeout = 100.0
@@ -5955,73 +6251,229 @@ class ExecutionAccuracy(InstanceMetric):
5955
  _requirements_list = ["sqlglot", "func_timeout"]
5956
 
5957
  @staticmethod
5958
- def equivalent_sqls(expected: str, generated: str) -> int:
5959
- from sqlglot import diff, parse_one
5960
- from sqlglot.optimizer import optimize
5961
 
5962
- t_diff = diff(
5963
- optimize(parse_one(expected.lower()).sql(pretty=True)),
5964
- optimize(parse_one(generated.lower()).sql(pretty=True)),
5965
- )
5966
- sql_diff = sum(0 if (e.__class__.__name__ == "Keep") else 1 for e in t_diff)
5967
 
5968
- return 1 if sql_diff == 0 else 0
 
 
 
 
 
5969
 
5970
- def run_sql_and_match(self, predicted_sql: str, gold_sql: str, connector) -> int:
5971
- """Runs SQL queries using the provided connector and checks if the results match."""
5972
- if predicted_sql.lower().strip() == gold_sql.lower().strip():
5973
- return 1 # if the SQLs are exactly the same, return 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5975
  try:
5976
- if self.equivalent_sqls(gold_sql, predicted_sql):
5977
- return 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5978
  except Exception as e: # Catch specific exceptions if possible
5979
  logger.info(
5980
- f"Error in equivalent_sqls: {e}. Treating as non-equivalent and going to test with the db."
5981
  )
5982
 
 
 
 
5983
  try:
5984
- gold_res = connector.execute_query(gold_sql)
 
 
 
 
 
 
 
5985
  except Exception as e:
5986
- raise OSError(
5987
- "Error executing gold SQL, if gold does not execute metric should fail"
5988
- ) from e
5989
 
5990
- try:
5991
- pred_res = connector.execute_query(predicted_sql)
5992
- except Exception as e:
5993
- logger.info(f"Error executing predicted SQL: {e}")
5994
- return 0 # if the predicted SQL fails to execute, result is 0
5995
 
5996
  if pred_res is None:
5997
- if gold_res is None:
5998
- return 1
5999
- return 0
6000
-
6001
- # if pred_res is dict with results take this as the result
6002
- if isinstance(pred_res, dict):
6003
- pred_res = pred_res["results"]
6004
- gold_res = gold_res["results"]
 
 
 
 
 
 
6005
 
6006
- def normalize_tuple(tup):
6007
- """Normalizes a tuple by sorting its non-None elements.
6008
 
6009
- Args:
6010
- tup: The input tuple.
 
6011
 
6012
- Returns:
6013
- A tuple with non-None elements sorted first, followed by None values.
6014
- """
6015
- return sorted([str(item) for item in tup])
 
 
 
6016
 
6017
- return int(
6018
- sorted([normalize_tuple(t) for t in pred_res])
6019
- == sorted([normalize_tuple(t) for t in gold_res])
 
 
 
 
 
 
 
 
 
 
6020
  )
6021
 
6022
  def compute(self, references: List[Any], prediction: str, task_data: Dict) -> dict:
6023
- from func_timeout import FunctionTimedOut, func_timeout
6024
-
6025
  predicted_sql = prediction
6026
  execution_result: float = 0.0
6027
 
@@ -6033,18 +6485,115 @@ class ExecutionAccuracy(InstanceMetric):
6033
 
6034
  db_connector = get_db_connector(task_data["db"]["db_type"])(task_data["db"])
6035
 
6036
- try:
6037
- execution_result = func_timeout(
6038
- self.sql_timeout,
6039
- self.run_sql_and_match,
6040
- args=(predicted_sql, references[0], db_connector),
6041
- ) # type: ignore
6042
- except FunctionTimedOut:
6043
- logger.error("QUERY TIMEOUT, returning score=0 for this instance")
6044
- execution_result = 0.0
6045
-
6046
- result = {self.main_score: float(execution_result)}
6047
- logger.debug(f"Result: {result}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6048
  result["score"] = result[self.main_score]
6049
  result["score_name"] = self.main_score
6050
  return result
 
 
1
  import ast
2
  import json
3
  import math
 
9
  from abc import ABC, abstractmethod
10
  from collections import Counter, defaultdict
11
  from dataclasses import field
12
+ from enum import Enum
13
  from functools import lru_cache
14
+ from typing import (
15
+ Any,
16
+ Dict,
17
+ Generator,
18
+ Generic,
19
+ List,
20
+ Literal,
21
+ Optional,
22
+ Tuple,
23
+ TypeVar,
24
+ Union,
25
+ )
26
 
27
  import evaluate
28
  import numpy
29
  import numpy as np
30
  import pandas as pd
31
  import requests
32
+ from datasets import DownloadConfig
33
  from scipy.stats import bootstrap
34
  from scipy.stats._warnings_errors import DegenerateDataWarning
35
 
 
41
  NonPositionalField,
42
  OptionalField,
43
  )
 
44
  from .deprecation_utils import deprecation
45
+ from .error_utils import Documentation, UnitxtError, UnitxtWarning
46
  from .inference import (
47
  HFPipelineBasedInferenceEngine,
48
  InferenceEngine,
49
+ LogProbInferenceEngine,
50
  TorchDeviceMixin,
51
  WMLInferenceEngineGeneration,
52
  )
 
63
  from .operators import ArtifactFetcherMixin, Copy, Set
64
  from .random_utils import get_seed
65
  from .settings_utils import get_settings
66
+ from .sql_utils import get_db_connector
67
  from .stream import MultiStream, Stream
68
  from .type_utils import Type, isoftype, parse_type_string, to_type_string
69
  from .utils import deep_copy, recursive_copy
70
 
71
+ FINQA_HASH = "42430b8613082bb4b85d49210284135d"
72
+
73
  logger = get_logger()
74
  settings = get_settings()
75
 
76
  warnings.filterwarnings("ignore", category=DegenerateDataWarning)
77
 
78
+ def hf_evaluate_load(path: str, *args, **kwargs):
79
+ if settings.hf_offline_metrics_path is not None:
80
+ path = os.path.join(settings.hf_offline_metrics_path, path)
81
+ return evaluate.load(
82
+ path,
83
+ *args,
84
+ **kwargs,
85
+ experiment_id=str(uuid.uuid4()),
86
+ download_config=DownloadConfig(
87
+ max_retries=settings.loaders_max_retries,
88
+ ),
89
+ verification_mode="no_checks",
90
+ trust_remote_code=settings.allow_unverified_code,
91
+ download_mode= "force_redownload" if settings.disable_hf_datasets_cache else "reuse_dataset_if_exists"
92
+ )
93
 
94
  class MetricsList(ListCollection):
95
  def verify(self):
 
408
  return result
409
 
410
 
 
 
411
  IntermediateType = TypeVar("IntermediateType")
412
  PredictionType = TypeVar("PredictionType")
413
 
 
1807
  @staticmethod
1808
  @lru_cache(maxsize=10000)
1809
  def exact_match(pred, gt):
1810
+ """Brought from MMStar."""
1811
  answer = gt.lower().strip().replace("\n", " ")
1812
  predict = pred.lower().strip().replace("\n", " ")
1813
  try:
 
1922
  return_dict["relaxed_human_split"].append(score)
1923
  else:
1924
  return_dict["relaxed_augmented_split"].append(score)
1925
+ return {
1926
  key: sum(value) / len(value)
1927
  for key, value in return_dict.items()
1928
  if len(value) > 0
1929
  }
 
1930
 
1931
  @staticmethod
1932
  def _to_float(text: str):
 
2037
  string = string.lower()
2038
 
2039
  # strip leading and trailing whitespaces
2040
+ return string.strip()
 
 
2041
 
2042
  def _tokenize(text):
2043
  # Regex pattern to match words and isolate punctuation
2044
  pattern = r"\w+|[^\w\s]"
2045
+ return re.findall(pattern, text)
 
2046
 
2047
  def _compute_f1(sa, sb):
2048
  sa = _normalize_str(sa)
 
2060
  comm = sa.intersection(sb)
2061
  prec = len(comm) / len(sb)
2062
  rec = len(comm) / len(sa)
2063
+ return 2 * prec * rec / (prec + rec) if prec + rec > 0 else 0
 
2064
 
2065
  judge_list = []
2066
  for sample in samples:
 
2325
  def prepare(self):
2326
  super().prepare()
2327
 
2328
+ self.metric = hf_evaluate_load(self.hf_metric_name)
 
 
2329
 
2330
  def compute(
2331
  self,
 
2400
  def prepare(self):
2401
  super().prepare()
2402
 
2403
+ self.metric = hf_evaluate_load(self.hf_metric_name)
 
 
2404
 
2405
  def compute(
2406
  self,
 
2445
  def prepare(self):
2446
  super().prepare()
2447
 
2448
+ self.metric = hf_evaluate_load(self.hf_metric_name)
 
 
2449
 
2450
  def compute(self, references: List[Any], prediction: Any, task_data: Dict) -> dict:
2451
  # invokes module.compute, which invokes, e.g., meteor's _compute
 
2480
 
2481
  nltk.download("wordnet", quiet=True)
2482
  nltk.download("omw-1.4", quiet=True)
2483
+ nltk.download("punkt", quiet=True)
2484
+ nltk.download("punkt_tab", quiet=True)
2485
  from nltk import word_tokenize
2486
  from nltk.translate import meteor_score
2487
 
 
2549
  def prepare(self):
2550
  super().prepare()
2551
 
2552
+ self._metric = hf_evaluate_load(self.metric)
2553
 
2554
  def get_str_id(self, str):
2555
  if str not in self.str_to_id:
 
2826
  def prepare(self):
2827
  super().prepare()
2828
 
2829
+ self._metric = hf_evaluate_load(
2830
+ self.metric, "multilabel"
2831
  )
2832
 
2833
  def add_str_to_id(self, str):
 
3462
 
3463
  def prepare(self):
3464
  super().prepare()
3465
+ self.bertscore = None
 
 
3466
 
3467
  def map_stream(
3468
  self, evaluation_inputs_stream: Generator[EvaluationInput[str], None, None]
3469
  ):
3470
+ from evaluate import load
3471
+
3472
+ if self.bertscore is None:
3473
+ self.bertscore = load("bertscore", experiment_id=str(uuid.uuid4()))
3474
+
3475
  predictions = []
3476
  references = []
3477
  for prediction, reference, _ in evaluation_inputs_stream:
 
3517
 
3518
  def prepare(self):
3519
  super().prepare()
3520
+ self.model = None
 
 
3521
 
3522
  def map_stream(
3523
  self, evaluation_inputs_stream: Generator[EvaluationInput, None, None]
3524
  ):
3525
+ from sentence_transformers import SentenceTransformer, util
 
3526
 
3527
+ if self.model is None:
3528
+ self.model = SentenceTransformer(
3529
+ self.model_name, device=self.get_device_id()
3530
+ )
3531
 
3532
  scores = []
3533
 
 
3575
 
3576
  def prepare(self):
3577
  super().prepare()
3578
+ self.model = None
 
 
 
 
3579
 
3580
  def map_stream(
3581
  self, evaluation_inputs_stream: Generator[EvaluationInput[str], None, None]
3582
  ):
3583
+ if settings.mock_inference_mode:
3584
+ return [0.5 for _ in evaluation_inputs_stream]
3585
+
3586
+ from transformers import pipeline
3587
+
3588
+ if self.model is None:
3589
+ self.model = pipeline(
3590
+ "text-classification",
3591
+ model=self.model_name,
3592
+ device=self.get_device(),
3593
+ )
3594
+
3595
  inputs = []
3596
  for prediction, references, _ in evaluation_inputs_stream:
3597
  inputs.append({"text": references[0], "text_pair": prediction})
 
3621
  from transformers import pipeline
3622
 
3623
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
3624
+ model_path = self.model_name
3625
+ if settings.hf_offline_models_path is not None:
3626
+ model_path = os.path.join(settings.hf_offline_models_path, model_path)
3627
  self.pipe = pipeline(
3628
+ "text-classification", model=model_path, device=device,
3629
  )
3630
 
3631
  def compute(
 
3657
  super().prepare()
3658
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
3659
 
3660
+ model_path = self.model_name
3661
+ if settings.hf_offline_models_path is not None:
3662
+ model_path = os.path.join(settings.hf_offline_models_path, model_path)
3663
  self.regard_model = AutoModelForSequenceClassification.from_pretrained(
3664
+ model_path,
3665
+
3666
  )
3667
+ self.regard_tokenizer = AutoTokenizer.from_pretrained(model_path)
3668
 
3669
  def _evaluate(self, predictions, inputs):
3670
  import torch
 
3847
  super().prepare()
3848
  from transformers import pipeline
3849
 
3850
+ model_path = self.reward_name
3851
+ if settings.hf_offline_models_path is not None:
3852
+ model_path = os.path.join(settings.hf_offline_models_path, model_path)
3853
+
3854
  if not settings.mock_inference_mode:
3855
  self.model = pipeline(
3856
  "text-classification",
3857
+ model=model_path,
3858
  device=self.get_device(),
3859
  )
3860
 
 
4038
  if self.lm is None:
4039
  from transformers import AutoConfig
4040
 
4041
+ model_path = self.model_name
4042
+ if settings.hf_offline_models_path is not None:
4043
+ model_path = os.path.join(settings.hf_offline_models_path, model_path)
4044
+
4045
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
4046
  self.lm = (
4047
  self.EncoderDecoderLM(
4048
  model_name=self.model_name, single_token_mode=self.single_token_mode
 
4120
 
4121
  self.model_name = model_name
4122
  self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
4123
+ model_path = self.model_name
4124
+ if settings.hf_offline_models_path is not None:
4125
+ model_path = os.path.join(settings.hf_offline_models_path, model_path)
4126
  self.model = (
4127
+ self.model_class().from_pretrained(model_path).to(self.device)
4128
  )
4129
+ self.tokenizer = AutoTokenizer.from_pretrained(model_path)
4130
  if self.tokenizer.pad_token_id is None:
4131
  self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
4132
  self.single_token_mode = single_token_mode
 
4291
  batch_size: int = 2
4292
  model_name: str = "vectara/hallucination_evaluation_model"
4293
  prediction_type = str
4294
+ # single_reference_per_prediction = True
4295
  max_context_words = 4096
4296
  reduction_map = {"mean": [main_score]}
4297
 
 
4308
  else:
4309
  device = "cpu"
4310
  from transformers import AutoModelForSequenceClassification
4311
+ model_path = self.model_name
4312
+ if settings.hf_offline_models_path is not None:
4313
+ model_path = os.path.join(settings.hf_offline_models_path, model_path)
4314
  self.model = AutoModelForSequenceClassification.from_pretrained(
4315
+ model_path, trust_remote_code=True
4316
  ).to(device)
4317
 
4318
  def compute(
 
4325
 
4326
  # treat the references as the contexts and the predictions as answers
4327
  # concat references
4328
+
4329
+ contexts = ["\n".join([str(r) for r in refs]) for refs in references]
4330
  contexts = [" ".join(c.split(" ")[: self.max_context_words]) for c in contexts]
4331
  answers = predictions
4332
 
 
5671
 
5672
  def create_ensemble_scores(self, instance):
5673
  score = self.ensemble(instance)
5674
+ instance["prediction"] = (
5675
+ score # We use here the prediction field to pass the score to the compute method.
5676
+ )
5677
  return instance
5678
 
5679
  def ensemble(self, instance):
 
5886
  return {self.main_score: [len(prediction)], "score_name": self.main_score}
5887
 
5888
 
5889
+ class RiskType(str, Enum):
5890
+ """Risk type for the Granite Guardian models."""
5891
+
5892
+ RAG = "rag_risk"
5893
+ USER_MESSAGE = "user_risk"
5894
+ ASSISTANT_MESSAGE = "assistant_risk"
5895
+ AGENTIC = "agentic_risk"
5896
+ CUSTOM_RISK = "custom_risk"
5897
+
5898
+
5899
+ class GraniteGuardianBase(InstanceMetric):
5900
  """Return metric for different kinds of "risk" from the Granite-3.0 Guardian model."""
5901
 
 
5902
  reduction_map: Dict[str, List[str]] = None
5903
  prediction_type = float
5904
+ main_score = None
5905
+ reduction_map = {}
5906
+ wml_model_name: str = "ibm/granite-guardian-3-8b"
5907
+ hf_model_name: str = "ibm-granite/granite-guardian-3.1-8b"
5908
+
5909
+ wml_params = {
5910
+ "decoding_method": "greedy",
5911
+ "max_new_tokens": 20,
5912
+ "temperature": 0,
5913
+ "return_options": {
5914
+ "top_n_tokens": 5,
5915
+ "input_text": True,
5916
+ "input_tokens": False,
5917
+ },
5918
+ }
5919
 
 
 
5920
  safe_token = "No"
5921
  unsafe_token = "Yes"
5922
 
5923
+ inference_engine: LogProbInferenceEngine = None
5924
  generation_params: Dict = None
5925
  risk_name: str = None
5926
+ risk_type: RiskType = None
5927
+ risk_definition: Optional[str] = None
5928
+
5929
+ user_message_field: str = "user"
5930
+ assistant_message_field: str = "assistant"
5931
+ context_field: str = "context"
5932
+ tools_field: str = "tools"
5933
+
5934
+ available_risks: Dict[RiskType, List[str]] = {
5935
+ RiskType.USER_MESSAGE: [
5936
+ "harm",
5937
+ "social_bias",
5938
+ "jailbreak",
5939
+ "violence",
5940
+ "profanity",
5941
+ "unethical_behavior",
5942
+ ],
5943
+ RiskType.ASSISTANT_MESSAGE: [
5944
+ "harm",
5945
+ "social_bias",
5946
+ "violence",
5947
+ "profanity",
5948
+ "unethical_behavior",
5949
+ ],
5950
+ RiskType.RAG: ["context_relevance", "groundedness", "answer_relevance"],
5951
+ RiskType.AGENTIC: ["function_call"],
5952
+ }
5953
 
5954
+ _requirements_list: List[str] = ["torch", "transformers"]
5955
 
5956
  def prepare(self):
 
 
 
5957
  from transformers import AutoTokenizer
5958
+ if not isinstance(self.risk_type, RiskType):
5959
+ self.risk_type = RiskType[self.risk_type]
5960
  if not hasattr(self, "_tokenizer") or self._tokenizer is None:
5961
+ model_path = self.hf_model_name
5962
+ if settings.hf_offline_models_path is not None:
5963
+ model_path = os.path.join(settings.hf_offline_models_path, model_path)
5964
  self._tokenizer = AutoTokenizer.from_pretrained(self.hf_model_name)
 
 
 
 
 
 
5965
 
5966
+ def verify(self):
5967
+ super().verify()
5968
+ assert (
5969
+ self.risk_type == RiskType.CUSTOM_RISK
5970
+ or self.risk_name in self.available_risks[self.risk_type]
5971
+ ), UnitxtError(
5972
+ f"The risk '{self.risk_name}' is not a valid '{' '.join([word[0].upper() + word[1:] for word in self.risk_type.split('_')])}'"
5973
+ )
5974
+
5975
+ @abstractmethod
5976
+ def verify_granite_guardian_config(self, task_data):
5977
+ pass
5978
+
5979
+ @abstractmethod
5980
+ def process_input_fields(self, task_data):
5981
+ pass
5982
+
5983
+ @classmethod
5984
+ def get_available_risk_names(cls):
5985
+ return cls.available_risks[cls.risk_type]
5986
+
5987
+ def set_main_score(self):
5988
+ self.main_score = self.risk_name
5989
+ self.reduction_map = {"mean": [self.main_score]}
5990
+
5991
+ def get_prompt(self, messages):
5992
  guardian_config = {"risk_name": self.risk_name}
5993
+ if self.risk_type == RiskType.CUSTOM_RISK:
5994
+ guardian_config["risk_definition"] = self.risk_definition
5995
+
5996
+ return self._tokenizer.apply_chat_template(
5997
  messages,
5998
  guardian_config=guardian_config,
5999
  tokenize=False,
6000
  add_generation_prompt=True,
6001
  )
6002
 
6003
+ def compute(self, references: List[Any], prediction: Any, task_data: Dict) -> dict:
6004
+ self.verify_granite_guardian_config(task_data)
6005
+ self.set_main_score()
6006
+
6007
+ if self.inference_engine is None:
6008
+ self.inference_engine = WMLInferenceEngineGeneration(
6009
+ model_name=self.wml_model_name,
6010
+ **self.wml_params,
6011
+ )
6012
+ logger.debug(
6013
+ f'Risk type is "{self.risk_type}" and risk name is "{self.risk_name}"'
6014
  )
6015
+ messages = self.process_input_fields(task_data)
6016
+ prompt = self.get_prompt(messages)
6017
+ result = self.inference_engine.infer_log_probs([{"source": prompt}])
6018
+ generated_tokens_list = result[0]
6019
  label, prob_of_risk = self.parse_output(generated_tokens_list)
6020
+ confidence_score = (
6021
+ (prob_of_risk if prob_of_risk > 0.5 else 1 - prob_of_risk)
6022
+ if label is not None
6023
+ else np.nan
6024
+ )
6025
+ result = {
6026
+ self.main_score: prob_of_risk,
6027
+ f"{self.main_score}_prob_of_risk": prob_of_risk,
6028
+ f"{self.main_score}_certainty": confidence_score,
6029
+ f"{self.main_score}_label": label,
6030
+ }
6031
+ logger.debug(f"Results are ready:\n{result}")
6032
+ return result
 
 
 
 
 
 
 
 
6033
 
6034
+ def create_message(self, role: str, content: str) -> List[Dict[str, str]]:
6035
+ return [{"role": role, "content": content}]
6036
 
6037
  def parse_output(self, generated_tokens_list):
6038
  top_tokens_list = [
 
6071
  ).numpy()
6072
 
6073
 
6074
+ class GraniteGuardianUserRisk(GraniteGuardianBase):
6075
+ risk_type = RiskType.USER_MESSAGE
6076
+
6077
+ def verify_granite_guardian_config(self, task_data):
6078
+ # User message risks only require the user message field and are the same as the assistant message risks, except for jailbreak
6079
+ assert self.user_message_field in task_data, UnitxtError(
6080
+ f'Task data must contain "{self.user_message_field}" field'
6081
+ )
6082
+
6083
+ def process_input_fields(self, task_data):
6084
+ messages = []
6085
+ messages += self.create_message("user", task_data[self.user_message_field])
6086
+ return messages
6087
+
6088
+
6089
+ class GraniteGuardianAssistantRisk(GraniteGuardianBase):
6090
+ risk_type = RiskType.ASSISTANT_MESSAGE
6091
+
6092
+ def verify_granite_guardian_config(self, task_data):
6093
+ assert (
6094
+ self.assistant_message_field in task_data
6095
+ and self.user_message_field in task_data
6096
+ ), UnitxtError(
6097
+ f'Task data must contain "{self.assistant_message_field}" and "{self.user_message_field}" fields'
6098
+ )
6099
+
6100
+ def process_input_fields(self, task_data):
6101
+ messages = []
6102
+ messages += self.create_message("user", task_data[self.user_message_field])
6103
+ messages += self.create_message(
6104
+ "assistant", task_data[self.assistant_message_field]
6105
+ )
6106
+ return messages
6107
+
6108
+
6109
+ class GraniteGuardianRagRisk(GraniteGuardianBase):
6110
+ risk_type = RiskType.RAG
6111
+
6112
+ def verify_granite_guardian_config(self, task_data):
6113
+ if self.risk_name == "context_relevance":
6114
+ assert (
6115
+ self.context_field in task_data and self.user_message_field in task_data
6116
+ ), UnitxtError(
6117
+ f'Task data must contain "{self.context_field}" and "{self.user_message_field}" fields'
6118
+ )
6119
+ elif self.risk_name == "groundedness":
6120
+ assert (
6121
+ self.context_field in task_data
6122
+ and self.assistant_message_field in task_data
6123
+ ), UnitxtError(
6124
+ f'Task data must contain "{self.context_field}" and "{self.assistant_message_field}" fields'
6125
+ )
6126
+ elif self.risk_name == "answer_relevance":
6127
+ assert (
6128
+ self.user_message_field in task_data
6129
+ and self.assistant_message_field in task_data
6130
+ ), UnitxtError(
6131
+ f'Task data must contain "{self.user_message_field}" and "{self.assistant_message_field}" fields'
6132
+ )
6133
+
6134
+ def process_input_fields(self, task_data):
6135
+ messages = []
6136
+ if self.risk_name == "context_relevance":
6137
+ messages += self.create_message("user", task_data[self.user_message_field])
6138
+ messages += self.create_message("context", task_data[self.context_field])
6139
+ elif self.risk_name == "groundedness":
6140
+ messages += self.create_message("context", task_data[self.context_field])
6141
+ messages += self.create_message(
6142
+ "assistant", task_data[self.assistant_message_field]
6143
+ )
6144
+ elif self.risk_name == "answer_relevance":
6145
+ messages += self.create_message("user", task_data[self.user_message_field])
6146
+ messages += self.create_message(
6147
+ "assistant", task_data[self.assistant_message_field]
6148
+ )
6149
+ return messages
6150
+
6151
+
6152
+ class GraniteGuardianAgenticRisk(GraniteGuardianBase):
6153
+ risk_type = RiskType.AGENTIC
6154
+
6155
+ def verify_granite_guardian_config(self, task_data):
6156
+ assert (
6157
+ self.tools_field in task_data
6158
+ and self.user_message_field in task_data
6159
+ and self.assistant_message_field in task_data
6160
+ ), UnitxtError(
6161
+ f'Task data must contain "{self.tools_field}", "{self.assistant_message_field}" and "{self.user_message_field}" fields'
6162
+ )
6163
+
6164
+ def process_input_fields(self, task_data):
6165
+ messages = []
6166
+ messages += self.create_message(
6167
+ "tools", json.loads(task_data[self.tools_field])
6168
+ )
6169
+ messages += self.create_message("user", task_data[self.user_message_field])
6170
+ messages += self.create_message(
6171
+ "assistant", task_data[self.assistant_message_field]
6172
+ )
6173
+ return messages
6174
+
6175
+
6176
+ class GraniteGuardianCustomRisk(GraniteGuardianBase):
6177
+ risk_type = RiskType.CUSTOM_RISK
6178
+
6179
+ def verify(self):
6180
+ super().verify()
6181
+ assert self.risk_type is not None, UnitxtError(
6182
+ "In a custom risk, risk_type must be defined"
6183
+ )
6184
+
6185
+ def verify_granite_guardian_config(self, task_data):
6186
+ # even though this is a custom risks, we will limit the
6187
+ # message roles to be a subset of the roles Granite Guardian
6188
+ # was trained with: user, assistant, context & tools.
6189
+ # we just checked whether at least one of them is provided
6190
+ assert (
6191
+ self.tools_field in task_data
6192
+ or self.user_message_field in task_data
6193
+ or self.assistant_message_field in task_data
6194
+ or self.context_field in task_data
6195
+ ), UnitxtError(
6196
+ f'Task data must contain at least one of"{self.tools_field}", "{self.assistant_message_field}", "{self.user_message_field}" or "{self.context_field}" fields'
6197
+ )
6198
+
6199
+ def process_input_fields(self, task_data):
6200
+ messages = []
6201
+ if self.context_field in task_data:
6202
+ messages += self.create_message("context", task_data[self.context_field])
6203
+ if self.tools_field in task_data:
6204
+ messages += self.create_message(
6205
+ "tools", json.loads(task_data[self.tools_field])
6206
+ )
6207
+ if self.user_message_field in task_data:
6208
+ messages += self.create_message("user", task_data[self.user_message_field])
6209
+ if self.assistant_message_field in task_data:
6210
+ messages += self.create_message(
6211
+ "assistant", task_data[self.assistant_message_field]
6212
+ )
6213
+ return messages
6214
+
6215
+
6216
+ RISK_TYPE_TO_CLASS: Dict[RiskType, GraniteGuardianBase] = {
6217
+ RiskType.USER_MESSAGE: GraniteGuardianUserRisk,
6218
+ RiskType.ASSISTANT_MESSAGE: GraniteGuardianAssistantRisk,
6219
+ RiskType.RAG: GraniteGuardianRagRisk,
6220
+ RiskType.AGENTIC: GraniteGuardianAgenticRisk,
6221
+ RiskType.CUSTOM_RISK: GraniteGuardianCustomRisk,
6222
+ }
6223
+
6224
+
6225
+ class SQLExecutionAccuracy(InstanceMetric):
6226
+ reduction_map = {
6227
+ "mean": [
6228
+ "execution_accuracy",
6229
+ "non_empty_execution_accuracy",
6230
+ "subset_non_empty_execution_result",
6231
+ "non_empty_gold_df",
6232
+ "gold_sql_runtime",
6233
+ "predicted_sql_runtime",
6234
+ "pred_to_gold_runtime_ratio",
6235
+ "gold_error",
6236
+ "predicted_error",
6237
+ ]
6238
+ }
6239
+ main_score = "non_empty_execution_accuracy"
6240
+ ci_scores = [
6241
+ "execution_accuracy",
6242
+ "non_empty_execution_accuracy",
6243
+ "subset_non_empty_execution_result",
6244
+ "gold_sql_runtime",
6245
+ "predicted_sql_runtime",
6246
+ ]
6247
 
6248
  prediction_type = "Any" # string representation is compared
6249
  sql_timeout = 100.0
 
6251
  _requirements_list = ["sqlglot", "func_timeout"]
6252
 
6253
  @staticmethod
6254
+ def compare_dfs_ignore_colnames(df1, df2):
6255
+ """Compares two DataFrames based on row content, ignoring column names.
 
6256
 
6257
+ Args:
6258
+ df1 (pd.DataFrame): Pandas DataFrame 1 to compare.
6259
+ df2 (pd.DataFrame): Pandas DataFrame 2 to compare.
 
 
6260
 
6261
+ Returns:
6262
+ True if the DataFrames have the same content (ignoring column names),
6263
+ False otherwise.
6264
+ """
6265
+ df1.fillna(0, inplace=True)
6266
+ df2.fillna(0, inplace=True)
6267
 
6268
+ if df1.shape != df2.shape:
6269
+ return False
6270
+
6271
+ # run over all columns of d11,
6272
+ # and see if there is a columns in df2 that matches it,
6273
+ # if not return False, if all the columns worked return tue
6274
+ for df1_col in df1.columns:
6275
+ col_matched = False
6276
+ for df2_col in df2.columns:
6277
+ if all(df1[df1_col].values == df2[df2_col].values):
6278
+ col_matched = True
6279
+ if not col_matched:
6280
+ return False
6281
+
6282
+ return True
6283
+
6284
+ @staticmethod
6285
+ def is_subset_ignore_colnames(df1, df2):
6286
+ """Checks if df1 is a subset of df2 based on row content, ignoring column names.
6287
+
6288
+ Args:
6289
+ df1: Pandas DataFrame 1 to compare.
6290
+ df2: Pandas DataFrame 2 to compare.
6291
+
6292
+ Returns:
6293
+ True if df1 is a subset of df2 based on column values,
6294
+ False otherwise.
6295
+ """
6296
+ if df1.empty or df2.empty or df1.shape[1] > df2.shape[1]:
6297
+ return False
6298
+
6299
+ def make_hashable(value):
6300
+ if isinstance(value, dict):
6301
+ return json.dumps(value, sort_keys=True)
6302
+ if isinstance(value, list):
6303
+ return tuple(value)
6304
+ return value
6305
+
6306
+ df1_cols = [
6307
+ tuple(make_hashable(value) for value in df1.iloc[:, i])
6308
+ for i in range(df1.shape[1])
6309
+ ]
6310
+ df2_cols = [
6311
+ tuple(make_hashable(value) for value in df2.iloc[:, j])
6312
+ for j in range(df2.shape[1])
6313
+ ]
6314
+ df2_cols_count = Counter(df2_cols)
6315
+ for col in df1_cols:
6316
+ if df2_cols_count[col] > 0:
6317
+ df2_cols_count[col] -= 1
6318
+ else:
6319
+ return False
6320
+
6321
+ return True
6322
+
6323
+ def get_sql_execution_results(
6324
+ self, predicted_sql: str, gold_sql: str, connector
6325
+ ) -> (int, int, int, int, int, int, int, int, int, str, str, str):
6326
+ """Runs SQL queries using the provided connector and gets scores and results.
6327
+
6328
+ Args:
6329
+ predicted_sql (str): predicted SQL query
6330
+ gold_sql (str): gold reference SQL query
6331
+ connector: database connector
6332
 
6333
+ Returns:
6334
+ a 12-tuple of
6335
+ 1. execution_result: if df responses match
6336
+ 2. non_empty_execution_result: if dfs are non-empty and match
6337
+ 3. subset_non_empty_execution_result: if non-empty dfs and gt df subset of predicted df
6338
+ 4. non_empty_gold_df: if gt df is non-empty
6339
+ 5. gold_sql_runtime: ground truth query runtime
6340
+ 6. predicted_sql_runtime: predicted query runtime
6341
+ 7. pred_to_gold_runtime_ratio: ratio of predicted query runtime to gt query runtime
6342
+ 8. gold_error: if gt has an error
6343
+ 9. predicted_error: if predicted query has an error
6344
+ 10. ground truth dataframe
6345
+ 11. predicted query's dataframe
6346
+ 12. error message (if any)
6347
+ """
6348
+ import time
6349
+
6350
+ from func_timeout import func_timeout
6351
+
6352
+ from .sql_utils import sqlglot_optimized_equivalence
6353
+
6354
+ gold_res = None
6355
+ gold_error = ""
6356
+ gold_sql_runtime = 0
6357
  try:
6358
+ start_time = time.perf_counter()
6359
+ gold_res, gold_error = func_timeout(
6360
+ self.sql_timeout,
6361
+ connector.execute_query,
6362
+ args=(gold_sql,),
6363
+ )
6364
+ end_time = time.perf_counter()
6365
+ gold_sql_runtime = end_time - start_time
6366
+ except Exception as e:
6367
+ gold_error = f"Error executing gold SQL: {e}"
6368
+ if gold_error is not None:
6369
+ return (
6370
+ 0,
6371
+ 0,
6372
+ 0,
6373
+ 0,
6374
+ gold_sql_runtime,
6375
+ 0,
6376
+ 0,
6377
+ 0,
6378
+ 0,
6379
+ "",
6380
+ "",
6381
+ gold_error,
6382
+ )
6383
+
6384
+ gold_df = pd.DataFrame(gold_res)
6385
+ non_empty_gold_df = 0 if gold_df.empty else 1
6386
+
6387
+ no_execution_match_result = (
6388
+ 1,
6389
+ non_empty_gold_df,
6390
+ non_empty_gold_df,
6391
+ non_empty_gold_df,
6392
+ gold_sql_runtime,
6393
+ 0,
6394
+ 0,
6395
+ 1,
6396
+ 0,
6397
+ gold_df.to_json(),
6398
+ gold_df.to_json(),
6399
+ "",
6400
+ )
6401
+ if predicted_sql.lower().strip() == gold_sql.lower().strip():
6402
+ return no_execution_match_result
6403
+ try:
6404
+ if sqlglot_optimized_equivalence(gold_sql, predicted_sql):
6405
+ return no_execution_match_result
6406
  except Exception as e: # Catch specific exceptions if possible
6407
  logger.info(
6408
+ f"Couldn't test equivalent_sqls: {e}. Treating as non-equivalent and going to test with the db."
6409
  )
6410
 
6411
+ pred_res = None
6412
+ pred_error = ""
6413
+ pred_sql_runtime = 0
6414
  try:
6415
+ start_time = time.perf_counter()
6416
+ pred_res, pred_error = func_timeout(
6417
+ self.sql_timeout,
6418
+ connector.execute_query,
6419
+ args=(predicted_sql,),
6420
+ )
6421
+ end_time = time.perf_counter()
6422
+ pred_sql_runtime = end_time - start_time
6423
  except Exception as e:
6424
+ pred_error = f"Error executing predicted SQL: {e}"
6425
+ logger.info(pred_error)
 
6426
 
6427
+ pred_to_gold_runtime_ratio = (
6428
+ float(pred_sql_runtime) / gold_sql_runtime if gold_sql_runtime > 0 else 0
6429
+ )
 
 
6430
 
6431
  if pred_res is None:
6432
+ return (
6433
+ 0,
6434
+ 0,
6435
+ 0,
6436
+ 0,
6437
+ gold_sql_runtime,
6438
+ pred_sql_runtime,
6439
+ pred_to_gold_runtime_ratio,
6440
+ 0,
6441
+ 1,
6442
+ "",
6443
+ "",
6444
+ pred_error,
6445
+ )
6446
 
6447
+ predicted_df = pd.DataFrame(pred_res)
 
6448
 
6449
+ execution_result = (
6450
+ 1 if self.compare_dfs_ignore_colnames(predicted_df, gold_df) else 0
6451
+ )
6452
 
6453
+ subset_non_empty_execution_result = 0
6454
+ non_empty_execution_result = 0
6455
+ if non_empty_gold_df:
6456
+ if execution_result == 1:
6457
+ non_empty_execution_result = 1
6458
+ if self.is_subset_ignore_colnames(gold_df, predicted_df):
6459
+ subset_non_empty_execution_result = 1
6460
 
6461
+ return (
6462
+ execution_result,
6463
+ non_empty_execution_result,
6464
+ subset_non_empty_execution_result,
6465
+ non_empty_gold_df,
6466
+ gold_sql_runtime,
6467
+ pred_sql_runtime,
6468
+ pred_to_gold_runtime_ratio,
6469
+ 0,
6470
+ 0,
6471
+ gold_df.to_json(),
6472
+ predicted_df.to_json(),
6473
+ pred_error,
6474
  )
6475
 
6476
  def compute(self, references: List[Any], prediction: str, task_data: Dict) -> dict:
 
 
6477
  predicted_sql = prediction
6478
  execution_result: float = 0.0
6479
 
 
6485
 
6486
  db_connector = get_db_connector(task_data["db"]["db_type"])(task_data["db"])
6487
 
6488
+ logger.debug(
6489
+ f"Starting to get SQL execution results over DB: {task_data['db']}"
6490
+ )
6491
+ (
6492
+ execution_result,
6493
+ non_empty_execution_result,
6494
+ subset_non_empty_execution_result,
6495
+ non_empty_gold_df,
6496
+ gold_sql_runtime,
6497
+ predicted_sql_runtime,
6498
+ pred_to_gold_runtime_ratio,
6499
+ gold_error,
6500
+ predicted_error,
6501
+ gold_df_json,
6502
+ predicted_df_json,
6503
+ error_message,
6504
+ ) = self.get_sql_execution_results(
6505
+ predicted_sql, references[0], db_connector
6506
+ )
6507
+
6508
+ result = {
6509
+ "execution_accuracy": float(execution_result),
6510
+ "non_empty_execution_accuracy": float(non_empty_execution_result),
6511
+ "subset_non_empty_execution_result": float(
6512
+ subset_non_empty_execution_result
6513
+ ),
6514
+ "non_empty_gold_df": float(non_empty_gold_df),
6515
+ "gold_sql_runtime": float(gold_sql_runtime),
6516
+ "predicted_sql_runtime": float(predicted_sql_runtime),
6517
+ "pred_to_gold_runtime_ratio": float(pred_to_gold_runtime_ratio),
6518
+ "gold_error": float(gold_error),
6519
+ "predicted_error": float(predicted_error),
6520
+ "error_message": str(error_message),
6521
+ "gold_df_json": str(gold_df_json),
6522
+ "predicted_df_json": str(predicted_df_json),
6523
+ }
6524
+ result["score"] = result[self.main_score]
6525
+ result["score_name"] = self.main_score
6526
+ logger.debug(f"SQL Execution Accuracy Result: {result}")
6527
+ return result
6528
+
6529
+
6530
+ class SQLNonExecutionAccuracy(InstanceMetric):
6531
+ reduction_map = {
6532
+ "mean": [
6533
+ "sqlglot_validity",
6534
+ "sqlparse_validity",
6535
+ "sqlglot_equivalence",
6536
+ "sqlglot_optimized_equivalence",
6537
+ "sqlparse_equivalence",
6538
+ "sql_exact_match",
6539
+ ]
6540
+ }
6541
+ main_score = "sqlglot_equivalence"
6542
+ ci_scores = [
6543
+ "sqlglot_validity",
6544
+ "sqlparse_validity",
6545
+ "sqlglot_equivalence",
6546
+ "sqlglot_optimized_equivalence",
6547
+ "sqlparse_equivalence",
6548
+ "sql_exact_match",
6549
+ ]
6550
+
6551
+ prediction_type = "Any" # string representation is compared
6552
+
6553
+ _requirements_list = ["sqlglot", "sqlparse"]
6554
+
6555
+ def compute(self, references: List[Any], prediction: str, task_data: Dict) -> dict:
6556
+ from .sql_utils import (
6557
+ is_sqlglot_parsable,
6558
+ is_sqlparse_parsable,
6559
+ sql_exact_match,
6560
+ sqlglot_optimized_equivalence,
6561
+ sqlglot_parsed_queries_equivalent,
6562
+ sqlparse_queries_equivalent,
6563
+ )
6564
+
6565
+ predicted_sql = prediction
6566
+ gold_sql = references[0]
6567
+
6568
+ if predicted_sql and predicted_sql.strip() != "":
6569
+ if not predicted_sql.startswith("SELECT") and "SELECT" in predicted_sql:
6570
+ predicted_sql = predicted_sql[predicted_sql.find("SELECT") :]
6571
+ if ";" in predicted_sql:
6572
+ predicted_sql = predicted_sql[: predicted_sql.find(";") + 1]
6573
+
6574
+ is_sqlglot_parsable = is_sqlglot_parsable(predicted_sql)
6575
+ is_sqlparse_parsable = is_sqlparse_parsable(predicted_sql)
6576
+ result = {
6577
+ "sqlglot_validity": float(is_sqlglot_parsable),
6578
+ "sqlparse_validity": float(is_sqlparse_parsable),
6579
+ "sqlglot_equivalence": float(
6580
+ sqlglot_parsed_queries_equivalent(predicted_sql, gold_sql)
6581
+ if is_sqlglot_parsable
6582
+ else 0
6583
+ ),
6584
+ "sqlglot_optimized_equivalence": float(
6585
+ sqlglot_optimized_equivalence(predicted_sql, gold_sql)
6586
+ if is_sqlglot_parsable
6587
+ else 0
6588
+ ),
6589
+ "sqlparse_equivalence": float(
6590
+ sqlparse_queries_equivalent(predicted_sql, gold_sql)
6591
+ if is_sqlparse_parsable
6592
+ else 0
6593
+ ),
6594
+ "sql_exact_match": float(sql_exact_match(predicted_sql, gold_sql)),
6595
+ }
6596
+ logger.debug(f"SQL Non Execution Accuracy Result: {result}")
6597
  result["score"] = result[self.main_score]
6598
  result["score_name"] = self.main_score
6599
  return result
operator.py CHANGED
@@ -5,7 +5,7 @@ from typing import Any, Dict, Generator, List, Optional, Union
5
  from pkg_resources import DistributionNotFound, VersionConflict, require
6
 
7
  from .artifact import Artifact
8
- from .dataclass import InternalField, NonPositionalField
9
  from .settings_utils import get_constants
10
  from .stream import DynamicStream, EmptyStreamError, MultiStream, Stream
11
 
@@ -20,6 +20,7 @@ class PackageRequirementsMixin(Artifact):
20
  """Base class used to automatically check for the existence of required Python dependencies for an artifact (e.g., Operator or Metric).
21
 
22
  The _requirements_list is either a list of required packages or a dictionary mapping required packages to installation instructions.
 
23
 
24
  - **List format**: Just specify the package names, optionally with version annotations (e.g., ["torch>=1.2.4", "numpy<1.19"]).
25
  - **Dict format**: Specify package names as keys and installation instructions as values
@@ -32,9 +33,13 @@ class PackageRequirementsMixin(Artifact):
32
  _requirements_list: Union[List[str], Dict[str, str]] = InternalField(
33
  default_factory=list
34
  )
 
 
 
35
 
36
  def prepare(self):
37
- self.check_missing_requirements()
 
38
  super().prepare()
39
 
40
  def check_missing_requirements(self, requirements=None):
 
5
  from pkg_resources import DistributionNotFound, VersionConflict, require
6
 
7
  from .artifact import Artifact
8
+ from .dataclass import FinalField, InternalField, NonPositionalField
9
  from .settings_utils import get_constants
10
  from .stream import DynamicStream, EmptyStreamError, MultiStream, Stream
11
 
 
20
  """Base class used to automatically check for the existence of required Python dependencies for an artifact (e.g., Operator or Metric).
21
 
22
  The _requirements_list is either a list of required packages or a dictionary mapping required packages to installation instructions.
23
+ The _requirements_list should be used at class level definition, and the requirements at instance creation.
24
 
25
  - **List format**: Just specify the package names, optionally with version annotations (e.g., ["torch>=1.2.4", "numpy<1.19"]).
26
  - **Dict format**: Specify package names as keys and installation instructions as values
 
33
  _requirements_list: Union[List[str], Dict[str, str]] = InternalField(
34
  default_factory=list
35
  )
36
+ requirements: Union[List[str], Dict[str, str]] = FinalField(
37
+ also_positional=False, default_factory=list
38
+ )
39
 
40
  def prepare(self):
41
+ self.check_missing_requirements(self._requirements_list)
42
+ self.check_missing_requirements(self.requirements)
43
  super().prepare()
44
 
45
  def check_missing_requirements(self, requirements=None):
operators.py CHANGED
@@ -1484,28 +1484,32 @@ class IntersectCorrespondingFields(InstanceOperator):
1484
 
1485
  Assume the instances contain a field of 'labels' and a field with the labels' corresponding 'positions' in the text.
1486
 
1487
- IntersectCorrespondingFields(field="label",
1488
- allowed_values=["b", "f"],
1489
- corresponding_fields_to_intersect=["position"])
 
 
1490
 
1491
  would keep only "b" and "f" values in 'labels' field and
1492
  their respective values in the 'position' field.
1493
  (All other fields are not effected)
1494
 
1495
- Given this input:
1496
 
1497
- [
1498
- {"label": ["a", "b"],"position": [0,1],"other" : "not"},
1499
- {"label": ["a", "c", "d"], "position": [0,1,2], "other" : "relevant"},
1500
- {"label": ["a", "b", "f"], "position": [0,1,2], "other" : "field"}
1501
- ]
1502
 
1503
- So the output would be:
1504
- [
1505
- {"label": ["b"], "position":[1],"other" : "not"},
1506
- {"label": [], "position": [], "other" : "relevant"},
1507
- {"label": ["b", "f"],"position": [1,2], "other" : "field"},
1508
- ]
 
 
 
 
 
 
1509
 
1510
  Args:
1511
  field - the field to intersected (must contain list values)
@@ -2367,21 +2371,23 @@ class CollateInstancesByField(StreamOperator):
2367
  Example:
2368
  Collate the instances based on field "category" and aggregate fields "value" and "id".
2369
 
2370
- CollateInstancesByField(by_field="category", aggregate_fields=["value", "id"])
2371
 
2372
- given input:
2373
- [
2374
- {"id": 1, "category": "A", "value": 10", "flag" : True},
2375
- {"id": 2, "category": "B", "value": 20", "flag" : False},
2376
- {"id": 3, "category": "A", "value": 30", "flag" : True},
2377
- {"id": 4, "category": "B", "value": 40", "flag" : False}
2378
- ]
2379
 
2380
- the output is:
2381
- [
2382
- {"category": "A", "id": [1, 3], "value": [10, 30], "info": True},
2383
- {"category": "B", "id": [2, 4], "value": [20, 40], "info": False}
2384
- ]
 
 
 
 
 
 
 
 
2385
 
2386
  Note that the "flag" field is not aggregated, and must be the same
2387
  in all instances in the same category, or an error is raised.
@@ -2462,3 +2468,14 @@ class WikipediaFetcher(FieldOperator):
2462
  page = self.wikipedia.page(title)
2463
 
2464
  return {"title": page.title, "body": getattr(page, self.mode)}
 
 
 
 
 
 
 
 
 
 
 
 
1484
 
1485
  Assume the instances contain a field of 'labels' and a field with the labels' corresponding 'positions' in the text.
1486
 
1487
+ .. code-block:: text
1488
+
1489
+ IntersectCorrespondingFields(field="label",
1490
+ allowed_values=["b", "f"],
1491
+ corresponding_fields_to_intersect=["position"])
1492
 
1493
  would keep only "b" and "f" values in 'labels' field and
1494
  their respective values in the 'position' field.
1495
  (All other fields are not effected)
1496
 
1497
+ .. code-block:: text
1498
 
1499
+ Given this input:
 
 
 
 
1500
 
1501
+ [
1502
+ {"label": ["a", "b"],"position": [0,1],"other" : "not"},
1503
+ {"label": ["a", "c", "d"], "position": [0,1,2], "other" : "relevant"},
1504
+ {"label": ["a", "b", "f"], "position": [0,1,2], "other" : "field"}
1505
+ ]
1506
+
1507
+ So the output would be:
1508
+ [
1509
+ {"label": ["b"], "position":[1],"other" : "not"},
1510
+ {"label": [], "position": [], "other" : "relevant"},
1511
+ {"label": ["b", "f"],"position": [1,2], "other" : "field"},
1512
+ ]
1513
 
1514
  Args:
1515
  field - the field to intersected (must contain list values)
 
2371
  Example:
2372
  Collate the instances based on field "category" and aggregate fields "value" and "id".
2373
 
2374
+ .. code-block:: text
2375
 
2376
+ CollateInstancesByField(by_field="category", aggregate_fields=["value", "id"])
 
 
 
 
 
 
2377
 
2378
+ given input:
2379
+ [
2380
+ {"id": 1, "category": "A", "value": 10", "flag" : True},
2381
+ {"id": 2, "category": "B", "value": 20", "flag" : False},
2382
+ {"id": 3, "category": "A", "value": 30", "flag" : True},
2383
+ {"id": 4, "category": "B", "value": 40", "flag" : False}
2384
+ ]
2385
+
2386
+ the output is:
2387
+ [
2388
+ {"category": "A", "id": [1, 3], "value": [10, 30], "info": True},
2389
+ {"category": "B", "id": [2, 4], "value": [20, 40], "info": False}
2390
+ ]
2391
 
2392
  Note that the "flag" field is not aggregated, and must be the same
2393
  in all instances in the same category, or an error is raised.
 
2468
  page = self.wikipedia.page(title)
2469
 
2470
  return {"title": page.title, "body": getattr(page, self.mode)}
2471
+
2472
+ class Fillna(FieldOperator):
2473
+ value: Any
2474
+ def process_value(self, value: Any) -> Any:
2475
+ import numpy as np
2476
+ try:
2477
+ if np.isnan(value):
2478
+ return self.value
2479
+ except TypeError:
2480
+ return value
2481
+ return value
serializers.py CHANGED
@@ -1,12 +1,13 @@
1
  import csv
2
  import io
 
3
  from abc import abstractmethod
4
  from typing import Any, Dict, List, Union
5
 
6
  from .dataclass import AbstractField, Field
7
- from .db_utils import get_db_connector
8
  from .operators import InstanceFieldOperator
9
  from .settings_utils import get_constants
 
10
  from .type_utils import isoftype, to_type_string
11
  from .types import (
12
  Dialog,
@@ -61,6 +62,13 @@ class ListSerializer(SingleTypeSerializer):
61
  return ", ".join(str(item) for item in value)
62
 
63
 
 
 
 
 
 
 
 
64
  class DialogSerializer(SingleTypeSerializer):
65
  serialized_type = Dialog
66
 
 
1
  import csv
2
  import io
3
+ import json
4
  from abc import abstractmethod
5
  from typing import Any, Dict, List, Union
6
 
7
  from .dataclass import AbstractField, Field
 
8
  from .operators import InstanceFieldOperator
9
  from .settings_utils import get_constants
10
+ from .sql_utils import get_db_connector
11
  from .type_utils import isoftype, to_type_string
12
  from .types import (
13
  Dialog,
 
62
  return ", ".join(str(item) for item in value)
63
 
64
 
65
+ class DictAsJsonSerializer(SingleTypeSerializer):
66
+ serialized_type = dict
67
+
68
+ def serialize(self, value: Any, instance: Dict[str, Any]) -> str:
69
+ return json.dumps(value)
70
+
71
+
72
  class DialogSerializer(SingleTypeSerializer):
73
  serialized_type = Dialog
74
 
settings_utils.py CHANGED
@@ -151,11 +151,14 @@ if Settings.is_uninitilized():
151
  settings.mock_inference_mode = (bool, False)
152
  settings.disable_hf_datasets_cache = (bool, False)
153
  settings.stream_hf_datasets_by_default = (bool, False)
154
-
155
- settings.loader_cache_size = (int, 10)
156
  settings.task_data_as_text = (bool, True)
157
  settings.default_provider = "watsonx"
158
  settings.default_format = None
 
 
 
159
 
160
  if Constants.is_uninitilized():
161
  constants = Constants()
 
151
  settings.mock_inference_mode = (bool, False)
152
  settings.disable_hf_datasets_cache = (bool, False)
153
  settings.stream_hf_datasets_by_default = (bool, False)
154
+ settings.loader_cache_size = (int, 25)
155
+ settings.loaders_max_retries = (int, 10)
156
  settings.task_data_as_text = (bool, True)
157
  settings.default_provider = "watsonx"
158
  settings.default_format = None
159
+ settings.hf_offline_datasets_path = None
160
+ settings.hf_offline_metrics_path = None
161
+ settings.hf_offline_models_path = None
162
 
163
  if Constants.is_uninitilized():
164
  constants = Constants()
db_utils.py → sql_utils.py RENAMED
@@ -1,5 +1,6 @@
1
  import glob
2
  import os
 
3
  import sqlite3
4
  import time
5
  from abc import ABC, abstractmethod
@@ -47,10 +48,10 @@ def execute_query_local(db_path: str, query: str) -> Any:
47
  conn = sqlite3.connect(db_path)
48
  cursor = conn.cursor()
49
  cursor.execute(query)
50
- return cursor.fetchall()
51
  except sqlite3.Error as e:
52
  logger.info(f"Error executing SQL: {e}")
53
- return None
54
  finally:
55
  if conn:
56
  conn.close()
@@ -178,10 +179,10 @@ class InMemoryDatabaseConnector(DatabaseConnector):
178
 
179
  try:
180
  cursor.execute(query)
181
- return cursor.fetchall()
182
  except sqlite3.Error as e:
183
  logger.info(f"Error executing SQL: {e}")
184
- return None
185
  finally:
186
  conn.close()
187
 
@@ -196,7 +197,7 @@ def execute_query_remote(
196
  max_retries: int = 3,
197
  retry_delay: int = 5, # seconds
198
  timeout: int = 30, # seconds
199
- ) -> Optional[dict]:
200
  """Executes a query against the remote database, with retries for certain exceptions."""
201
  headers = {
202
  "Content-Type": "application/json",
@@ -210,11 +211,11 @@ def execute_query_remote(
210
  f"{api_url}/sql",
211
  headers=headers,
212
  json={"sql": query, "dataSourceId": database_id},
213
- verify=True,
214
  timeout=timeout,
215
  )
216
  response.raise_for_status()
217
- return response.json()
218
 
219
  except retryable_exceptions as e:
220
  retries += 1
@@ -225,7 +226,10 @@ def execute_query_remote(
225
  time.sleep(retry_delay)
226
  else:
227
  logger.error(f"Max retries ({max_retries}) exceeded for query: {query}")
228
- return None
 
 
 
229
 
230
  except requests.exceptions.HTTPError as e:
231
  if e.response.status_code >= 500:
@@ -239,16 +243,22 @@ def execute_query_remote(
239
  logger.error(
240
  f"Max retries ({max_retries}) exceeded for query: {query}"
241
  )
242
- return None
 
 
 
243
  else:
244
  logger.error(f"HTTP Error on attempt {retries}: {e}")
245
- return None
 
 
 
246
 
247
  except Exception as e:
248
  logger.error(f"Unexpected error on attempt {retries}: {e}")
249
- return None
250
 
251
- return None
252
 
253
 
254
  class RemoteDatabaseConnector(DatabaseConnector):
@@ -288,11 +298,11 @@ class RemoteDatabaseConnector(DatabaseConnector):
288
  self,
289
  ) -> str:
290
  """Retrieves the schema of a database."""
291
- cur_api_url = f"{self.api_url}/datasource/{self.database_id}"
292
  response = requests.get(
293
  cur_api_url,
294
  headers=self.headers,
295
- verify=True,
296
  timeout=self.timeout,
297
  )
298
  if response.status_code == 200:
@@ -330,3 +340,220 @@ def get_db_connector(db_type: str):
330
  raise ValueError(f"Unsupported database type: {db_type}")
331
 
332
  return connector
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import glob
2
  import os
3
+ import re
4
  import sqlite3
5
  import time
6
  from abc import ABC, abstractmethod
 
48
  conn = sqlite3.connect(db_path)
49
  cursor = conn.cursor()
50
  cursor.execute(query)
51
+ return cursor.fetchall(), None
52
  except sqlite3.Error as e:
53
  logger.info(f"Error executing SQL: {e}")
54
+ return None, f"Error executing SQL: {e}"
55
  finally:
56
  if conn:
57
  conn.close()
 
179
 
180
  try:
181
  cursor.execute(query)
182
+ return cursor.fetchall(), None
183
  except sqlite3.Error as e:
184
  logger.info(f"Error executing SQL: {e}")
185
+ return None, f"Error executing SQL: {e}"
186
  finally:
187
  conn.close()
188
 
 
197
  max_retries: int = 3,
198
  retry_delay: int = 5, # seconds
199
  timeout: int = 30, # seconds
200
+ ) -> (Optional[dict], str):
201
  """Executes a query against the remote database, with retries for certain exceptions."""
202
  headers = {
203
  "Content-Type": "application/json",
 
211
  f"{api_url}/sql",
212
  headers=headers,
213
  json={"sql": query, "dataSourceId": database_id},
214
+ verify=False,
215
  timeout=timeout,
216
  )
217
  response.raise_for_status()
218
+ return response.json(), None
219
 
220
  except retryable_exceptions as e:
221
  retries += 1
 
226
  time.sleep(retry_delay)
227
  else:
228
  logger.error(f"Max retries ({max_retries}) exceeded for query: {query}")
229
+ return (
230
+ None,
231
+ f"Max retries ({max_retries}) exceeded for query: {query} - Error: {e!s}",
232
+ )
233
 
234
  except requests.exceptions.HTTPError as e:
235
  if e.response.status_code >= 500:
 
243
  logger.error(
244
  f"Max retries ({max_retries}) exceeded for query: {query}"
245
  )
246
+ return (
247
+ None,
248
+ f"Max retries ({max_retries}) exceeded for query: {query} - Error: {e!s}",
249
+ )
250
  else:
251
  logger.error(f"HTTP Error on attempt {retries}: {e}")
252
+ return (
253
+ None,
254
+ f"HTTP Error on attempt {retries}: {e}",
255
+ )
256
 
257
  except Exception as e:
258
  logger.error(f"Unexpected error on attempt {retries}: {e}")
259
+ return (None, f"Unexpected error on attempt {retries}: {e}")
260
 
261
+ return None, "Unknown Error in SQL execution"
262
 
263
 
264
  class RemoteDatabaseConnector(DatabaseConnector):
 
298
  self,
299
  ) -> str:
300
  """Retrieves the schema of a database."""
301
+ cur_api_url = f"{self.api_url}/datasources/{self.database_id}"
302
  response = requests.get(
303
  cur_api_url,
304
  headers=self.headers,
305
+ verify=False,
306
  timeout=self.timeout,
307
  )
308
  if response.status_code == 200:
 
340
  raise ValueError(f"Unsupported database type: {db_type}")
341
 
342
  return connector
343
+
344
+
345
+ def is_sqlglot_parsable(sql: str, db_type="sqlite") -> bool:
346
+ """Returns True if sqlglot does not encounter any error, False otherwise."""
347
+ from sqlglot import parse
348
+
349
+ if not sql.strip():
350
+ return False
351
+ if db_type == "db2":
352
+ db_type = "postgres" ## TODO: temporary until sqlglot adds support for db2
353
+ try:
354
+ parse(sql, read=db_type)
355
+ return True
356
+ except Exception as e:
357
+ logger.debug(f"SQL query could not parse: {e}")
358
+ return False
359
+
360
+
361
+ def is_sqlparse_parsable(sql: str) -> bool:
362
+ """Returns True if sqlparse does not encounter any error, False otherwise."""
363
+ from sqlparse import parse
364
+ from sqlparse.tokens import Error
365
+
366
+ if not sql.strip():
367
+ return False
368
+ try:
369
+ statements = parse(sql)
370
+ for statement in statements:
371
+ for token in statement.tokens:
372
+ if token.ttype == Error:
373
+ return False
374
+ return True
375
+ except Exception as e:
376
+ logger.debug(f"SQL query could not parse: {e}")
377
+ return False
378
+
379
+
380
+ def sqlglot_optimized_equivalence(expected: str, generated: str) -> int:
381
+ """Checks if SQL queries are equivalent using SQLGlot parsing, so we don't run them."""
382
+ from sqlglot import diff, parse_one
383
+ from sqlglot.optimizer import optimize
384
+
385
+ try:
386
+ t_diff = diff(
387
+ optimize(parse_one(expected.lower()).sql(pretty=True)),
388
+ optimize(parse_one(generated.lower()).sql(pretty=True)),
389
+ )
390
+ sql_diff = sum(0 if (e.__class__.__name__ == "Keep") else 1 for e in t_diff)
391
+
392
+ return 1 if sql_diff == 0 else 0
393
+ except Exception as e:
394
+ logger.debug(f"Error parsing SQL for comparison: {e}")
395
+ return False
396
+
397
+
398
+ def extract_select_columns(statement):
399
+ """Parse SQL using sqlparse and extract columns."""
400
+ from sqlparse.sql import Identifier, IdentifierList
401
+ from sqlparse.tokens import DML, Keyword
402
+
403
+ columns = []
404
+ select_seen = False
405
+ for token in statement.tokens:
406
+ if token.ttype is DML and token.value.upper() == "SELECT":
407
+ select_seen = True
408
+ continue
409
+ if select_seen:
410
+ if token.ttype is Keyword and token.value.upper() in (
411
+ "FROM",
412
+ "WHERE",
413
+ "GROUP",
414
+ "HAVING",
415
+ "ORDER",
416
+ "LIMIT",
417
+ ):
418
+ break
419
+ if isinstance(token, IdentifierList):
420
+ for identifier in token.get_identifiers():
421
+ columns.append(strip_alias(identifier.value))
422
+ elif isinstance(token, Identifier):
423
+ columns.append(strip_alias(token.value))
424
+ else:
425
+ val = token.value.strip()
426
+ if val:
427
+ columns.append(strip_alias(val))
428
+ return frozenset(columns)
429
+
430
+
431
+ def strip_alias(col: str) -> str:
432
+ """Remove any AS alias from a column."""
433
+ col = col.strip()
434
+ upper = col.upper()
435
+ if " AS " in upper:
436
+ return col[: upper.index(" AS ")].strip()
437
+ parts_alias = col.split()
438
+ if len(parts_alias) > 1:
439
+ return " ".join(parts_alias[:-1])
440
+ return col
441
+
442
+
443
+ def collect_clause(statement, clause_keyword):
444
+ """Parse SQL statement and collect clauses."""
445
+ from sqlparse.tokens import Keyword
446
+
447
+ found = False
448
+ collected = []
449
+ for token in statement.tokens:
450
+ tvalue = token.value.upper()
451
+ if token.ttype is Keyword:
452
+ if tvalue.startswith(clause_keyword):
453
+ found = True
454
+ continue
455
+ if found and tvalue in (
456
+ "FROM",
457
+ "WHERE",
458
+ "GROUP",
459
+ "HAVING",
460
+ "ORDER",
461
+ "LIMIT",
462
+ ):
463
+ break
464
+ if found:
465
+ collected.append(token.value)
466
+ return " ".join(collected).strip()
467
+
468
+
469
+ def extract_select_info(sql: str):
470
+ """Parse SQL using sqlparse and return a dict of extracted columns and clauses."""
471
+ from sqlparse import parse
472
+ from sqlparse.tokens import DML
473
+
474
+ statements = parse(sql)
475
+ if len(statements) != 1:
476
+ return None
477
+ stmt = statements[0]
478
+ if not any(t.ttype is DML and t.value.upper() == "SELECT" for t in stmt.tokens):
479
+ return None
480
+ parts = {
481
+ "columns": None,
482
+ "from": "",
483
+ "where": "",
484
+ "group": "",
485
+ "having": "",
486
+ "order": "",
487
+ }
488
+ columns = extract_select_columns(stmt)
489
+ if not columns:
490
+ columns = frozenset()
491
+ parts["columns"] = columns
492
+ parts["from"] = collect_clause(stmt, "FROM")
493
+ parts["where"] = collect_clause(stmt, "WHERE")
494
+ parts["group"] = collect_clause(stmt, "GROUP")
495
+ parts["having"] = collect_clause(stmt, "HAVING")
496
+ parts["order"] = collect_clause(stmt, "ORDER")
497
+ return parts
498
+
499
+
500
+ def sqlparse_queries_equivalent(sql1: str, sql2: str) -> bool:
501
+ """Return True if both SQL queries are naively considered equivalent."""
502
+ try:
503
+ info1 = extract_select_info(sql1)
504
+ info2 = extract_select_info(sql2)
505
+ if not info1 or not info2:
506
+ return False
507
+ if info1["columns"] != info2["columns"]:
508
+ return False
509
+ for k in ["from", "where", "group", "having", "order"]:
510
+ if info1[k].replace(" ", "").upper() != info2[k].replace(" ", "").upper():
511
+ return False
512
+ return True
513
+ except Exception as e:
514
+ logger.debug(f"Errpr parsing SQL query for comparison: {e}")
515
+ return False
516
+
517
+
518
+ def sqlglot_parsed_queries_equivalent(sql1: str, sql2: str, dialect: str = "") -> bool:
519
+ from sqlglot import exp, parse_one
520
+
521
+ try:
522
+ ast1 = parse_one(sql1, read=dialect)
523
+ ast2 = parse_one(sql2, read=dialect)
524
+ except:
525
+ return False
526
+ if not (isinstance(ast1, exp.Select) and isinstance(ast2, exp.Select)):
527
+ return False
528
+
529
+ def normalized_select_columns(select_expr: exp.Select):
530
+ cols = []
531
+ for item in select_expr.expressions:
532
+ copy_item = item.copy()
533
+ copy_item.set("alias", None)
534
+ cols.append(copy_item.sql(dialect=dialect, normalize=True))
535
+ return frozenset(cols)
536
+
537
+ if normalized_select_columns(ast1) != normalized_select_columns(ast2):
538
+ return False
539
+
540
+ def normalized_clause(expr: exp.Expression, key: str):
541
+ clause = expr.args.get(key)
542
+ return clause.sql(dialect=dialect, normalize=True) if clause else ""
543
+
544
+ for clause_key in ("from", "where", "group", "having", "order"):
545
+ if normalized_clause(ast1, clause_key) != normalized_clause(ast2, clause_key):
546
+ return False
547
+
548
+ return True
549
+
550
+
551
+ def sql_exact_match(sql1: str, sql2: str) -> bool:
552
+ """Return True if two SQL strings match after very basic normalization."""
553
+
554
+ def normalize_sql(s: str) -> str:
555
+ s = s.strip().rstrip(";")
556
+ s = re.sub(r"\s+", " ", s)
557
+ return s.upper()
558
+
559
+ return normalize_sql(sql1) == normalize_sql(sql2)
standard.py CHANGED
@@ -27,7 +27,12 @@ from .splitters import ConstantSizeSample, RandomSizeSample, Sampler
27
  from .stream import MultiStream
28
  from .system_prompts import EmptySystemPrompt, SystemPrompt
29
  from .task import Task
30
- from .templates import ApplyRandomTemplate, ApplySingleTemplate, Template, TemplatesList
 
 
 
 
 
31
  from .type_utils import isoftype
32
  from .utils import LRUCache, recursive_copy
33
 
@@ -658,35 +663,31 @@ class DatasetRecipe(SourceSequentialOperator):
658
 
659
  self.finalize.steps.append(FinalizeDataset(group_by=self.group_by))
660
 
 
 
 
 
 
 
 
 
661
  def prepare(self):
662
  assert (
663
  self.template_card_index is None or self.template is None
664
  ), f"Specify either template ({self.template}) or template_card_index ({self.template_card_index}) but not both"
665
 
666
- if self.template_card_index is None and self.template is None:
667
- # First try to use the defined defaults
668
- if self.card.default_template is not None:
669
- self.template = self.card.default_template
 
 
 
 
 
670
  else:
671
  self.template = self.card.task.default_template
672
 
673
- # Than try to infer the default
674
- if self.template is None:
675
- if (
676
- self.card is not None
677
- and self.card.templates is not None
678
- and len(self.card.templates) > 0
679
- ):
680
- self.template_card_index = (
681
- 0
682
- if isinstance(self.card.templates, list)
683
- else next(iter(self.card.templates.keys()))
684
- )
685
- logger.warning(
686
- "Template was not specified in recipe, using the first template from the card by default."
687
- )
688
- else:
689
- self.template = self.card.task.default_template
690
 
691
  if self.template is None and self.template_card_index is not None:
692
  try:
@@ -704,6 +705,7 @@ class DatasetRecipe(SourceSequentialOperator):
704
  raise ValueError(
705
  "No template was specified in the the 'template' or 'template_card_index' recipe arguments, and no default templates are defined the card or task"
706
  )
 
707
  if self.use_demos:
708
  assert (
709
  self.demos_pool is not None
@@ -726,6 +728,7 @@ class DatasetRecipe(SourceSequentialOperator):
726
 
727
  if isinstance(self.template, TemplatesList):
728
  self.template = self.template.items
 
729
  self.reset_pipeline()
730
 
731
 
 
27
  from .stream import MultiStream
28
  from .system_prompts import EmptySystemPrompt, SystemPrompt
29
  from .task import Task
30
+ from .templates import (
31
+ ApplyRandomTemplate,
32
+ ApplySingleTemplate,
33
+ Template,
34
+ TemplatesList,
35
+ )
36
  from .type_utils import isoftype
37
  from .utils import LRUCache, recursive_copy
38
 
 
663
 
664
  self.finalize.steps.append(FinalizeDataset(group_by=self.group_by))
665
 
666
+ @property
667
+ def has_card_templates(self):
668
+ return self.card is not None and self.card.templates is not None and len(self.card.templates) > 0
669
+
670
+ @property
671
+ def has_no_templates(self):
672
+ return self.template_card_index is None and self.template is None
673
+
674
  def prepare(self):
675
  assert (
676
  self.template_card_index is None or self.template is None
677
  ), f"Specify either template ({self.template}) or template_card_index ({self.template_card_index}) but not both"
678
 
679
+ if self.has_no_templates:
680
+ if self.has_card_templates:
681
+ if isinstance(self.card.templates, list):
682
+ self.template_card_index = 0
683
+ else:
684
+ self.template_card_index = next(iter(self.card.templates.keys()))
685
+ logger.warning(
686
+ "Template was not specified in recipe, using the first template from the card by default."
687
+ )
688
  else:
689
  self.template = self.card.task.default_template
690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
691
 
692
  if self.template is None and self.template_card_index is not None:
693
  try:
 
705
  raise ValueError(
706
  "No template was specified in the the 'template' or 'template_card_index' recipe arguments, and no default templates are defined the card or task"
707
  )
708
+
709
  if self.use_demos:
710
  assert (
711
  self.demos_pool is not None
 
728
 
729
  if isinstance(self.template, TemplatesList):
730
  self.template = self.template.items
731
+
732
  self.reset_pipeline()
733
 
734
 
string_operators.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import re
2
  from typing import (
3
  Any,
@@ -7,7 +8,9 @@ from typing import (
7
  )
8
 
9
  from .operators import FieldOperator, InstanceOperator
 
10
 
 
11
 
12
  class Split(FieldOperator):
13
  by: str
@@ -30,8 +33,10 @@ class TokensSplit(FieldOperator):
30
  def prepare(self):
31
  super().prepare()
32
  from transformers import AutoTokenizer
33
-
34
- self.tokenizer = AutoTokenizer.from_pretrained(self.model)
 
 
35
 
36
  def process_value(self, value: str) -> List[str]:
37
  return self.tokenizer.tokenize(value)
@@ -48,8 +53,10 @@ class TokensSlice(FieldOperator):
48
  def prepare(self):
49
  super().prepare()
50
  from transformers import AutoTokenizer
51
-
52
- self.tokenizer = AutoTokenizer.from_pretrained(self.model)
 
 
53
 
54
  def process_value(self, value: str) -> str:
55
  encoded = self.tokenizer.encode(value)
 
1
+ import os
2
  import re
3
  from typing import (
4
  Any,
 
8
  )
9
 
10
  from .operators import FieldOperator, InstanceOperator
11
+ from .settings_utils import get_settings
12
 
13
+ settings = get_settings()
14
 
15
  class Split(FieldOperator):
16
  by: str
 
33
  def prepare(self):
34
  super().prepare()
35
  from transformers import AutoTokenizer
36
+ path = self.model
37
+ if settings.hf_offline_models_path is not None:
38
+ path = os.path.join(settings.hf_offline_models_path, path)
39
+ self.tokenizer = AutoTokenizer.from_pretrained(path)
40
 
41
  def process_value(self, value: str) -> List[str]:
42
  return self.tokenizer.tokenize(value)
 
53
  def prepare(self):
54
  super().prepare()
55
  from transformers import AutoTokenizer
56
+ path = self.model
57
+ if settings.hf_offline_models_path is not None:
58
+ path = os.path.join(settings.hf_offline_models_path, path)
59
+ self.tokenizer = AutoTokenizer.from_pretrained(path)
60
 
61
  def process_value(self, value: str) -> str:
62
  encoded = self.tokenizer.encode(value)
struct_data_operators.py CHANGED
@@ -23,7 +23,6 @@ For key-value pairs, expected input format is:
23
  {"key1": "value1", "key2": value2, "key3": "value3"}
24
  """
25
 
26
- import ast
27
  import json
28
  import random
29
  from abc import ABC, abstractmethod
@@ -43,6 +42,7 @@ from .error_utils import UnitxtWarning
43
  from .operators import FieldOperator, InstanceOperator
44
  from .random_utils import new_random_generator
45
  from .serializers import ImageSerializer, TableSerializer
 
46
  from .types import Table
47
  from .utils import recursive_copy
48
 
@@ -1025,16 +1025,21 @@ class ShuffleColumnsNames(TypeDependentAugmentor):
1025
 
1026
 
1027
  class JsonStrToListOfKeyValuePairs(FieldOperator):
1028
- def process_value(self, text: str) -> List[Tuple[str, str]]:
1029
- text = text.replace("null", "None")
1030
 
 
1031
  try:
1032
- dict_value = ast.literal_eval(text)
1033
  except Exception as e:
1034
  UnitxtWarning(
1035
  f"Unable to convert input text to json format in JsonStrToListOfKeyValuePairs due to {e}. Text: {text}"
1036
  )
1037
  dict_value = {}
 
 
 
 
 
1038
  return [
1039
  (str(key), str(value))
1040
  for key, value in dict_value.items()
 
23
  {"key1": "value1", "key2": value2, "key3": "value3"}
24
  """
25
 
 
26
  import json
27
  import random
28
  from abc import ABC, abstractmethod
 
42
  from .operators import FieldOperator, InstanceOperator
43
  from .random_utils import new_random_generator
44
  from .serializers import ImageSerializer, TableSerializer
45
+ from .type_utils import isoftype
46
  from .types import Table
47
  from .utils import recursive_copy
48
 
 
1025
 
1026
 
1027
  class JsonStrToListOfKeyValuePairs(FieldOperator):
1028
+ """Convert a Json string of representing key value as dictionary to list of key value pairs."""
 
1029
 
1030
+ def process_value(self, text: str) -> List[Tuple[str, str]]:
1031
  try:
1032
+ dict_value = json.loads(text)
1033
  except Exception as e:
1034
  UnitxtWarning(
1035
  f"Unable to convert input text to json format in JsonStrToListOfKeyValuePairs due to {e}. Text: {text}"
1036
  )
1037
  dict_value = {}
1038
+ if not isoftype(dict_value, Dict[str, Any]):
1039
+ UnitxtWarning(
1040
+ f"Unable to convert input text to dictionary in JsonStrToListOfKeyValuePairs. Text: {text}"
1041
+ )
1042
+ dict_value = {}
1043
  return [
1044
  (str(key), str(value))
1045
  for key, value in dict_value.items()
version.py CHANGED
@@ -1 +1 @@
1
- version = "1.18.0"
 
1
+ version = "1.19.0"