from random import Random from typing import ( Any, Dict, List, Optional, Union, ) from .operators import FieldOperator from .random_utils import new_random_generator from .type_utils import isoftype class Augmentor(FieldOperator): """A stream operator that augments the values of either the task input fields before rendering with the template, or the input passed to the model after rendering of the template.""" operator: FieldOperator def process_value(self, value: Any) -> Any: return self.operator.process_value(value) class TaskInputsAugmentor(Augmentor): def set_fields(self, fields: List[str]): fields = ["input_fields/" + field for field in fields] self.field_to_field = {field: field for field in fields} class FinalStateInputsAugmentor(Augmentor): pass class ModelInputAugmentor(FinalStateInputsAugmentor): field = "source" class ImagesAugmentor(FinalStateInputsAugmentor): field = "media/images" process_every_value = True class Identity(FieldOperator): def process_value(self, value: Any) -> Any: return value class NullAugmentor(Augmentor): """Does not change the input string.""" operator = Identity() class AugmentWhitespace(FieldOperator): """Augments the inputs by replacing existing whitespaces with other whitespaces. Currently, each whitespace is replaced by a random choice of 1-3 whitespace characters (space, tab, newline). """ def process_value(self, value: str) -> str: import re words = re.split(r"(\s+)", value) new_value = "" random_generator = new_random_generator(sub_seed=value) for word in words: if word.isspace(): new_value += random_generator.choice( ["\n", "\t", " "] ) * random_generator.randint(1, 3) else: new_value += word return new_value class AugmentPrefixSuffix(FieldOperator): r"""Augments the input by prepending and appending randomly selected (typically, whitespace) patterns. Args: prefixes, suffixes (list or dict) : the potential (typically, whitespace) patterns to select from. The dictionary version allows the specification relative weights for the different patterns. prefix_len, suffix_len (positive int) : The added prefix or suffix will be of a certain length. remove_existing_whitespaces : Clean any existing leading and trailing whitespaces. The strings made of repetitions of the selected pattern(s) are then prepended and/or appended to the potentially trimmed input. If only either just prefixes or just suffixes are needed, set the other to None. Examples: To prepend the input with a prefix made of 4 '\n'-s or '\t'-s, employ AugmentPrefixSuffix(augment_model_input=True, prefixes=['\n','\t'], prefix_len=4, suffixes = None) To append the input with a suffix made of 3 '\n'-s or '\t'-s, with triple '\n' suffixes being preferred over triple '\t', at 2:1 ratio, employ AugmentPrefixSuffix(augment_model_input=True, suffixes={'\n':2,'\t':1}, suffix_len=3, prefixes = None) which will append '\n'-s twice as often as '\t'-s. """ prefixes: Optional[Union[List[str], Dict[str, int]]] = { " ": 20, "\\t": 10, "\\n": 40, "": 30, } prefix_len: Optional[int] = 3 suffixes: Optional[Union[List[str], Dict[str, int]]] = { " ": 20, "\\t": 10, "\\n": 40, "": 30, } suffix_len: Optional[int] = 3 remove_existing_whitespaces: Optional[bool] = False def verify(self): assert ( self.prefixes or self.suffixes ), "At least one of prefixes/suffixes should be not None." for arg, arg_name in zip( [self.prefixes, self.suffixes], ["prefixes", "suffixes"] ): assert ( arg is None or isoftype(arg, List[str]) or isoftype(arg, Dict[str, int]) ), f"Argument {arg_name} should be either None or a list of strings or a dictionary str->int. {arg} is none of the above." assert ( self.prefix_len > 0 ), f"prefix_len must be positive, got {self.prefix_len}" assert ( self.suffix_len > 0 ), f"suffix_len must be positive, got {self.suffix_len}" super().verify() def _calculate_distributions(self, prefs_or_suffs): if prefs_or_suffs is None: return None, None patterns = ( prefs_or_suffs if isinstance(prefs_or_suffs, list) else [k for k, v in prefs_or_suffs.items()] ) total_weight = ( len(patterns) if isinstance(prefs_or_suffs, list) else sum([v for k, v in prefs_or_suffs.items()]) ) weights = ( [1.0 / total_weight] * len(patterns) if isinstance(prefs_or_suffs, list) else [float(prefs_or_suffs[p]) / total_weight for p in patterns] ) return patterns, weights def prepare(self): # Being an artifact, prepare is invoked before verify. Here we need verify before the actions self.verify() self._prefix_pattern_distribution = {"length": self.prefix_len} self._suffix_pattern_distribution = {"length": self.suffix_len} ( self._prefix_pattern_distribution["patterns"], self._prefix_pattern_distribution["weights"], ) = self._calculate_distributions(self.prefixes) ( self._suffix_pattern_distribution["patterns"], self._suffix_pattern_distribution["weights"], ) = self._calculate_distributions(self.suffixes) super().prepare() def _get_random_pattern( self, pattern_distribution, random_generator: Random ) -> str: string_to_add = "" if pattern_distribution["patterns"]: string_to_add = "".join( random_generator.choices( pattern_distribution["patterns"], pattern_distribution["weights"], k=pattern_distribution["length"], ) ) return string_to_add def process_value(self, value: Any) -> Any: assert value is not None, "input value should not be None" new_value = str(value) if self.remove_existing_whitespaces: new_value = new_value.strip() random_generator = new_random_generator(sub_seed=value) prefix = self._get_random_pattern( self._prefix_pattern_distribution, random_generator ) suffix = self._get_random_pattern( self._suffix_pattern_distribution, random_generator ) return prefix + new_value + suffix