File size: 2,153 Bytes
95669d7
 
e01653e
0b5daf1
 
 
 
 
 
 
 
e01653e
0b5daf1
 
 
 
 
 
 
 
 
 
 
e01653e
0b5daf1
 
 
95669d7
 
 
 
0b5daf1
95669d7
0b5daf1
 
 
 
 
 
 
 
 
95669d7
 
 
 
 
 
 
0b5daf1
e01653e
 
 
0b5daf1
6eb2f20
e01653e
 
 
 
0b5daf1
14417ab
e01653e
0b5daf1
e01653e
 
 
14417ab
 
0b5daf1
e01653e
 
0b5daf1
e01653e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#!/usr/bin/env python3
from os import listdir, path, PathLike, remove
from os.path import isfile, join, exists

import pandas as pd
import numpy as np
from PIL import Image
from PIL import ImageFile
from tqdm import tqdm

from uform import get_model
from usearch.index import Index, MetricKind
from usearch.io import save_matrix, load_matrix

ImageFile.LOAD_TRUNCATED_IMAGES = True


def is_image(path: PathLike) -> bool:
    if not isfile(path):
        return False
    try:
        Image.open(path)
        return True
    except Exception:
        return False


def trim_extension(filename: str) -> str:
    return filename.rsplit('.', 1)[0]


names = sorted(f for f in listdir('images') if is_image(join('images', f)))
names = [trim_extension(f) for f in names]

table = pd.read_table('images.tsv') if path.exists(
    'images.tsv') else pd.read_table('images.csv')
table = table[table['photo_id'].isin(names)]
table = table.sort_values('photo_id')
table.reset_index()
table.to_csv('images.csv', index=False)

names = list(set(table['photo_id']).intersection(names))
names_to_delete = [f for f in listdir(
    'images') if trim_extension(f) not in names]

if len(names_to_delete) > 0:
    print(f'Plans to delete: {len(names_to_delete)} images without metadata')
    for name in names_to_delete:
        remove(join('images', name))

if not exists('images.fbin'):
    model = get_model('unum-cloud/uform-vl-english')
    vectors = []

    for name in tqdm(list(table["photo_id"]), desc='Vectorizing images'):
        image = Image.open(join('images', name + '.jpg'))
        image_data = model.preprocess_image(image)
        image_embedding = model.encode_image(image_data).detach().numpy()
        vectors.append(image_embedding)

    image_mat = np.vstack(vectors)
    save_matrix(image_mat, 'images.fbin')

if not exists('images.usearch'):
    image_mat = load_matrix('images.fbin')
    count = image_mat.shape[0]
    ndim = image_mat.shape[1]
    index = Index(ndim=ndim, metric=MetricKind.Cos)

    for idx in tqdm(range(count), desc='Indexing vectors'):
        index.add(idx, image_mat[idx, :].flatten())

    index.save('images.usearch')