#!/usr/bin/env python3 from os import listdir, path, PathLike, remove from os.path import isfile, join, exists import pandas as pd import numpy as np from PIL import Image from PIL import ImageFile from tqdm import tqdm from uform import get_model from usearch.index import Index, MetricKind from usearch.io import save_matrix, load_matrix ImageFile.LOAD_TRUNCATED_IMAGES = True def is_image(path: PathLike) -> bool: if not isfile(path): return False try: Image.open(path) return True except Exception: return False def trim_extension(filename: str) -> str: return filename.rsplit('.', 1)[0] names = sorted(f for f in listdir('images') if is_image(join('images', f))) names = [trim_extension(f) for f in names] table = pd.read_table('images.tsv') if path.exists( 'images.tsv') else pd.read_table('images.csv') table = table[table['photo_id'].isin(names)] table = table.sort_values('photo_id') table.reset_index() table.to_csv('images.csv', index=False) names = list(set(table['photo_id']).intersection(names)) names_to_delete = [f for f in listdir( 'images') if trim_extension(f) not in names] if len(names_to_delete) > 0: print(f'Plans to delete: {len(names_to_delete)} images without metadata') for name in names_to_delete: remove(join('images', name)) if not exists('images.fbin'): model = get_model('unum-cloud/uform-vl-english') vectors = [] for name in tqdm(list(table["photo_id"]), desc='Vectorizing images'): image = Image.open(join('images', name + '.jpg')) image_data = model.preprocess_image(image) image_embedding = model.encode_image(image_data).detach().numpy() vectors.append(image_embedding) image_mat = np.vstack(vectors) save_matrix(image_mat, 'images.fbin') if not exists('images.usearch'): image_mat = load_matrix('images.fbin') count = image_mat.shape[0] ndim = image_mat.shape[1] index = Index(ndim=ndim, metric=MetricKind.Cos) for idx in tqdm(range(count), desc='Indexing vectors'): index.add(idx, image_mat[idx, :].flatten()) index.save('images.usearch')