from os import listdir, path, PathLike from os.path import isfile, join import pandas as pd import numpy as np from PIL import Image from PIL import ImageFile from tqdm import tqdm from uform import get_model from usearch.index import Index from usearch.io import save_matrix, load_matrix ImageFile.LOAD_TRUNCATED_IMAGES = True def is_image(path: PathLike) -> bool: if not isfile(path): return False try: Image.open(path) return True except: return False names = sorted(f for f in listdir('images') if is_image(join('images', f))) names = [filename.rsplit('.', 1)[0] for filename in names] table = pd.read_table('images.tsv') if path.exists( 'images.tsv') else pd.read_table('images.csv') table = table[table['photo_id'].isin(names)] table = table.sort_values('photo_id') table.reset_index() table.to_csv('images.csv', index=False) names = list(set(table['photo_id']).intersection(names)) model = get_model('unum-cloud/uform-vl-english') vectors = [] for name in tqdm(names, desc='Vectorizing images'): image = Image.open(join('images', name + '.jpg')) image_data = model.preprocess_image(image) image_embedding = model.encode_image(image_data).detach().numpy() vectors.append(image_embedding) image_mat = np.concatenate(vectors) save_matrix(image_mat, 'images.fbin') index = Index(ndim=256, metric='cos') image_mat = load_matrix('images.fbin') for idx, vector in tqdm(enumerate(vectors), desc='Indexing vectors'): index.add(idx, vector.flatten()) index.save('images.usearch')