Datasets:
Tasks:
Text2Text Generation
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
common-sense-inference
License:
"""TODO(event2Mind): Add a description here.""" | |
from __future__ import absolute_import, division, print_function | |
import csv | |
import os | |
import datasets | |
# TODO(event2Mind): BibTeX citation | |
_CITATION = """\ | |
@inproceedings{event2Mind, | |
title={Event2Mind: Commonsense Inference on Events, Intents, and Reactions}, | |
author={Hannah Rashkin and Maarten Sap and Emily Allaway and Noah A. Smith† Yejin Choi}, | |
year={2018} | |
} | |
""" | |
# TODO(event2Mind):\ | |
_DESCRIPTION = """\ | |
In Event2Mind, we explore the task of understanding stereotypical intents and reactions to events. Through crowdsourcing, we create a large corpus with 25,000 events and free-form descriptions of their intents and reactions, both of the event's subject and (potentially implied) other participants. | |
""" | |
_URL = "https://uwnlp.github.io/event2mind/data/event2mind.zip" | |
class Event2mind(datasets.GeneratorBasedBuilder): | |
"""TODO(event2Mind): Short description of my dataset.""" | |
# TODO(event2Mind): Set up version. | |
VERSION = datasets.Version("0.1.0") | |
def _info(self): | |
# TODO(event2Mind): Specifies the datasets.DatasetInfo object | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# datasets.features.FeatureConnectors | |
features=datasets.Features( | |
{ | |
# These are the features of your dataset like images, labels ... | |
"Source": datasets.Value("string"), | |
"Event": datasets.Value("string"), | |
"Xintent": datasets.Value("string"), | |
"Xemotion": datasets.Value("string"), | |
"Otheremotion": datasets.Value("string"), | |
"Xsent": datasets.Value("string"), | |
"Osent": datasets.Value("string"), | |
} | |
), | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage="https://uwnlp.github.io/event2mind/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO(event2Mind): Downloads the data and defines the splits | |
# dl_manager is a datasets.download.DownloadManager that can be used to | |
# download and extract URLs | |
dl_dir = dl_manager.download_and_extract(_URL) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(dl_dir, "train.csv")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(dl_dir, "test.csv")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(dl_dir, "dev.csv")}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
# TODO(event2Mind): Yields (key, example) tuples from the dataset | |
with open(filepath, encoding="utf-8") as f: | |
data = csv.DictReader(f) | |
for id_, row in enumerate(data): | |
yield id_, { | |
"Source": row["Source"], | |
"Event": row["Event"], | |
"Xintent": row["Xintent"], | |
"Xemotion": row["Xemotion"], | |
"Otheremotion": row["Otheremotion"], | |
"Xsent": row["Xsent"], | |
"Osent": row["Osent"], | |
} | |