Datasets:
File size: 7,336 Bytes
944c852 0cc5d5b 944c852 0cc5d5b 944c852 0cc5d5b 944c852 ff36543 944c852 8863b26 944c852 ff36543 944c852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
languages:
- en
- de
licenses:
- mit
multilinguality:
- multilingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- multi-label-classification
- semantic-similarity-classification
pretty_name: SV-Ident
paperswithcode_id: sv-ident
---
# Dataset Card for SV-Ident
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://vadis-project.github.io/sv-ident-sdp2022/
- **Repository:** https://github.com/vadis-project/sv-ident
- **Paper:** [Needs More Information]
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** svident2022@googlegroups.com
### Dataset Summary
SV-Ident comprises 4,248 sentences from social science publications in English and German. The data is the official data for the Shared Task: “Survey Variable Identification in Social Science Publications” (SV-Ident) 2022. Visit the homepage to find out more details about the shared task.
### Supported Tasks and Leaderboards
The dataset supports:
- **Variable Detection**: identifying whether a sentence contains a variable mention or not.
- **Variable Disambiguation**: identifying which variable from a given vocabulary is mentioned in a sentence.
### Languages
The text in the dataset is in English and German, as written by researchers. The domain of the texts is scientific publications in the social sciences.
## Dataset Structure
### Data Instances
```
{
"sentence": "Our point, however, is that so long as downward (favorable comparisons overwhelm the potential for unfavorable comparisons, system justification should be a likely outcome amongst the disadvantaged.",
"is_variable": 1,
"variable": ["exploredata-ZA5400_VarV66", "exploredata-ZA5400_VarV53"],
"research_data": ["ZA5400"],
"doc_id": "73106",
"uuid": "b9fbb80f-3492-4b42-b9d5-0254cc33ac10",
"lang": "en",
}
```
### Data Fields
The following data fields are provided for documents:
```
`sentence`: Textual instance, which may contain a variable mention.<br />
`is_variable`: Label, whether the textual instance contains a variable mention (1) or not (0). This column can be used for Task 1 (Variable Detection).<br />
`variable`: Variables (separated by a comma ";") that are mentioned in the textual instance. This column can be used for Task 2 (Variable Disambiguation). Variables with the "unk" tag could not be mapped to a unique variable.<br />
`research_data`: Research data IDs (separated by a ";") that are relevant for each instance (and in general for each "doc_id").<br />
`doc_id`: ID of the source document. Each document is written in one language (either English or German).<br />
`uuid`: Unique ID of the instance in uuid4 format.<br />
`lang`: Language of the sentence.
```
The language for each document can be found in the document-language mapping file [here](https://github.com/vadis-project/sv-ident/blob/main/data/train/document_languages.json), which maps `doc_id` to a language code (`en`, `de`). The variables metadata (i.e., the vocabulary) can be downloaded from this [link](https://drive.google.com/file/d/18slgACOcE8-_xIDX09GrdpFSqRRcBiON/view?usp=sharing). Note, that each `research_data` contains hundreds of variables (these can be understood as the corpus of documents to choose the most relevant from). If the variable has an "unk" tag, it means that the sentence contains a variable that has not been disambiguated. Such sentences could be used for Task 1 and filtered out for Task 2. The metadata file has the following format:
```
{
"research_data_id_1": {
"variable_id_1": VARIABLE_METADATA,
...
"variable_id_n": VARIABLE_METADATA,
},
...
"research_data_id_n": {...},
}
```
Each variable may contain all (or some) of the following values:
```
study_title: The title of the research data study.
variable_label: The label of the variable.
variable_name: The name of the variable.
question_text: The question of the variable in the original language.
question_text_en: The question of the variable in English.
sub_question: The sub-question of the variable.
item_categories: The item categories of the variable.
answer_categories: The answers of the variable.
topic: The topics of the variable in the original language.
topic_en: The topics of the variable in English.
```
### Data Splits
| Split | Number of sentences |
| ------------------- | ------------------------------------ |
| Train | 4,248 |
## Dataset Creation
### Curation Rationale
The dataset was curated by the VADIS project (https://vadis-project.github.io/).
The documents were annotated by two expert annotators.
### Source Data
#### Initial Data Collection and Normalization
The original data are available at GESIS (https://www.gesis.org/home) in an unprocessed format.
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
The documents were annotated by two expert annotators.
### Personal and Sensitive Information
The dataset does not include personal or sensitive information.
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
VADIS project (https://vadis-project.github.io/)
### Licensing Information
All documents originate from the Social Science Open Access Repository (SSOAR) and are licensed accordingly. The original document URLs are provided in [document_urls.json](https://github.com/vadis-project/sv-ident/blob/main/data/train/document_urlsjson). For more information on licensing, please refer to the terms and conditions on the [SSAOR Grant of Licenses page](https://www.gesis.org/en/ssoar/home/information/grant-of-licences).
### Citation Information
```
@misc{sv-ident,
author={vadis-project},
title={SV-Ident},
year={2022},
url={https://github.com/vadis-project/sv-ident},
}
```
### Contributions
[Needs More Information] |