|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Survey Variable Identification (SV-Ident) Corpus.""" |
|
|
|
import csv |
|
import random |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@misc{sv-ident, |
|
author={vadis-project}, |
|
title={SV-Ident}, |
|
year={2022}, |
|
url={https://github.com/vadis-project/sv-ident}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The SV-Ident corpus (version 0.3) is a collection of 4,248 expert-annotated English |
|
and German sentences from social science publications, supporting the task of |
|
multi-label text classification. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/vadis-project/sv-ident" |
|
|
|
|
|
|
|
|
|
_URL = "https://raw.githubusercontent.com/vadis-project/sv-ident/a8e71bba570f628c460e2b542d4cc645e4eb7d03/data/train/" |
|
_URLS = { |
|
"train": _URL+"train.tsv", |
|
"dev": _URL+"val.tsv", |
|
|
|
} |
|
|
|
|
|
class SVIdent(datasets.GeneratorBasedBuilder): |
|
"""Survey Variable Identification (SV-Ident) Corpus.""" |
|
|
|
VERSION = datasets.Version("0.3.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"sentence": datasets.Value("string"), |
|
"is_variable": datasets.ClassLabel(names=["0", "1"]), |
|
"variable": datasets.Sequence(datasets.Value(dtype="string")), |
|
"research_data": datasets.Sequence(datasets.Value(dtype="string")), |
|
"doc_id": datasets.Value("string"), |
|
"uuid": datasets.Value("string"), |
|
"lang": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=("sentence", "is_variable"), |
|
homepage=_HOMEPAGE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
downloaded_files = dl_manager.download(_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["dev"], |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
data = [] |
|
with open(filepath, newline="", encoding="utf-8") as csvfile: |
|
reader = csv.reader(csvfile, delimiter="\t") |
|
next(reader, None) |
|
for row in reader: |
|
data.append(row) |
|
|
|
seed = 42 |
|
random.seed(seed) |
|
random.shuffle(data) |
|
|
|
for id_, example in enumerate(data): |
|
sentence = example[0] |
|
is_variable = example[1] |
|
variable = example[2] if example[2] != "" else [] |
|
if variable: |
|
variable = variable.split(";") if ";" in variable else [variable] |
|
research_data = example[3] if example[3] != "" else [] |
|
if research_data: |
|
research_data = research_data.split(";") if ";" in research_data else [research_data] |
|
doc_id = example[4] |
|
uuid = example[5] |
|
lang = example[6] |
|
|
|
yield id_, { |
|
"sentence": sentence, |
|
"is_variable": is_variable, |
|
"variable": variable, |
|
"research_data": research_data, |
|
"doc_id": doc_id, |
|
"uuid": uuid, |
|
"lang": lang, |
|
} |
|
|