Gormery Kombo Wanjiru commited on
Commit
57a7965
·
1 Parent(s): 17edc76

attempt at making loadscript

Browse files
Files changed (1) hide show
  1. load_script.py +145 -0
load_script.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import cv2
4
+ from datasets import Dataset, DatasetDict, Features, Value, Array2D, Array3D, Sequence
5
+ from pathlib import Path
6
+ import numpy as np
7
+
8
+ # Define constants
9
+ VIDEO_EXTENSIONS = ['.avi']
10
+ JSON_EXTENSIONS = ['.json']
11
+ KEYPOINTS = [
12
+ "nose", "left_eye", "right_eye", "left_ear", "right_ear", "left_shoulder", "right_shoulder",
13
+ "left_elbow", "right_elbow", "left_wrist", "right_wrist", "left_hip", "right_hip",
14
+ "left_knee", "right_knee", "left_ankle", "right_ankle"
15
+ ]
16
+
17
+ def load_video(video_path):
18
+ """Reads a video file and returns a list of frames as NumPy arrays."""
19
+ cap = cv2.VideoCapture(video_path)
20
+ frames = []
21
+
22
+ while cap.isOpened():
23
+ ret, frame = cap.read()
24
+ if not ret:
25
+ break
26
+ frames.append(frame)
27
+
28
+ cap.release()
29
+ return np.array(frames)
30
+
31
+ def load_json(json_path):
32
+ """Loads the JSON keypoint data for each frame."""
33
+ with open(json_path, 'r') as f:
34
+ data = json.load(f)
35
+ return data
36
+
37
+ def process_frame_data(frame_data):
38
+ """Converts the frame's keypoints into a structured format."""
39
+ detections = []
40
+
41
+ # Check if 'data' exists in the frame_data
42
+ if 'detections' in frame_data:
43
+ for detection in frame_data['detections']: # Now using 'data' instead of 'detections'
44
+ if detection: # Check if there's any valid detection data
45
+ person = {
46
+ "confidence": detection.get("confidence", 0),
47
+ "box": detection.get("box", {}),
48
+ "keypoints": {
49
+ keypoint['label']: keypoint['coordinates']
50
+ for keypoint in detection.get('keypoints', [])
51
+ }
52
+ }
53
+ detections.append(person)
54
+ else:
55
+ print(f"Warning: Empty detection in frame {frame_data['frame_index']}")
56
+ else:
57
+ # Handle the case where 'data' is missing in the frame data
58
+ print(f"Warning: 'data' key missing in frame data: {frame_data}")
59
+
60
+ return detections
61
+
62
+
63
+
64
+ def get_file_paths(base_path, split="train"):
65
+ """Returns video and JSON file paths."""
66
+ video_paths = []
67
+ json_paths = []
68
+ split_path = os.path.join(base_path, split)
69
+
70
+ for label in ['Fight', 'NonFight']:
71
+ label_path = os.path.join(split_path, label)
72
+ for video_folder in os.listdir(label_path):
73
+ video_folder_path = os.path.join(label_path, video_folder)
74
+ video_file = next((f for f in os.listdir(video_folder_path) if any(f.endswith(ext) for ext in VIDEO_EXTENSIONS)), None)
75
+ json_file = next((f for f in os.listdir(video_folder_path) if any(f.endswith(ext) for ext in JSON_EXTENSIONS)), None)
76
+
77
+ if video_file and json_file:
78
+ video_paths.append(os.path.join(video_folder_path, video_file))
79
+ json_paths.append(os.path.join(video_folder_path, json_file))
80
+
81
+ return video_paths, json_paths
82
+
83
+ def load_data(base_path, split="train"):
84
+ """Loads and processes the data for a given split (train or val)."""
85
+ video_paths, json_paths = get_file_paths(base_path, split)
86
+ dataset = []
87
+
88
+ for video_path, json_path in zip(video_paths, json_paths):
89
+ # Load video frames
90
+ frames = load_video(video_path)
91
+
92
+ # Load JSON keypoints
93
+ keypoints_data = load_json(json_path)
94
+
95
+ # Process the data
96
+ frame_data = [process_frame_data(frame) for frame in keypoints_data]
97
+
98
+ # Construct the data record
99
+ dataset.append({
100
+ 'video': frames,
101
+ 'keypoints': frame_data,
102
+ 'video_path': video_path,
103
+ 'json_path': json_path
104
+ })
105
+
106
+ return dataset
107
+
108
+ def main():
109
+ # Path to the dataset directory
110
+ dataset_dir = '.' # Replace with your actual dataset path
111
+
112
+ # Load training and validation data
113
+ train_data = load_data(dataset_dir, split="train")
114
+ val_data = load_data(dataset_dir, split="val")
115
+
116
+ # Convert to Hugging Face Dataset
117
+ train_features = Features({
118
+ 'video': Array3D(dtype='int32', shape=(None, None, None)), # None indicates variable sizes
119
+ 'keypoints': Sequence(Features({
120
+ 'person_id': Value('int32'),
121
+ 'confidence': Value('float32'),
122
+ 'box': {
123
+ 'x1': Value('float32'),
124
+ 'y1': Value('float32'),
125
+ 'x2': Value('float32'),
126
+ 'y2': Value('float32')
127
+ },
128
+ 'keypoints': {key: Array2D(dtype='float32', shape=(2,)) for key in KEYPOINTS}
129
+ })),
130
+ 'video_path': Value('string'),
131
+ 'json_path': Value('string')
132
+ })
133
+
134
+ # Create DatasetDict
135
+ dataset_dict = DatasetDict({
136
+ 'train': Dataset.from_dict(train_data, features=train_features),
137
+ 'val': Dataset.from_dict(val_data, features=train_features)
138
+ })
139
+
140
+ # Save or push dataset to Hugging Face
141
+ dataset_dict.save_to_disk("keypoints_keyger")
142
+ # Or to upload: dataset_dict.push_to_hub("your_dataset_name")
143
+
144
+ if __name__ == "__main__":
145
+ main()