Search is not available for this dataset
video
video
label
class label
2.46k classes
0-1l5631l3fg_0
0-1l5631l3fg_0
1-1l5631l3fg_1
1-1l5631l3fg_1
2-1l5631l3fg_2
2-1l5631l3fg_2
401103c7a99b74ff39b6cd0e6a51d1be6
401103c7a99b74ff39b6cd0e6a51d1be6
50179aafd43e44c06a04ed68fb347919f
50179aafd43e44c06a04ed68fb347919f
6038dea06b57f4d998fc8a31f5871d2c4
6038dea06b57f4d998fc8a31f5871d2c4
703b9a36cf1614ffc97e9ec0d06a6179f
703b9a36cf1614ffc97e9ec0d06a6179f
905fb8b75bf3948c7920476096ed10c39
905fb8b75bf3948c7920476096ed10c39
120878bc5f834b4e01802aa0884278365a
120878bc5f834b4e01802aa0884278365a
160H2s9UJcNJ0_0
160H2s9UJcNJ0_0
180H2s9UJcNJ0_2
180H2s9UJcNJ0_2
190H2s9UJcNJ0_3
190H2s9UJcNJ0_3
200H2s9UJcNJ0_4
200H2s9UJcNJ0_4
210H2s9UJcNJ0_5
210H2s9UJcNJ0_5
220NWz-01A2yk_0
220NWz-01A2yk_0
230NWz-01A2yk_1
230NWz-01A2yk_1
240NWz01A2yk_0
240NWz01A2yk_0
250NWz01A2yk_1
250NWz01A2yk_1
350TFi8D8IBg4_1
350TFi8D8IBg4_1
410_DzLlklZa0_3
410_DzLlklZa0_3
420_DzLlklZa0_4
420_DzLlklZa0_4
430_DzLlklZa0_5
430_DzLlklZa0_5
440_DzLlklZa0_6
440_DzLlklZa0_6
450bb47bb4c93a4715b5a40bdc55f5d8bb
450bb47bb4c93a4715b5a40bdc55f5d8bb
480c1f5726fa814d39936b14fe97caee88
480c1f5726fa814d39936b14fe97caee88
510lHQ2f0d_0
510lHQ2f0d_0
520lHQ2f0d_1
520lHQ2f0d_1
530lHQ2f0d_2
530lHQ2f0d_2
540lHQ2f0d_3
540lHQ2f0d_3
550vasozvJYvk_0
550vasozvJYvk_0
591060314_17
591060314_17
6211da811f37bb4944b979fc533347d09f
6211da811f37bb4944b979fc533347d09f
6614380419c1ee48ce836bff6de3ed742e
6614380419c1ee48ce836bff6de3ed742e
67144c06173cb7417c9ca93145ead53551
67144c06173cb7417c9ca93145ead53551
69160fad5196574af68c02e901a026be86
69160fad5196574af68c02e901a026be86
7116d9cb7dd6cc48c1bd84d48172144a71
7116d9cb7dd6cc48c1bd84d48172144a71
7217dbf1038c334964a2f6d9cbbe69205e
7217dbf1038c334964a2f6d9cbbe69205e
7418d9f252e322484caf6784b66736d267
7418d9f252e322484caf6784b66736d267
7518de20bfba874053a4da278cfa597969
7518de20bfba874053a4da278cfa597969
811DwRGRND_0
811DwRGRND_0
821DwRGRND_1
821DwRGRND_1
931O4KGHbRt3M_0
931O4KGHbRt3M_0
941O4KGHbRt3M_1
941O4KGHbRt3M_1
951O4KGHbRt3M_2
951O4KGHbRt3M_2
961O4KGHbRt3M_3
961O4KGHbRt3M_3
971O4KGHbRt3M_4
971O4KGHbRt3M_4
1041XFiS6Lt_0
1041XFiS6Lt_0
1051XFiS6Lt_1
1051XFiS6Lt_1
1091b040cede42b475a95c05849fb30923f
1091b040cede42b475a95c05849fb30923f
1101b311fce9d824b8a9a70c5849a7d95e6
1101b311fce9d824b8a9a70c5849a7d95e6
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Keypoints-RWF-total Dataset

This dataset is a fusion of three distinct datasets:

  1. RWF-2000: A dataset that includes videos of real-world fights and non-fight scenarios.
  2. Hockey Violence Dataset: A dataset focused on violent interactions in hockey games.
  3. Airtlab Violence Dataset: A dataset containing videos of violent incidents in various settings.

Important Note: We do not own these datasets. By using this dataset, you are agreeing to follow the rules and licensing agreements of the original datasets. Please ensure you review the terms of use for the individual datasets: RWF-2000 Terms, Hockey Violence Dataset Terms, and Airtlab Violence Dataset Terms.

Dataset Structure

The dataset structure is as follows:

../keypoints-rwf-2000/
├── train/
│   ├── Fight/
│   │   ├── _2RYnSFPD_U_0/
│   │   │   ├── _2RYnSFPD_U_0.avi            # Original video
│   │   │   ├── _2RYnSFPD_U_0_processed.avi  # Processed video
│   │   │   └── _2RYnSFPD_U_0.json           # Keypoint or metadata JSON
│   │   └── [more video folders...]
│   └── NonFight/
│       └── [more video folders...]
├── val/
│   ├── Fight/
│   │   ├── _2RYnSFPD_U_0/
│   │   │   ├── _2RYnSFPD_U_0.avi            # Original video
│   │   │   ├── _2RYnSFPD_U_0_processed.avi  # Processed video
│   │   │   └── _2RYnSFPD_U_0.json           # Keypoint or metadata JSON
│   │   └── [more video folders...]
│   └── NonFight/
│       └── [more video folders...]
└── [other files...]

Files Explanation:

  • .avi files: The original video (.avi) and processed video (_processed.avi) files.
  • the processed video is just the normal video with visualization of the keypoints and detections
  • .json files: Each video has a corresponding JSON file that contains keypoints data.

JSON Structure

The JSON files are structured as a list of frames, where each frame contains detections for multiple people. Each person in the frame has keypoints with their coordinates and associated confidence scores. Here's an example of the JSON structure:

[
    {
        "frame": 0,
        "detections": [
            {
                "person_id": 1,
                "confidence": 0.6331493258476257,
                "box": {
                    "x1": 67.0,
                    "y1": 7.0,
                    "x2": 173.0,
                    "y2": 305.0
                },
                "keypoints": [
                    {
                        "label": "nose",
                        "coordinates": {
                            "x": 0.0,
                            "y": 0.0
                        },
                        "confidence": 0.30005577206611633
                    },
                    {
                        "label": "left_eye",
                        "coordinates": {
                            "x": 0.0,
                            "y": 0.0
                        },
                        "confidence": 0.06836472451686859
                    },
                    {
                        "label": "right_eye",
                        "coordinates": {
                            "x": 0.0,
                            "y": 0.0
                        },
                        "confidence": 0.3499656617641449
                    },
                    ...
                ]
            },
            {
                "person_id": 2,
                "confidence": 0.615151047706604,
                "box": {
                    "x1": 388.0,
                    "y1": 22.0,
                    "x2": 499.0,
                    "y2": 230.0
                },
                "keypoints": [
                    {
                        "label": "nose",
                        "coordinates": {
                            "x": 445.0414123535156,
                            "y": 62.61204528808594
                        },
                        "confidence": 0.9617932438850403
                    },
                    ...
                ]
            }
        ]
    },
    {
        "frame": 1,
        "detections": [
            ...
        ]
    },
    ...
]

Keypoint Details:

Each person detected in the frame has several keypoints like "nose", "left_eye", "right_eye", etc., with the following data:

  • label: The name of the keypoint (e.g., "nose", "left_shoulder").
  • coordinates: The (x, y) coordinates of the keypoint.
  • confidence: The confidence score indicating the accuracy of the detection.

Usage

You can use the dataset for training and validation purposes. To load and process the data, refer to the load_script.py in the repository, which provides the functionality to load and preprocess the videos and their associated keypoints.

Ensure that you are following the respective dataset licenses and terms of use when using this dataset for your research or projects.

Downloads last month
16
Edit dataset card