File size: 9,262 Bytes
cd451ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import os
import pandas as pd
import numpy as np
from typing import Any, Union
from string import Template
import requests
import pickle
from concurrent.futures import ThreadPoolExecutor, as_completed
from tqdm import tqdm
import time
from datetime import datetime
from utils import ROOT_DIR, TMP_DIR
NUM_WORKERS = 10
IPFS_POLL_INTERVAL = 0.2
INVALID_ANSWER_HEX = (
"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
)
INVALID_ANSWER = -1
SUBGRAPH_API_KEY = os.environ.get("SUBGRAPH_API_KEY", None)
OMEN_SUBGRAPH_URL = Template(
"""https://gateway-arbitrum.network.thegraph.com/api/${subgraph_api_key}/subgraphs/id/9fUVQpFwzpdWS9bq5WkAnmKbNNcoBwatMR4yZq81pbbz"""
)
get_token_amounts_query = Template(
"""
{
fpmmLiquidities(
where: {
fpmm_: {
creator: "${fpmm_creator}",
id: "${fpmm_id}",
},
id_gt: ""
}
orderBy: creationTimestamp
orderDirection: asc
)
{
id
outcomeTokenAmounts
creationTimestamp
additionalLiquidityParameter
}
}
"""
)
CREATOR = "0x89c5cc945dd550BcFfb72Fe42BfF002429F46Fec"
PEARL_CREATOR = "0xFfc8029154ECD55ABED15BD428bA596E7D23f557"
market_creators_map = {"quickstart": CREATOR, "pearl": PEARL_CREATOR}
headers = {
"Accept": "application/json, multipart/mixed",
"Content-Type": "application/json",
}
def _to_content(q: str) -> dict[str, Any]:
"""Convert the given query string to payload content, i.e., add it under a `queries` key and convert it to bytes."""
finalized_query = {
"query": q,
"variables": None,
"extensions": {"headers": None},
}
return finalized_query
def collect_liquidity_info(
index: int, fpmm_id: str, market_creator: str
) -> dict[str, Any]:
omen_subgraph = OMEN_SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY)
market_creator_id = market_creators_map[market_creator]
query = get_token_amounts_query.substitute(
fpmm_creator=market_creator_id.lower(),
fpmm_id=fpmm_id,
)
content_json = _to_content(query)
# print(f"Executing liquidity query {query}")
res = requests.post(omen_subgraph, headers=headers, json=content_json)
result_json = res.json()
tokens_info = result_json.get("data", {}).get("fpmmLiquidities", [])
if not tokens_info:
return None
# the last item is the final information of the market
last_info = tokens_info[-1]
token_amounts = [int(x) for x in last_info["outcomeTokenAmounts"]]
time.sleep(IPFS_POLL_INTERVAL)
return {fpmm_id: token_amounts}
def convert_hex_to_int(x: Union[str, float]) -> Union[int, float]:
"""Convert hex to int"""
if isinstance(x, float):
return np.nan
if isinstance(x, str):
if x == INVALID_ANSWER_HEX:
return "invalid"
return "yes" if int(x, 16) == 0 else "no"
def get_closed_markets():
print("Reading parquet file with closed markets data from trades")
try:
markets = pd.read_parquet(TMP_DIR / "fpmmTrades.parquet")
except Exception:
print("Error reading the parquet file")
columns_of_interest = [
"fpmm.currentAnswer",
"fpmm.id",
"fpmm.openingTimestamp",
"market_creator",
]
markets = markets[columns_of_interest]
markets.rename(
columns={
"fpmm.currentAnswer": "currentAnswer",
"fpmm.openingTimestamp": "openingTimestamp",
"fpmm.id": "id",
},
inplace=True,
)
markets = markets.drop_duplicates(subset=["id"], keep="last")
# remove invalid answers
markets = markets.loc[markets["currentAnswer"] != INVALID_ANSWER_HEX]
markets["currentAnswer"] = markets["currentAnswer"].apply(
lambda x: convert_hex_to_int(x)
)
markets.dropna(inplace=True)
markets["opening_datetime"] = markets["openingTimestamp"].apply(
lambda x: datetime.fromtimestamp(int(x))
)
markets = markets.sort_values(by="opening_datetime", ascending=True)
return markets
def kl_divergence(P, Q):
"""
Compute KL divergence for a single sample with two prob distributions.
:param P: True distribution)
:param Q: Approximating distribution)
:return: KL divergence value
"""
# Review edge cases
if P[0] == Q[0]:
return 0.0
# If P is complete opposite of Q, divergence is some max value.
# Here set to 20--allows for Q [\mu, 1-\mu] or Q[1-\mu, \mu] where \mu = 10^-8
if P[0] == Q[1]:
return 20
nonzero = P > 0.0
# Compute KL divergence
kl_div = np.sum(P[nonzero] * np.log(P[nonzero] / Q[nonzero]))
return kl_div
def market_KL_divergence(market_row: pd.DataFrame) -> float:
"""Function to compute the divergence based on the formula
Formula in https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence"""
current_answer = market_row.currentAnswer # "yes", "no"
approx_prob = market_row.first_outcome_prob
true_prob = 1.0 # for yes outcome
if current_answer == "no":
true_prob = 0.0 # = 0% for yes outcome and 100% for no
# we have only one sample, the final probability based on tokens
# Ensure probabilities sum to 1
P = np.array([true_prob, 1 - true_prob])
Q = np.array([approx_prob, 1 - approx_prob])
return kl_divergence(P, Q)
def off_by_values(market_row: pd.DataFrame) -> float:
current_answer = market_row.currentAnswer # "yes", "no"
approx_prob = market_row.first_outcome_prob
true_prob = 1.0 # for yes outcome
if current_answer == "no":
true_prob = 0.0 # = 0% for yes outcome and 100% for no
# we have only one sample, the final probability based on tokens
# Ensure probabilities sum to 1
P = np.array([true_prob, 1 - true_prob])
Q = np.array([approx_prob, 1 - approx_prob])
return abs(P[0] - Q[0]) * 100.0
def compute_tokens_prob(token_amounts: list) -> list:
first_token_amounts = token_amounts[0]
second_token_amounts = token_amounts[1]
total_tokens = first_token_amounts + second_token_amounts
first_token_prob = 1 - round((first_token_amounts / total_tokens), 4)
return [first_token_prob, 1 - first_token_prob]
def prepare_closed_markets_data():
closed_markets = get_closed_markets()
closed_markets["first_outcome_prob"] = -1.0
closed_markets["second_outcome_prob"] = -1.0
total_markets = len(closed_markets)
markets_no_info = []
no_info = 0
with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:
futures = []
for i in range(total_markets):
futures.append(
executor.submit(
collect_liquidity_info,
i,
closed_markets.iloc[i].id,
closed_markets.iloc[i].market_creator,
)
)
markets_with_info = 0
for future in tqdm(
as_completed(futures),
total=len(futures),
desc=f"Fetching Market liquidity info",
):
token_amounts_dict = future.result()
if token_amounts_dict:
fpmm_id, token_amounts = token_amounts_dict.popitem()
if token_amounts:
tokens_prob = compute_tokens_prob(token_amounts)
closed_markets.loc[
closed_markets["id"] == fpmm_id, "first_outcome_prob"
] = tokens_prob[0]
closed_markets.loc[
closed_markets["id"] == fpmm_id, "second_outcome_prob"
] = tokens_prob[1]
markets_with_info += 1
else:
tqdm.write(f"Skipping market with no liquidity info")
markets_no_info.append(i)
else:
tqdm.write(f"Skipping market with no liquidity info")
no_info += 1
print(f"Markets with info = {markets_with_info}")
# Removing markets with no liq info
closed_markets = closed_markets.loc[closed_markets["first_outcome_prob"] != -1.0]
print(
f"Finished computing all markets liquidity info. Final length = {len(closed_markets)}"
)
if len(markets_no_info) > 0:
print(
f"There were {len(markets_no_info)} markets with no liquidity info. Printing some index of the dataframe"
)
with open("no_liq_info.pickle", "wb") as file:
pickle.dump(markets_no_info, file)
print(markets_no_info[:1])
print(closed_markets.head())
# Add the Kullback–Leibler divergence values
print("Computing Kullback–Leibler (KL) divergence")
closed_markets["kl_divergence"] = closed_markets.apply(
lambda x: market_KL_divergence(x), axis=1
)
closed_markets["off_by_perc"] = closed_markets.apply(
lambda x: off_by_values(x), axis=1
)
closed_markets.to_parquet(ROOT_DIR / "closed_markets_div.parquet", index=False)
print("Finished preparing final dataset for visualization")
print(closed_markets.head())
if __name__ == "__main__":
prepare_closed_markets_data()
|