File size: 18,688 Bytes
cd451ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23d3748
cd451ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b6844e
cd451ea
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
#   -*- coding: utf-8 -*-
#   ------------------------------------------------------------------------------
#
#     Copyright 2023 Valory AG
#
#     Licensed under the Apache License, Version 2.0 (the "License");
#     you may not use this file except in compliance with the License.
#     You may obtain a copy of the License at
#
#         http://www.apache.org/licenses/LICENSE-2.0
#
#     Unless required by applicable law or agreed to in writing, software
#     distributed under the License is distributed on an "AS IS" BASIS,
#     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#     See the License for the specific language governing permissions and
#     limitations under the License.
#
#   ------------------------------------------------------------------------------

import time
import pandas as pd
from typing import Any
from enum import Enum
from tqdm import tqdm
import numpy as np
from web3_utils import query_conditional_tokens_gc_subgraph
from get_mech_info import (
    DATETIME_60_DAYS_AGO,
    update_tools_parquet,
    update_all_trades_parquet,
)
from utils import (
    wei_to_unit,
    convert_hex_to_int,
    JSON_DATA_DIR,
    ROOT_DIR,
    DEFAULT_MECH_FEE,
    TMP_DIR,
    measure_execution_time,
    transform_to_datetime,
)
from staking import label_trades_by_staking
from nr_mech_calls import (
    create_unknown_traders_df,
    compute_mech_calls_based_on_timestamps,
)

DUST_THRESHOLD = 10000000000000
INVALID_ANSWER = -1
DEFAULT_60_DAYS_AGO_TIMESTAMP = (DATETIME_60_DAYS_AGO).timestamp()
WXDAI_CONTRACT_ADDRESS = "0xe91D153E0b41518A2Ce8Dd3D7944Fa863463a97d"
DUST_THRESHOLD = 10000000000000


class MarketState(Enum):
    """Market state"""

    OPEN = 1
    PENDING = 2
    FINALIZING = 3
    ARBITRATING = 4
    CLOSED = 5

    def __str__(self) -> str:
        """Prints the market status."""
        return self.name.capitalize()


class MarketAttribute(Enum):
    """Attribute"""

    NUM_TRADES = "Num_trades"
    WINNER_TRADES = "Winner_trades"
    NUM_REDEEMED = "Num_redeemed"
    INVESTMENT = "Investment"
    FEES = "Fees"
    MECH_CALLS = "Mech_calls"
    MECH_FEES = "Mech_fees"
    EARNINGS = "Earnings"
    NET_EARNINGS = "Net_earnings"
    REDEMPTIONS = "Redemptions"
    ROI = "ROI"

    def __str__(self) -> str:
        """Prints the attribute."""
        return self.value

    def __repr__(self) -> str:
        """Prints the attribute representation."""
        return self.name

    @staticmethod
    def argparse(s: str) -> "MarketAttribute":
        """Performs string conversion to MarketAttribute."""
        try:
            return MarketAttribute[s.upper()]
        except KeyError as e:
            raise ValueError(f"Invalid MarketAttribute: {s}") from e


ALL_TRADES_STATS_DF_COLS = [
    "trader_address",
    "market_creator",
    "trade_id",
    "creation_timestamp",
    "title",
    "market_status",
    "collateral_amount",
    "outcome_index",
    "trade_fee_amount",
    "outcomes_tokens_traded",
    "current_answer",
    "is_invalid",
    "winning_trade",
    "earnings",
    "redeemed",
    "redeemed_amount",
    "num_mech_calls",
    "mech_fee_amount",
    "net_earnings",
    "roi",
]


def _is_redeemed(user_json: dict[str, Any], fpmmTrade: dict[str, Any]) -> bool:
    """Returns whether the user has redeemed the position."""
    user_positions = user_json["data"]["user"]["userPositions"]
    condition_id = fpmmTrade["fpmm.condition.id"]
    for position in user_positions:
        position_condition_ids = position["position"]["conditionIds"]
        balance = int(position["balance"])

        if condition_id in position_condition_ids:
            if balance == 0:
                return True
            # return early
            return False
    return False


def prepare_profitalibity_data(
    tools_filename: str,
    trades_filename: str,
    tmp_dir: bool = False,
) -> pd.DataFrame:
    """Prepare data for profitalibity analysis."""

    # Check if tools.parquet is in the same directory
    try:
        if tmp_dir:
            tools = pd.read_parquet(TMP_DIR / tools_filename)
        else:
            tools = pd.read_parquet(ROOT_DIR / tools_filename)

        # make sure creator_address is in the columns
        assert "trader_address" in tools.columns, "trader_address column not found"

        # lowercase and strip creator_address
        tools["trader_address"] = tools["trader_address"].str.lower().str.strip()

        tools.drop_duplicates(
            subset=["request_id", "request_block"], keep="last", inplace=True
        )
        tools.to_parquet(ROOT_DIR / tools_filename)
        print(f"{tools_filename} loaded")
    except FileNotFoundError:
        print(f"{tools_filename} not found.")
        return

    # Check if fpmmTrades.parquet is in the same directory
    print("Reading the new trades file")
    try:
        if tmp_dir:
            fpmmTrades = pd.read_parquet(TMP_DIR / trades_filename)
        else:
            fpmmTrades = pd.read_parquet(ROOT_DIR / trades_filename)
    except FileNotFoundError:
        print(f"Error reading {trades_filename} file.")

    # make sure trader_address is in the columns
    assert "trader_address" in fpmmTrades.columns, "trader_address column not found"

    # lowercase and strip creator_address
    fpmmTrades["trader_address"] = fpmmTrades["trader_address"].str.lower().str.strip()

    return fpmmTrades


def determine_market_status(trade, current_answer):
    """Determine the market status of a trade."""
    if (current_answer is np.nan or current_answer is None) and time.time() >= int(
        trade["fpmm.openingTimestamp"]
    ):
        return MarketState.PENDING
    elif current_answer is np.nan or current_answer is None:
        return MarketState.OPEN
    elif trade["fpmm.isPendingArbitration"]:
        return MarketState.ARBITRATING
    elif time.time() < int(trade["fpmm.answerFinalizedTimestamp"]):
        return MarketState.FINALIZING
    return MarketState.CLOSED


def analyse_trader(
    trader_address: str,
    fpmmTrades: pd.DataFrame,
    trader_estimated_mech_calls: pd.DataFrame,
    daily_info: bool = False,
) -> pd.DataFrame:
    """Analyse a trader's trades"""
    fpmmTrades["creation_timestamp"] = pd.to_datetime(fpmmTrades["creationTimestamp"])
    fpmmTrades["creation_date"] = fpmmTrades["creation_timestamp"].dt.date
    # Filter trades and tools for the given trader
    trades = fpmmTrades[fpmmTrades["trader_address"] == trader_address]

    # Prepare the DataFrame
    trades_df = pd.DataFrame(columns=ALL_TRADES_STATS_DF_COLS)
    if trades.empty:
        return trades_df

    # Fetch user's conditional tokens gc graph
    try:
        user_json = query_conditional_tokens_gc_subgraph(trader_address)
    except Exception as e:
        print(f"Error fetching user data: {e}")
        return trades_df

    # Iterate over the trades
    trades_answer_nan = 0
    trades_no_closed_market = 0
    for i, trade in tqdm(trades.iterrows(), total=len(trades), desc="Analysing trades"):
        try:
            market_answer = trade["fpmm.currentAnswer"]
            trading_day = trade["creation_date"]
            trade_id = trade["id"]
            if not daily_info and not market_answer:
                # print(f"Skipping trade {i} because currentAnswer is NaN")
                trades_answer_nan += 1
                continue
            # Parsing and computing shared values
            collateral_amount = wei_to_unit(float(trade["collateralAmount"]))
            fee_amount = wei_to_unit(float(trade["feeAmount"]))
            outcome_tokens_traded = wei_to_unit(float(trade["outcomeTokensTraded"]))
            earnings, winner_trade = (0, False)
            redemption = _is_redeemed(user_json, trade)
            current_answer = market_answer if market_answer else None
            market_creator = trade["market_creator"]

            # Determine market status
            market_status = determine_market_status(trade, current_answer)

            # Skip non-closed markets
            if not daily_info and market_status != MarketState.CLOSED:
                # print(
                #     f"Skipping trade {i} because market is not closed. Market Status: {market_status}"
                # )
                trades_no_closed_market += 1
                continue
            if current_answer is not None:
                current_answer = convert_hex_to_int(current_answer)

            # Compute invalidity
            is_invalid = current_answer == INVALID_ANSWER

            # Compute earnings and winner trade status
            if current_answer is None:
                earnings = 0.0
                winner_trade = None
            elif is_invalid:
                earnings = collateral_amount
                winner_trade = False
            elif int(trade["outcomeIndex"]) == current_answer:
                earnings = outcome_tokens_traded
                winner_trade = True

            # Compute mech calls using the title, and trade id
            if daily_info:
                total_mech_calls = trader_estimated_mech_calls.loc[
                    (trader_estimated_mech_calls["trading_day"] == trading_day),
                    "total_mech_calls",
                ].iloc[0]
            else:
                total_mech_calls = trader_estimated_mech_calls.loc[
                    (trader_estimated_mech_calls["market"] == trade["title"])
                    & (trader_estimated_mech_calls["trade_id"] == trade_id),
                    "total_mech_calls",
                ].iloc[0]

            net_earnings = (
                earnings
                - fee_amount
                - (total_mech_calls * DEFAULT_MECH_FEE)
                - collateral_amount
            )

            # Assign values to DataFrame
            trades_df.loc[i] = {
                "trader_address": trader_address,
                "market_creator": market_creator,
                "trade_id": trade["id"],
                "market_status": market_status.name,
                "creation_timestamp": trade["creationTimestamp"],
                "title": trade["title"],
                "collateral_amount": collateral_amount,
                "outcome_index": trade["outcomeIndex"],
                "trade_fee_amount": fee_amount,
                "outcomes_tokens_traded": outcome_tokens_traded,
                "current_answer": current_answer,
                "is_invalid": is_invalid,
                "winning_trade": winner_trade,
                "earnings": earnings,
                "redeemed": redemption,
                "redeemed_amount": earnings if redemption else 0,
                "num_mech_calls": total_mech_calls,
                "mech_fee_amount": total_mech_calls * DEFAULT_MECH_FEE,
                "net_earnings": net_earnings,
                "roi": net_earnings
                / (
                    collateral_amount + fee_amount + total_mech_calls * DEFAULT_MECH_FEE
                ),
            }

        except Exception as e:
            print(f"Error processing trade {i}: {e}")
            print(trade)
            continue

    print(f"Number of trades where currentAnswer is NaN = {trades_answer_nan}")
    print(
        f"Number of trades where the market is not closed = {trades_no_closed_market}"
    )
    return trades_df


def analyse_all_traders(
    trades: pd.DataFrame,
    estimated_mech_calls: pd.DataFrame,
    daily_info: bool = False,
) -> pd.DataFrame:
    """Analyse all creators."""

    all_traders = []
    for trader in tqdm(
        trades["trader_address"].unique(),
        total=len(trades["trader_address"].unique()),
        desc="Analysing creators",
    ):
        trader_estimated_mech_calls = estimated_mech_calls.loc[
            estimated_mech_calls["trader_address"] == trader
        ]
        all_traders.append(
            analyse_trader(trader, trades, trader_estimated_mech_calls, daily_info)
        )

    # concat all creators
    all_creators_df = pd.concat(all_traders)

    return all_creators_df


@measure_execution_time
def run_profitability_analysis(
    tools_filename: str,
    trades_filename: str,
    merge: bool = False,
    tmp_dir: bool = False,
):
    """Create all trades analysis."""
    print(f"Preparing data with {tools_filename} and {trades_filename}")
    fpmmTrades = prepare_profitalibity_data(
        tools_filename, trades_filename, tmp_dir=tmp_dir
    )

    if merge:
        update_tools_parquet(tools_filename)

    tools = pd.read_parquet(TMP_DIR / "tools.parquet")

    try:
        fpmmTrades["creationTimestamp"] = fpmmTrades["creationTimestamp"].apply(
            lambda x: transform_to_datetime(x)
        )
    except Exception as e:
        print(f"Transformation not needed")

    print("Computing the estimated mech calls dataset")
    trade_mech_calls = compute_mech_calls_based_on_timestamps(
        fpmmTrades=fpmmTrades, tools=tools
    )
    trade_mech_calls.to_parquet(TMP_DIR / "trade_mech_calls.parquet")

    print(trade_mech_calls.total_mech_calls.describe())
    print("Analysing trades...")
    all_trades_df = analyse_all_traders(fpmmTrades, trade_mech_calls)

    # # merge previous files if requested
    if merge:
        all_trades_df = update_all_trades_parquet(all_trades_df)

    # debugging purposes
    all_trades_df.to_parquet(JSON_DATA_DIR / "all_trades_df.parquet", index=False)
    # all_trades_df = pd.read_parquet(JSON_DATA_DIR / "all_trades_df.parquet")

    # filter invalid markets. Condition: "is_invalid" is True
    invalid_trades = all_trades_df.loc[all_trades_df["is_invalid"] == True]
    if len(invalid_trades) == 0:
        print("No new invalid trades")
    else:
        if merge:
            try:
                print("Merging invalid trades parquet file")
                old_invalid_trades = pd.read_parquet(
                    ROOT_DIR / "invalid_trades.parquet"
                )
                merge_df = pd.concat(
                    [old_invalid_trades, invalid_trades], ignore_index=True
                )
                invalid_trades = merge_df.drop_duplicates()
            except Exception as e:
                print(f"Error updating the invalid trades parquet {e}")
        invalid_trades.to_parquet(ROOT_DIR / "invalid_trades.parquet", index=False)

    all_trades_df = all_trades_df.loc[all_trades_df["is_invalid"] == False]

    all_trades_df = label_trades_by_staking(trades_df=all_trades_df)

    print("Creating unknown traders dataset")
    unknown_traders_df, all_trades_df = create_unknown_traders_df(
        trades_df=all_trades_df
    )
    # merge with previous unknown traders dataset
    previous_unknown_traders = pd.read_parquet(ROOT_DIR / "unknown_traders.parquet")

    unknown_traders_df: pd.DataFrame = pd.concat(
        [unknown_traders_df, previous_unknown_traders], ignore_index=True
    )
    unknown_traders_df.drop_duplicates("trade_id", keep="last", inplace=True)
    unknown_traders_df.to_parquet(ROOT_DIR / "unknown_traders.parquet", index=False)

    # save to parquet
    all_trades_df.to_parquet(ROOT_DIR / "all_trades_profitability.parquet", index=False)
    print("Profitability analysis Done!")

    return all_trades_df


def add_trades_profitability(trades_filename: str):
    print("Reading the trades file")
    try:
        fpmmTrades = pd.read_parquet(ROOT_DIR / trades_filename)
    except FileNotFoundError:
        print(f"Error reading {trades_filename} file .")

    # make sure trader_address is in the columns
    assert "trader_address" in fpmmTrades.columns, "trader_address column not found"

    # lowercase and strip creator_address
    fpmmTrades["trader_address"] = fpmmTrades["trader_address"].str.lower().str.strip()

    print("Reading tools parquet file")
    tools = pd.read_parquet(TMP_DIR / "tools.parquet")

    try:
        fpmmTrades["creationTimestamp"] = fpmmTrades["creationTimestamp"].apply(
            lambda x: transform_to_datetime(x)
        )
    except Exception as e:
        print(f"Transformation not needed")

    print("Computing the estimated mech calls dataset")
    trade_mech_calls = compute_mech_calls_based_on_timestamps(
        fpmmTrades=fpmmTrades, tools=tools
    )
    print(trade_mech_calls.total_mech_calls.describe())
    print("Analysing trades...")
    all_trades_df = analyse_all_traders(fpmmTrades, trade_mech_calls)

    # debugging purposes
    all_trades_df.to_parquet(JSON_DATA_DIR / "missing_trades_df.parquet", index=False)
    # filter invalid markets. Condition: "is_invalid" is True
    print("Checking invalid trades")
    invalid_trades = all_trades_df.loc[all_trades_df["is_invalid"] == True]
    if len(invalid_trades) > 0:
        try:
            print("Merging invalid trades parquet file")
            old_invalid_trades = pd.read_parquet(ROOT_DIR / "invalid_trades.parquet")
            merge_df = pd.concat(
                [old_invalid_trades, invalid_trades], ignore_index=True
            )
            invalid_trades = merge_df.drop_duplicates("trade_id")
        except Exception as e:
            print(f"Error updating the invalid trades parquet {e}")
        invalid_trades.to_parquet(ROOT_DIR / "invalid_trades.parquet", index=False)
    all_trades_df = all_trades_df.loc[all_trades_df["is_invalid"] == False]

    print("Adding staking labels")
    all_trades_df = label_trades_by_staking(trades_df=all_trades_df)
    print("Creating unknown traders dataset")
    unknown_traders_df, all_trades_df = create_unknown_traders_df(
        trades_df=all_trades_df
    )
    if len(unknown_traders_df) > 0:
        print("Merging unknown traders info")
        # merge with previous unknown traders dataset
        previous_unknown_traders = pd.read_parquet(ROOT_DIR / "unknown_traders.parquet")

        unknown_traders_df: pd.DataFrame = pd.concat(
            [unknown_traders_df, previous_unknown_traders], ignore_index=True
        )
        unknown_traders_df.drop_duplicates("trade_id", keep="last", inplace=True)
        unknown_traders_df.to_parquet(ROOT_DIR / "unknown_traders.parquet", index=False)

    print("merge with previous all_trades_profitability")
    old_trades = pd.read_parquet(ROOT_DIR / "all_trades_profitability.parquet")
    all_trades_df: pd.DataFrame = pd.concat(
        [all_trades_df, old_trades], ignore_index=True
    )
    all_trades_df.drop_duplicates("trade_id", keep="last", inplace=True)
    all_trades_df.to_parquet(ROOT_DIR / "all_trades_profitability.parquet", index=False)


if __name__ == "__main__":
    run_profitability_analysis(
        tools_filename="tools.parquet",
        trades_filename="fpmmTrades.parquet",
        merge=True,
        tmp_dir=True,
    )