|
import numpy as np |
|
import pandas as pd |
|
import time |
|
from utils import convert_hex_to_int, ROOT_DIR, TMP_DIR |
|
|
|
|
|
def determine_market_status(row): |
|
current_answer = row["currentAnswer"] |
|
"""Determine the market status of a trade.""" |
|
if (current_answer is np.nan or current_answer is None) and time.time() >= int( |
|
row["openingTimestamp"] |
|
): |
|
return "pending" |
|
if current_answer is np.nan or current_answer is None: |
|
return "open" |
|
if row["fpmm.isPendingArbitration"]: |
|
return "arbitrating" |
|
if row["fpmm.answerFinalizedTimestamp"] and time.time() < int( |
|
row["fpmm.answerFinalizedTimestamp"] |
|
): |
|
return "finalizing" |
|
return "closed" |
|
|
|
|
|
def compute_market_metrics(all_trades: pd.DataFrame): |
|
print("Preparing dataset") |
|
all_trades.rename( |
|
columns={ |
|
"fpmm.currentAnswer": "currentAnswer", |
|
"fpmm.openingTimestamp": "openingTimestamp", |
|
"fpmm.id": "market_id", |
|
}, |
|
inplace=True, |
|
) |
|
all_trades["currentAnswer"] = all_trades["currentAnswer"].apply( |
|
lambda x: convert_hex_to_int(x) |
|
) |
|
all_trades["market_status"] = all_trades.apply( |
|
lambda x: determine_market_status(x), axis=1 |
|
) |
|
closed_trades = all_trades.loc[all_trades["market_status"] == "closed"] |
|
print("Computing metrics") |
|
nr_trades = ( |
|
closed_trades.groupby("market_id")["id"].count().reset_index(name="nr_trades") |
|
) |
|
total_traders = ( |
|
closed_trades.groupby("market_id")["trader_address"] |
|
.nunique() |
|
.reset_index(name="total_traders") |
|
) |
|
final_dataset = nr_trades.merge(total_traders, on="market_id") |
|
markets = closed_trades[ |
|
["market_id", "title", "market_creator", "openingTimestamp"] |
|
] |
|
markets.drop_duplicates("market_id", inplace=True) |
|
market_metrics = markets.merge(final_dataset, on="market_id") |
|
print("Saving dataset") |
|
market_metrics.to_parquet(ROOT_DIR / "closed_market_metrics.parquet", index=False) |
|
print(market_metrics.head()) |
|
|
|
|
|
if __name__ == "__main__": |
|
all_trades = pd.read_parquet(TMP_DIR / "fpmmTrades.parquet") |
|
compute_market_metrics(all_trades) |
|
|