|
import pandas as pd |
|
|
|
try: |
|
from utils import ROOT_DIR, TMP_DIR |
|
except ImportError: |
|
from scripts.utils import ROOT_DIR, TMP_DIR |
|
|
|
from datetime import datetime, timezone |
|
from tqdm import tqdm |
|
|
|
|
|
def transform_to_datetime(x): |
|
return datetime.fromtimestamp(int(x), tz=timezone.utc) |
|
|
|
|
|
def compute_weekly_total_mech_calls( |
|
trader: str, week: str, weekly_trades: pd.DataFrame, weekly_tools: pd.DataFrame |
|
) -> dict: |
|
weekly_total_mech_calls_dict = {} |
|
weekly_total_mech_calls_dict["trader_address"] = trader |
|
weekly_total_mech_calls_dict["month_year_week"] = week |
|
weekly_total_mech_calls_dict["total_trades"] = len(weekly_trades) |
|
weekly_total_mech_calls_dict["total_mech_calls"] = len(weekly_tools) |
|
return weekly_total_mech_calls_dict |
|
|
|
|
|
def compute_total_mech_calls(): |
|
"""Function to compute the total number of mech calls for all traders and all markets |
|
at a weekly level""" |
|
try: |
|
print("Reading tools file") |
|
tools = pd.read_parquet(TMP_DIR / "tools.parquet") |
|
tools["request_time"] = pd.to_datetime(tools["request_time"], utc=True) |
|
tools["request_date"] = tools["request_time"].dt.date |
|
tools = tools.sort_values(by="request_time", ascending=True) |
|
tools["month_year_week"] = ( |
|
tools["request_time"] |
|
.dt.to_period("W") |
|
.dt.start_time.dt.strftime("%b-%d-%Y") |
|
) |
|
|
|
except Exception as e: |
|
print(f"Error updating the invalid trades parquet {e}") |
|
|
|
print("Reading trades weekly info file") |
|
fpmmTrades = pd.read_parquet(TMP_DIR / "fpmmTrades.parquet") |
|
try: |
|
fpmmTrades["creationTimestamp"] = fpmmTrades["creationTimestamp"].apply( |
|
lambda x: transform_to_datetime(x) |
|
) |
|
except Exception as e: |
|
print(f"Transformation not needed") |
|
|
|
fpmmTrades["creation_timestamp"] = pd.to_datetime(fpmmTrades["creationTimestamp"]) |
|
fpmmTrades["creation_date"] = fpmmTrades["creation_timestamp"].dt.date |
|
fpmmTrades = fpmmTrades.sort_values(by="creation_timestamp", ascending=True) |
|
fpmmTrades["month_year_week"] = ( |
|
fpmmTrades["creation_timestamp"] |
|
.dt.to_period("W") |
|
.dt.start_time.dt.strftime("%b-%d-%Y") |
|
) |
|
|
|
nr_traders = len(fpmmTrades["trader_address"].unique()) |
|
all_mech_calls = [] |
|
for trader in tqdm( |
|
fpmmTrades["trader_address"].unique(), |
|
total=nr_traders, |
|
desc="creating weekly mech calls dataframe", |
|
): |
|
|
|
all_trades = fpmmTrades[fpmmTrades["trader_address"] == trader] |
|
all_tools = tools[tools["trader_address"] == trader] |
|
weeks = fpmmTrades.month_year_week.unique() |
|
|
|
for week in weeks: |
|
weekly_trades = all_trades.loc[all_trades["month_year_week"] == week] |
|
weekly_tools = all_tools.loc[all_tools["month_year_week"] == week] |
|
|
|
weekly_mech_calls_dict = compute_weekly_total_mech_calls( |
|
trader, week, weekly_trades, weekly_tools |
|
) |
|
all_mech_calls.append(weekly_mech_calls_dict) |
|
|
|
all_mech_calls_df: pd.DataFrame = pd.DataFrame.from_dict( |
|
all_mech_calls, orient="columns" |
|
) |
|
print("Saving weekly_mech_calls.parquet file") |
|
print(all_mech_calls_df.total_mech_calls.describe()) |
|
|
|
all_mech_calls_df.to_parquet(ROOT_DIR / "weekly_mech_calls.parquet", index=False) |
|
|
|
|
|
if __name__ == "__main__": |
|
compute_total_mech_calls() |
|
|