import pandas as pd import pickle from web3_utils import ROOT_DIR, TMP_DIR from staking import check_list_addresses def get_trader_type(address: str, service_map: dict) -> str: # check if it is part of any service id on the map keys = service_map.keys() last_key = max(keys) for key, value in service_map.items(): if value["safe_address"].lower() == address.lower(): # found a service return "Olas" return "non_Olas" def compute_active_traders_dataset(): """Function to prepare the active traders dataset""" with open(ROOT_DIR / "service_map.pkl", "rb") as f: service_map = pickle.load(f) # read tools info tools_df = pd.read_parquet(TMP_DIR / "tools.parquet") # rename the request_month_year_week tools_df.rename( columns={"request_month_year_week": "month_year_week"}, inplace=True ) tool_traders = tools_df.trader_address.unique() mapping = check_list_addresses(tool_traders) # add trader type to tools_df tools_df["trader_type"] = tools_df.trader_address.apply(lambda x: mapping[x]) tools_df = tools_df[ ["month_year_week", "market_creator", "trader_type", "trader_address"] ] tools_df.drop_duplicates(inplace=True) # read trades info all_trades = pd.read_parquet(ROOT_DIR / "all_trades_profitability.parquet") # read unknown info unknown_traders = pd.read_parquet(ROOT_DIR / "unknown_traders.parquet") unknown_traders["creation_timestamp"] = pd.to_datetime( unknown_traders["creation_timestamp"] ) unknown_traders["creation_timestamp"] = unknown_traders[ "creation_timestamp" ].dt.tz_convert("UTC") unknown_traders = unknown_traders.sort_values( by="creation_timestamp", ascending=True ) unknown_traders["month_year_week"] = ( unknown_traders["creation_timestamp"] .dt.to_period("W") .dt.start_time.dt.strftime("%b-%d-%Y") ) unknown_traders["trader_type"] = "unknown" unknown_traders = unknown_traders[ ["month_year_week", "trader_type", "market_creator", "trader_address"] ] unknown_traders.drop_duplicates(inplace=True) all_trades["creation_timestamp"] = pd.to_datetime(all_trades["creation_timestamp"]) all_trades["creation_timestamp"] = all_trades["creation_timestamp"].dt.tz_convert( "UTC" ) all_trades = all_trades.sort_values(by="creation_timestamp", ascending=True) all_trades["month_year_week"] = ( all_trades["creation_timestamp"] .dt.to_period("W") .dt.start_time.dt.strftime("%b-%d-%Y") ) all_trades["trader_type"] = all_trades["staking"].apply( lambda x: "non_Olas" if x == "non_Olas" else "Olas" ) all_trades = all_trades[ ["month_year_week", "market_creator", "trader_type", "trader_address"] ] all_trades.drop_duplicates(inplace=True) filtered_traders_data = pd.concat([all_trades, tools_df], axis=0) filtered_traders_data.drop_duplicates(inplace=True) if len(unknown_traders) > 0: # merge filtered_traders_data = pd.concat( [filtered_traders_data, unknown_traders], axis=0 ) filtered_traders_data.to_parquet(ROOT_DIR / "active_traders.parquet") if __name__ == "__main__": compute_active_traders_dataset()