seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
"""
decode_hparams = hook_args.decode_hparams
if (decode_hparams.decode_reference is None or
decode_hparams.decode_to_file is None):
return None
values = []
bleu = 100 * bleu_hook.bleu_wrapper(
decode_hparams.decode_reference, decode_hparams.decode_to_file)
values.append(tf.Summary.Value(tag="BLEU", simple_value=bleu))
tf.logging.info("%s: BLEU = %6.2f" % (decode_hparams.decode_to_file, bleu))
return values
def _preprocess_sgm(line, is_sgm):
"""Preprocessing to strip tags in SGM files."""
if not is_sgm:
return line
# In SGM files, remove <srcset ...>, <p>, <doc ...> lines.
| tensorflow.Summary.Value | 14,400 |
import tensorflow as tf
"""
mu, var = self.build_posterior_mean_var(X, Y, test_points, True)
jitter = tfhacks.eye(tf.shape(mu)[0], var.dtype) * 1e-06
L = tf.batch_cholesky(tf.transpose(var, (2, 0, 1)) + jitter)
V_shape = [tf.shape(L)[0], tf.shape(L)[1], num_samples]
V = tf.random_normal(V_shape, dtype=L.dtype)
samples = tf.expand_dims(tf.transpose(mu), -1) + tf.batch_matmul(L, V)
return tf.transpose(samples)
#samples = []
| tensorflow.shape | 14,401 |
import tensorflow as tf
def gen_epochs(n, num_steps):
for i in range(n):
yield gen_batch(gen_data(), batch_size, num_steps)
'''定义placeholder'''
x = tf.placeholder(tf.int32, [batch_size, num_steps], name="x")
y = tf.placeholder(tf.int32, [batch_size, num_steps], name='y')
init_state = tf.zeros([batch_size, state_size])
'''RNN输入'''
rnn_inputs = tf.one_hot(x, num_classes)
#rnn_inputs = tf.unstack(x_one_hot, axis=1)
'''不需要了,使用tensorflow中定义好的cell即可'''
#'''定义RNN cell'''
| tensorflow.zeros | 14,402 |
import tensorflow as tf
assert ob.name in config.optimizers, ob
optimizer = config.optimizers[ob.name](
include=ob.include,
exclude=ob.exclude,
step=trainer.step,
log=trainer.log,
debug=config.debug,
name=ob.name)
condition = tf.equal(trainer.phase, 'train')
summary, grad_norm = optimizer.maybe_minimize(condition, ob.value)
summaries.append(summary)
grad_norms[ob.name] = grad_norm
return summaries, grad_norms
def simulate_episodes(
| tensorflow.equal | 14,403 |
import tensorflow as tf
layer_output,
sequence_lengths,
seq_axis=1,
batch_axis=0
)
)
with tf.control_dependencies([layer_output]):
# update the initial states
for i in range(2):
new_state = tf.concat(
[final_state[i][:batch_size, :],
init_states[i][batch_size:, :]], axis=0)
state_update_op = tf.assign(init_states[i], new_state)
update_ops.append(state_update_op)
layer_input = layer_output
self.mask = mask
self.sequence_lengths = sequence_lengths
self.update_state_op = tf.group(*update_ops)
def dump_token_embeddings(vocab_file, options_file, weight_file, outfile):
'''
Given an input vocabulary file, dump all the token embeddings to the
| tensorflow.assign | 14,404 |
import tensorflow as tf
run_log_dir = os.path.join(FLAGS.log_dir,
'exp_BN_bs_{bs}_lr_{lr}_aug_flip_brightness'.format(bs=FLAGS.batch_size,
lr=FLAGS.learning_rate))
def weight_variable(shape):
"""weight_variable generates a weight variable of a given shape."""
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name='weights')
def bias_variable(shape):
"""bias_variable generates a bias variable of a given shape."""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name='biases')
def deepnn(x, train):
| tensorflow.Variable | 14,405 |
import tensorflow as tf
with tf.name_scope(scope):
weight = tf.convert_to_tensor(weight,
dtype=tensor.dtype.base_dtype,
name='loss_weight')
loss = tf.multiply(weight, tf.nn.l2_loss(tensor), name='value')
return loss
def lppool(inpOp, pnorm, kH, kW, dH, dW, padding, name):
with tf.variable_scope(name):
if pnorm == 2:
pwr = tf.square(inpOp)
else:
pwr = tf.pow(inpOp, pnorm)
subsamp = tf.nn.avg_pool(pwr,
ksize=[1, kH, kW, 1],
strides=[1, dH, dW, 1],
padding=padding)
subsamp_sum = tf.multiply(subsamp, kH*kW)
| tensorflow.square | 14,406 |
import tensorflow as tf
def valid_inference(self,images):
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
| tensorflow.matmul | 14,407 |
import tensorflow as tf
from evaluation import factory
def write_summary(logs, summary_writer, current_step):
"""Write out summaries of current training step for the checkpoint."""
with tf.Graph().as_default():
summaries = [tf.Summary.Value(tag=tag, simple_value=value)
for tag, value in logs.items()]
tf_summary = tf.Summary(value=summaries)
summary_writer.add_summary(tf_summary, current_step)
class TpuExecutor(object):
| tensorflow.Summary.Value | 14,408 |
import tensorflow as tf
tf.reverse_v2(scales_to_logits_reversed[MERGED_LOGITS_SCOPE], [2]),
tf.shape(images)[1:3],
scales_to_logits_reversed[MERGED_LOGITS_SCOPE].dtype)
outputs_to_predictions[output].append(
tf.expand_dims(tf.nn.softmax(logits_reversed), 4))
for output in sorted(outputs_to_predictions):
predictions = outputs_to_predictions[output]
# Compute average prediction across different scales and flipped images.
predictions = tf.reduce_mean(tf.concat(predictions, 4), axis=4)
outputs_to_predictions[output] = tf.argmax(predictions, 3, output_type=tf.dtypes.int32)
outputs_to_predictions[output + PROB_SUFFIX] = tf.nn.softmax(predictions)
return outputs_to_predictions
def predict_labels(images, model_options):
"""Predicts segmentation labels.
Args:
images: A tensor of size [batch, height, width, channels].
model_options: A ModelOptions instance to configure models.
| tensorflow.nn.softmax | 14,409 |
import tensorflow as tf
self.w_soft = tf.get_variable("w", [self.lstm_size, self.num_branches])
b_init = np.array([10.0, 10.0] + [0] * (self.num_branches - 2),
dtype=np.float32)
self.b_soft = tf.get_variable(
"b", [1, self.num_branches],
initializer=tf.constant_initializer(b_init))
b_soft_no_learn = np.array(
[0.25, 0.25] + [-0.25] * (self.num_branches - 2), dtype=np.float32)
b_soft_no_learn = np.reshape(b_soft_no_learn, [1, self.num_branches])
self.b_soft_no_learn = tf.constant(b_soft_no_learn, dtype=tf.float32)
with tf.variable_scope("attention"):
self.w_attn_1 = tf.get_variable("w_1", [self.lstm_size, self.lstm_size])
self.w_attn_2 = tf.get_variable("w_2", [self.lstm_size, self.lstm_size])
self.v_attn = tf.get_variable("v", [self.lstm_size, 1])
def _build_sampler(self, prev_c=None, prev_h=None, use_bias=False):
"""Build the sampler ops and the log_prob ops."""
print ("-" * 80)
print ("Build controller sampler")
anchors = tf.TensorArray(
tf.float32, size=self.num_cells + 2, clear_after_read=False)
anchors_w_1 = tf.TensorArray(
tf.float32, size=self.num_cells + 2, clear_after_read=False)
arc_seq = tf.TensorArray(tf.int32, size=self.num_cells * 4)
if prev_c is None:
assert prev_h is None, "prev_c and prev_h must both be None"
| tensorflow.get_variable | 14,410 |
import tensorflow as tf
activation=modeling.get_activation(bert_config.hidden_act),
kernel_initializer=modeling.create_initializer(
bert_config.initializer_range))
input_tensor = modeling.layer_norm(input_tensor)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
output_bias = tf.get_variable(
"output_bias",
shape=[bert_config.vocab_size],
initializer=tf.zeros_initializer())
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
label_ids = tf.reshape(label_ids, [-1])
one_hot_labels = tf.one_hot(
label_ids, depth=bert_config.vocab_size, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])
| tensorflow.zeros_initializer | 14,411 |
import tensorflow as tf
# and due to the fact that the rightmost boundary is essentially ignored.
boundaries = tf.expand_dims(tf.cast(boundaries, tf.float32), 0) - 0.0001
bucket_indices = tf_utils.assign_buckets(
tf.cast(x, tf.float32), remove_leftmost_boundary(boundaries))
bucket_vocab, counts = count_per_key(tf.strings.as_string(bucket_indices))
counts = tf_utils.reorder_histogram(bucket_vocab, counts,
tf.size(boundaries) - 1)
return counts, boundaries
| tensorflow.strings.as_string | 14,412 |
import tensorflow as tf
cross_entropy (tf.Operation): Final layer of network.
cross_entropy_grads (tf.Operation): Gradient computation.
sess (tf.Session): Session used for training.
variables (TensorFlowVariables): Extracted variables and methods to
manipulate them.
"""
def __init__(self, shape):
"""Creates a LinearModel object."""
x = tf.placeholder(tf.float32, [None, shape[0]])
w = tf.Variable(tf.zeros(shape))
b = tf.Variable(tf.zeros(shape[1]))
self.x = x
self.w = w
self.b = b
y = tf.nn.softmax(tf.matmul(x, w) + b)
y_ = tf.placeholder(tf.float32, [None, shape[1]])
self.y_ = y_
| tensorflow.placeholder | 14,413 |
import tensorflow as tf
L = tf.batch_cholesky(tf.transpose(var, (2, 0, 1)) + jitter)
V_shape = [tf.shape(L)[0], tf.shape(L)[1], num_samples]
V = tf.random_normal(V_shape, dtype=L.dtype)
samples = tf.expand_dims(tf.transpose(mu), -1) + tf.batch_matmul(L, V)
| tensorflow.random_normal | 14,414 |
import tensorflow as tf
def test_randomly_select_one_point_per_segment(self):
instance_labels = tf.constant([[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 2, 2, 2, 2, 2, 2],
[1, 2, 2, 2, 2, 2, 2, 2],
[0, 0, 0, 0, 2, 2, 2, 2],
[0, 0, 0, 0, 2, 2, 2, 2]],
dtype=tf.int32)
instance_labels = tf.reshape(instance_labels, [-1])
(indices,
masks_t) = isu.randomly_select_one_point_per_segment(instance_labels)
masks = tf.transpose(masks_t)
masks = tf.reshape(masks, [3, 5, 8])
expected_masks = self.get_instance_masks()
selected_instances = tf.gather(instance_labels, indices)
expected_selected_instances = tf.constant([0, 1, 2], dtype=tf.int32)
self.assertAllEqual(selected_instances.numpy(),
expected_selected_instances.numpy())
self.assertAllClose(masks.numpy(), expected_masks.numpy())
def test_inputs_Distances_to_centers(self):
inputs = tf.random.uniform(
[100, 8], minval=-10, maxval=10.0, dtype=tf.float32)
centers = tf.random.uniform(
[5, 8], minval=-10, maxval=10.0, dtype=tf.float32)
distances1 = isu.inputs_distances_to_centers(inputs, centers)
num_centers = tf.shape(centers)[0]
inputs_reshaped = tf.tile(tf.expand_dims(inputs, axis=1),
| tensorflow.gather | 14,415 |
import tensorflow as tf
def loop_analysis(element):
x = tf.expand_dims(element[0], 0)
x_coori = tf.expand_dims(element[1], 0)
y = analysis_transform(x_coori,x)
return tf.squeeze(y,axis=0)
element = [x,x_coori]
ys = tf.map_fn(loop_analysis, element, dtype=tf.float32, parallel_iterations=1, back_prop=False)
print("Analysis Transform")
def loop_hyper_encoder(y):
y = tf.expand_dims(y, 0)
z = hyper_encoder(y)
return tf.squeeze(z,axis=0)
zs = tf.map_fn(loop_hyper_encoder, ys, dtype=tf.float32, parallel_iterations=1, back_prop=False)
print("Hyper Encoder")
z_hats, _ = entropy_bottleneck(zs, False)
print("Quantize hyperprior")
def loop_hyper_deocder(z):
z = tf.expand_dims(z, 0)
loc, scale = hyper_decoder(z)
return tf.squeeze(loc, [0]), tf.squeeze(scale, [0])
| tensorflow.squeeze | 14,416 |
import tensorflow as tf
scaffold = tf.train.Scaffold(init_fn=train_helper.get_init_fn_for_scaffold(FLAGS)))
def parse_comma_list(args):
return [float(s.strip()) for s in args.split(',')]
def main(_):
# Using the Winograd non-fused algorithms provides a small performance boost.
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction = FLAGS.gpu_memory_fraction)
config = tf.ConfigProto(allow_soft_placement = True, log_device_placement = False, intra_op_parallelism_threads = FLAGS.num_cpu_threads, inter_op_parallelism_threads = FLAGS.num_cpu_threads, gpu_options = gpu_options)
# Set up a RunConfig to only save checkpoints once per training cycle.
run_config = tf.estimator.RunConfig().replace(
save_checkpoints_secs=FLAGS.save_checkpoints_secs).replace(
save_checkpoints_steps=None).replace(
save_summary_steps=FLAGS.save_summary_steps).replace(
keep_checkpoint_max=5).replace(
| tensorflow.GPUOptions | 14,417 |
import tensorflow as tf
rand = tf.random_uniform(layer_shape[:-1] + [hparams.bottleneck_bits])
else:
rand = tf.random_uniform(layer_shape[:-3] + [
1, 1, hparams.bottleneck_bits])
d = 2.0 * tf.to_float(tf.less(0.5, rand)) - 1.0
z = tf.layers.dense(d, final_filters, name="unbottleneck")
return layer + z, 0.0
# Embed.
x = tf.layers.dense(
features["cur_target_frame"], filters, name="latent_embed",
bias_initializer=tf.random_normal_initializer(stddev=0.01))
x = common_attention.add_timing_signal_nd(x)
if hparams.full_latent_tower:
for i in range(hparams.num_compress_steps):
with tf.variable_scope("latent_downstride%d" % i):
x = common_layers.make_even_size(x)
if i < hparams.filter_double_steps:
filters *= 2
x = common_attention.add_timing_signal_nd(x)
x = tf.layers.conv2d(x, filters, kernel,
| tensorflow.random_normal_initializer | 14,418 |
from tensorflow.python.ops import control_flow_ops
self.capped_d_grads = self._clip_grad_norms(
d_optimizer.compute_gradients(self.d_losses[-1], t_vars['d_vars']))
self.capped_g_grads = self._clip_grad_norms(
g_optimizer.compute_gradients(self.g_losses[-1], t_vars['g_vars']))
global_step = tf.get_variable(
'global_step', [], initializer=tf.constant_initializer(0), trainable=False)
if self.gradient_multipliers is not None:
with tf.name_scope('multiply_grads'):
self.capped_d_grads = self._multiply_gradients(self.capped_d_grads,
self.gradient_multipliers)
apply_d_gradient_op = d_optimizer.apply_gradients(self.capped_d_grads, global_step=global_step)
apply_g_gradient_op = g_optimizer.apply_gradients(self.capped_g_grads, global_step=global_step)
self.train_op_d = control_flow_ops.with_dependencies([apply_d_gradient_op], self.d_losses[-1])
self.train_op_g = control_flow_ops.with_dependencies([apply_g_gradient_op], self.g_losses[-1])
| tensorflow.python.ops.control_flow_ops.with_dependencies | 14,419 |
import tensorflow as tf
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
tf.flags.DEFINE_string(
"tpu_zone", None,
"[Optional] GCE zone where the Cloud TPU is located in. If not "
| tensorflow.flags.DEFINE_string | 14,420 |
import tensorflow as tf
| tensorflow.keras.layers.concatenate | 14,421 |
import tensorflow as tf
target_samples -= tf.reduce_mean(target_samples, 0)
source_samples = tf.nn.l2_normalize(source_samples, 1)
target_samples = tf.nn.l2_normalize(target_samples, 1)
source_cov = tf.matmul(tf.transpose(source_samples), source_samples)
| tensorflow.nn.l2_normalize | 14,422 |
import tensorflow as tf
"root", initializer=tf.constant_initializer(0.5)):
cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True)
cell = tf.nn.rnn_cell.MultiRNNCell(cells=[cell] * 2,
state_is_tuple=True)
inp = tf.constant(0.5, shape=[2, 2, 2])
enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32)
attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size])
for e in enc_outputs])
| tensorflow.constant | 14,423 |
import tensorflow as tf
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
label_id = label_map[example.label]
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("guid: %s" % (example.guid))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
| tensorflow.logging.info | 14,424 |
import tensorflow as tf
# summaries for TensorBoard visualisation
validation_summary = tf.summary.merge([img_summary, acc_summary])
training_summary = tf.summary.merge([img_summary, loss_summary])
test_summary = tf.summary.merge([img_summary, acc_summary])
# saver for checkpoints
saver = tf.train.Saver(tf.global_variables(), max_to_keep=1)
with tf.Session() as sess:
summary_writer = tf.summary.FileWriter(run_log_dir + '_train', sess.graph, flush_secs=5)
summary_writer_validation = tf.summary.FileWriter(run_log_dir + '_validate', sess.graph, flush_secs=5)
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
# Training and validation
for step in range(FLAGS.max_steps):
# Training: Backpropagation using train set
(trainImages, trainLabels) = cifar.getTrainBatch()
(testImages, testLabels) = cifar.getTestBatch()
| tensorflow.summary.FileWriter | 14,425 |
import tensorflow as tf
model_name: string, a model name used inside the model server.
image_size: int, size of image, assuming image height and width.
batch_sizes: list, a list of batch sizes to create different input requests.
num_requests: int, number of requests per batch size.
Raises:
ValueError: if batch_sizes is not a valid integer list.
"""
if not isinstance(batch_sizes, list) or not batch_sizes:
raise ValueError('batch sizes should be a valid non-empty list.')
extra_assets_dir = os.path.join(savedmodel_dir, 'assets.extra')
tf.gfile.MkDir(extra_assets_dir)
with tf.python_io.TFRecordWriter(
os.path.join(extra_assets_dir, 'tf_serving_warmup_requests')) as writer:
for batch_size in batch_sizes:
for _ in range(num_requests):
request = predict_pb2.PredictRequest()
image = np.uint8(np.random.rand(image_size, image_size, 3) * 255)
request.inputs['input'].CopyFrom(
tf.make_tensor_proto(
[_encode_image(image)] * batch_size, shape=[batch_size]))
request.model_spec.name = model_name
| tensorflow.gfile.MkDir | 14,426 |
from tensorflow.python.framework import ops
is_continuous=True,
is_reparameterized=False,
parameters=parameters,
graph_parents=[self._alpha, self._beta],
name=ns)
@staticmethod
def _param_shapes(sample_shape):
return dict(
zip(("alpha", "beta"), ([ops.convert_to_tensor(
sample_shape, dtype=dtypes.int32)] * 2)))
@property
def alpha(self):
"""Shape parameter."""
return self._alpha
@property
| tensorflow.python.framework.ops.convert_to_tensor | 14,427 |
import tensorflow as tf
elif kh == 14 and kw == 14:
return 196.0 * 21.0 / 4096.0
else:
rec = tf.cast(kw * kh, tf.float32)
n_max = 7 + tf.math.ceil(tf.math.log(rec) / tf.math.log(2.))
ns = tf.range(0., n_max)
ns_pow = tf.pow(2., ns)
ks = tf.round(ns_pow / rec)
diffs = tf.math.abs(ks / ns_pow - 1 / rec)
n = tf.argmin(diffs)
k = ks[n]
scale = k / tf.pow(2., tf.cast(n, tf.float32))
| tensorflow.pow | 14,428 |
from tensorflow.python.framework import tensor_shape
@ops.RegisterShape("DepthwiseConv2dNativeBackpropFilter")
def _DepthwiseConv2dNativeBackpropFilterShape(op):
"""Shape function for the DepthwiseConv2dNativeBackpropFilter op."""
filter_shape = tensor_util.constant_value(op.inputs[1])
if filter_shape is not None:
return [tensor_shape.TensorShape(filter_shape.tolist())]
else:
return [tensor_shape.unknown_shape(ndims=4)]
@ops.RegisterShape("DepthwiseConv2dNativeBackpropInput")
def _DepthwiseConv2dNativeBackpropInputShape(op):
"""Shape function for the DepthwiseConv2dNativeBackpropInput op."""
input_shape = tensor_util.constant_value(op.inputs[0])
if input_shape is not None:
| tensorflow.python.framework.tensor_shape.unknown_shape | 14,429 |
import tensorflow as tf
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
"""Compute Matthew's correlations for STS-B."""
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
# https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
| tensorflow.argmax | 14,430 |
import tensorflow as tf
def max_pool(img, k):
return tf.nn.max_pool(img, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME')
# Consider stride size when using xavier for fp network
def get_xavier_weights(filter_shape, poolsize=(2, 2), name=None):
fan_in = np.prod(filter_shape[1:])
fan_out = (filter_shape[0] * np.prod(filter_shape[2:]) //
np.prod(poolsize))
low = -4*np.sqrt(6.0/(fan_in + fan_out)) # use 4 for sigmoid, 1 for tanh activation
high = 4*np.sqrt(6.0/(fan_in + fan_out))
weights = np.random.uniform(low=low, high=high, size=filter_shape)
return safe_get(name, filter_shape, initializer=tf.constant_initializer(weights))
def get_he_weights(filter_shape, name=None):
fan_in = np.prod(filter_shape[1:])
stddev = np.sqrt(2.6/fan_in)
weights = stddev * np.random.randn(filter_shape[0], filter_shape[1], filter_shape[2], filter_shape[3])
return safe_get(name, filter_shape, initializer=tf.constant_initializer(weights))
| tensorflow.constant_initializer | 14,431 |
import tensorflow as tf
images = data['data']
num_images = images.shape[0]
images = images.reshape((num_images, 3, 32, 32))
labels = data['labels']
with tf.Graph().as_default():
image_placeholder = tf.placeholder(dtype=tf.uint8)
encoded_image = tf.image.encode_png(image_placeholder)
with tf.Session('') as sess:
for j in range(num_images):
sys.stdout.write('\r>> Reading file [%s] image %d' % (
filename, offset + 1))
sys.stdout.flush()
| tensorflow.image.encode_png | 14,432 |
import tensorflow as tf
f = tf.sigmoid(util.projection(tf.concat([top_span_emb, attended_span_emb], 1), util.shape(top_span_emb, -1))) # [k, emb]
top_span_emb = f * attended_span_emb + (1 - f) * top_span_emb # [k, emb]
top_antecedent_scores = tf.concat([dummy_scores, top_antecedent_scores], 1) # [k, c + 1]
top_antecedent_cluster_ids = tf.gather(top_span_cluster_ids, top_antecedents) # [k, c]
top_antecedent_cluster_ids += tf.to_int32(tf.log(tf.to_float(top_antecedents_mask))) # [k, c]
same_cluster_indicator = tf.equal(top_antecedent_cluster_ids, tf.expand_dims(top_span_cluster_ids, 1)) # [k, c]
non_dummy_indicator = tf.expand_dims(top_span_cluster_ids > 0, 1) # [k, 1]
pairwise_labels = tf.logical_and(same_cluster_indicator, non_dummy_indicator) # [k, c]
dummy_labels = tf.logical_not(tf.reduce_any(pairwise_labels, 1, keepdims=True)) # [k, 1]
top_antecedent_labels = tf.concat([dummy_labels, pairwise_labels], 1) # [k, c + 1]
loss = self.softmax_loss(top_antecedent_scores, top_antecedent_labels) # [k]
loss = tf.reduce_sum(loss) # []
return [candidate_starts, candidate_ends, candidate_mention_scores, top_span_starts, top_span_ends, top_antecedents, top_antecedent_scores], loss
def get_span_emb(self, head_emb, context_outputs, span_starts, span_ends):
span_emb_list = []
| tensorflow.reduce_any | 14,433 |
import tensorflow as tf
color_name = items[0]
chars = tf.one_hot(tf.decode_raw(color_name, tf.uint8), depth=256)
# The sequence length is needed by our RNN.
length = tf.cast(tf.shape(chars)[0], dtype=tf.int64)
return rgb, chars, length
| tensorflow.shape | 14,434 |
import tensorflow as tf
else:
dataset_path = os.path.join(dataset_path, 'dev.json')
# Opening with GFile allows to use remotely stored files, e.g.
# in a gs bucket.
dataset_handle = tf.io.gfile.GFile(dataset_path, 'r')
dataset = json.load(dataset_handle)
def mathqa_yield_examples(generator=None):
| tensorflow.io.gfile.GFile | 14,435 |
import tensorflow as tf
with self.session(use_gpu=False):
tf.set_random_seed(93820985)
p = self._testParams()
mdl = p.Instantiate()
mdl.FPropDefaultTheta()
mdl.BProp()
tf.global_variables_initializer().run()
test_utils.CompareToGoldenSingleFloat(self, 4.472597, mdl.loss.eval())
mdl.train_op.run()
def testBPropSmoothDecay(self):
with self.session(use_gpu=False):
tf.set_random_seed(93820985)
p = self._testParams()
p.train.lr_schedule = (
schedule.ContinuousLearningRateSchedule.Params().Set(
start_step=350000, half_life_steps=45000))
mdl = p.Instantiate()
mdl.FPropDefaultTheta()
mdl.BProp()
tf.global_variables_initializer().run()
test_utils.CompareToGoldenSingleFloat(self, 4.472597, mdl.loss.eval())
mdl.train_op.run()
| tensorflow.set_random_seed | 14,436 |
import tensorflow as tf
reconstructed_outputs, reconstructed_weights, _, _, _, _, _ = attention_decoder(
attention_states=[states], initial_state=states[:,-1,:], feed_previous=feed_previous,
decoder_inputs=targets[1][:, :-1], encoder_input_length=target_length,
decoder=decoders[1], training=training, encoders=decoders[:1]
)
target_weights = get_weights(targets[1][:, 1:], utils.EOS_ID, include_first_eos=True)
xent_loss += reconstruction_weight * sequence_loss(logits=reconstructed_outputs, targets=targets[1][:, 1:],
weights=target_weights)
max_src_len = tf.shape(reconstructed_weights)[1]
batch_size = tf.shape(reconstructed_weights)[0]
attn_loss = tf.matmul(reconstructed_weights, attention_weights) - tf.eye(max_src_len)
src_mask = tf.sequence_mask(encoder_input_length[0], maxlen=max_src_len, dtype=tf.float32)
src_mask = tf.einsum('ij,ik->ijk', src_mask, src_mask)
attn_loss *= tf.to_float(src_mask) # don't take padding words into account
attn_loss = tf.norm(attn_loss) / tf.to_float(batch_size)
| tensorflow.shape | 14,437 |
import tensorflow as tf
x_image = tf.cond(train, lambda: tf.map_fn(tf.image.random_flip_left_right, x_image), lambda: x_image)
x_image = tf.cond(train, lambda: tf.map_fn(lambda x: tf.image.random_brightness(x, 0.5), x_image), lambda: x_image)
img_summary = tf.summary.image('Input_images', x_image)
# First convolutional layer - maps one image to 32 feature maps.
with tf.variable_scope('Conv_1'):
conv1 = tf.layers.conv2d(
inputs=x_image,
filters=32,
kernel_size=[5,5],
padding='same',
use_bias=False,
| tensorflow.variable_scope | 14,438 |
import tensorflow as tf
validloss = []
itr = 0
saver = tf.train.Saver()
| tensorflow.train.Saver | 14,439 |
import tensorflow as tf
d_loss = real_loss + fake_loss
if mode == "min_fake":
g_loss = - fake_loss
elif mode == "max_real":
g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=fake_logits, labels=tf.ones_like(fake_logits)))
else:
raise ValueError("Unknown mode: %s. Only 'min_fake' and 'max_real' "
"are allowed.")
return g_loss, d_loss
| tensorflow.ones_like | 14,440 |
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
if FLAGS.max_seq_length > bert_config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length %d because the BERT model "
"was only trained up to sequence length %d" %
(FLAGS.max_seq_length, bert_config.max_position_embeddings))
tf.gfile.MakeDirs(FLAGS.output_dir)
tpu_cluster_resolver = None
if FLAGS.use_tpu and FLAGS.tpu_name:
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir=FLAGS.output_dir,
tpu_config=tf.contrib.tpu.TPUConfig(
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=is_per_host))
model_fn = model_fn_builder(
| tensorflow.contrib.cluster_resolver.TPUClusterResolver | 14,441 |
import tensorflow as tf
assert_op = tf.Assert(tf.is_finite(corr_loss), [corr_loss])
with tf.control_dependencies([assert_op]):
tag = 'Correlation Loss'
| tensorflow.control_dependencies | 14,442 |
import tensorflow as tf
def augment(features, targets):
features['image'] = _cifar_augment_image(features['image'])
return features, targets
def flatten_image(features, targets):
"""Flatten the image."""
img = features['image']
flat = tf.cast(tf.reshape(img, [-1]), tf.int64)
tgt = tf.expand_dims(targets, axis=0)
flat_with_target = tf.concat([flat, tgt], axis=0)
new_features = {}
new_features['image'] = flat_with_target
predict_image_weight = predict_image_train_weight if training else 0.0
mask_begin = tf.ones_like(flat)
mask_begin = tf.cast(mask_begin, tf.float32) * predict_image_weight
mask_end = tf.cast(tf.ones_like(tgt), tf.float32)
new_features['mask'] = tf.concat([mask_begin, mask_end], axis=0)
return new_features, flat_with_target
if training:
dataset = dataset.map(augment)
dataset = dataset.map(flatten_image)
return dataset
@gin.configurable(module='trax.data', denylist=['dataset', 'training'])
| tensorflow.ones_like | 14,443 |
import tensorflow as tf
pred_flat = tf.reshape(pred, [-1])
tgt_flat = tf.reshape(tgt, [-1])
batch = tf.stack([pred_flat, tgt_flat], 1)
num_sam = tools.shape(batch)[0]
index = tf.range(num_sam)
divider = tf.constant(resample, dtype=tf.float32)
def sample_compute(cur_loss, i):
batch1 = tf.gather(batch, tf.random.shuffle(index))
batch2 = tf.gather(batch, tf.random.shuffle(index))
pred1 = tf.slice(batch1, [0, 0], [num_sam, 1])
pred2 = tf.slice(batch2, [0, 0], [num_sam, 1])
tgt1 = tf.slice(batch1, [0, 1], [num_sam, 1])
tgt2 = tf.slice(batch2, [0, 1], [num_sam, 1])
loss = cur_loss + compute_contra_loss(pred1, pred2, tgt1, tgt2)
print(loss)
return (loss, i + 1)
| tensorflow.random.shuffle | 14,444 |
import tensorflow as tf
If the mapping does not exist or `vocab_filename` is not present within it,
we will default to sanitizing `vocab_filename` and searching for files
matching it within the assets directory.
In either case, if the constructed path does not point to an existing file
within the assets subdirectory, we will return a None.
Args:
vocab_filename: The vocabulary name to lookup.
"""
mapping_path = os.path.join(self._transformed_metadata_dir, self.ASSET_MAP)
mapping = {}
if tf.io.gfile.exists(mapping_path):
with tf.io.gfile.GFile(mapping_path) as f:
mapping = json.loads(f.read())
if vocab_filename in mapping:
vocab_path = os.path.join(self.transform_savedmodel_dir,
tf.saved_model.ASSETS_DIRECTORY,
mapping[vocab_filename])
if tf.io.gfile.exists(vocab_path):
return vocab_path
prefix = os.path.join(self.transform_savedmodel_dir,
tf.saved_model.ASSETS_DIRECTORY,
sanitized_vocab_filename(filename=vocab_filename))
files = tf.io.gfile.glob(prefix) + tf.io.gfile.glob(
'{}.tfrecord.gz'.format(prefix))
| tensorflow.io.gfile.GFile | 14,445 |
import tensorflow as tf
drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([], tf.int64),
| tensorflow.FixedLenFeature | 14,446 |
import tensorflow as tf
w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1))
b = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
v = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
with tf.name_scope('v'):
# Applying fully connected layer with non-linear activation to each of the B*T timestamps;
# the shape of `tmp` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size
tmp1 = tf.tensordot(facts, w1, axes=1)
tmp2 = tf.tensordot(query, w2, axes=1)
tmp2 = tf.reshape(tmp2, [-1, 1, tf.shape(tmp2)[-1]])
tmp = tf.tanh((tmp1 + tmp2) + b)
# For each of the timestamps its vector of size A from `tmp` is reduced with `v` vector
v_dot_tmp = tf.tensordot(tmp, v, axes=1, name='v_dot_tmp') # (B,T) shape
key_masks = mask # [B, 1, T]
# key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(v_dot_tmp) * (-2 ** 32 + 1)
v_dot_tmp = tf.where(key_masks, v_dot_tmp, paddings) # [B, 1, T]
alphas = tf.nn.softmax(v_dot_tmp, name='alphas') # (B,T) shape
| tensorflow.tanh | 14,447 |
import tensorflow as tf
# sess.close()
identity_matrix = tf.diag([1.0, 3.0, 1.0])
A = tf.truncated_normal([2, 3])
B = tf.fill([2, 3], 5.0)
C = tf.random_uniform([3, 2], maxval=100)
D = tf.convert_to_tensor(np.array([[1., 2., 3.], [-3., -7., -1.], [0., 5., -2.]]))
sess = tf.Session()
# sess.run(tf.global_variables_initializer())
# print(sess.run(tf.random_normal(mean=10, shape=[10])))
| tensorflow.random_uniform | 14,448 |
import tensorflow as tf
return T.ones(shape, dtype)
else:
assert K.backend() == 'tensorflow'
import tensorflow as tf
return tf.ones(shape, dtype)
def zeros(shape, dtype=K.floatx()):
| tensorflow.ones | 14,449 |
import tensorflow as tf
def get_masked_lm_output(bert_config, input_tensor, output_weights, positions,
label_ids, label_weights):
"""Get loss and log probs for the masked LM."""
input_tensor = gather_indexes(input_tensor, positions)
with tf.variable_scope("cls/predictions"):
# We apply one more non-linear transformation before the output layer.
# This matrix is not used after pre-training.
with tf.variable_scope("transform"):
input_tensor = tf.layers.dense(
| tensorflow.variable_scope | 14,450 |
import tensorflow as tf
assert(data_format == 'NDHWC')
self.w = tf.get_variable('w', [k_t, k_h, k_w, input_dim, output_dim],
initializer=tf.truncated_normal_initializer(stddev=stddev))
self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0))
self.strides = [d_t,d_h,d_w]
def __call__(self,input_var,name=None,w=None,b=None,**kwargs) :
| tensorflow.constant_initializer | 14,451 |
import tensorflow as tf
logits = tf.expand_dims(logits, axis=1)
value = tf.layers.dense(x, self.distributional_value_size)
return {"target_policy": logits, "target_value": value}
@registry.register_model
class FeedForwardCnnSmallCategoricalPolicyNew(PolicyBase):
"""Small cnn network with categorical output."""
def body(self, features):
observations = features["inputs"]
x = tf.transpose(observations, [0, 2, 3, 1, 4])
x_shape = common_layers.shape_list(x)
x = tf.reshape(x, x_shape[:-2] + [-1])
dropout = getattr(self.hparams, "dropout_ppo", 0.0)
with tf.variable_scope("feed_forward_cnn_small"):
x = tf.cast(x, tf.float32) / 255.0
x = tf.nn.dropout(x, rate=dropout)
x = tf.layers.conv2d(
x, 32, (4, 4), strides=(2, 2), name="conv1",
activation=common_layers.belu, padding="SAME")
x = tf.nn.dropout(x, rate=dropout)
x = tf.layers.conv2d(
x, 64, (4, 4), strides=(2, 2), name="conv2",
activation=common_layers.belu, padding="SAME")
x = tf.nn.dropout(x, rate=dropout)
x = tf.layers.conv2d(
x, 128, (4, 4), strides=(2, 2), name="conv3",
activation=common_layers.belu, padding="SAME")
| tensorflow.variable_scope | 14,452 |
import tensorflow as tf
mse_loss_list.append(0.5 * tf.losses.mean_squared_error(targets_list[pred_ind], pred_outputs[pred_ind],
weights=1.0 / tf.cast(cur_batch_size, tf.float32),
scope='loss_{}'.format(pred_ind),
loss_collection=None,#tf.GraphKeys.LOSSES,
# mean all elements of all pixels in all batch
reduction=tf.losses.Reduction.MEAN))# SUM, SUM_OVER_BATCH_SIZE, default mean by all elements
temp_loss = tf.reduce_mean(tf.reshape(tf.losses.mean_squared_error(targets_list[-1], pred_outputs[-1], weights=1.0, loss_collection=None, reduction=tf.losses.Reduction.NONE), [cur_batch_size, config.class_num_joints[(params['model_scope'] if 'all' not in params['model_scope'] else '*')], -1]), axis=-1)
num_topk = config.class_num_joints[(params['model_scope'] if 'all' not in params['model_scope'] else '*')] // 2
gather_col = tf.nn.top_k(temp_loss, k=num_topk, sorted=True)[1]
gather_row = tf.reshape(tf.tile(tf.reshape(tf.range(cur_batch_size), [-1, 1]), [1, num_topk]), [-1, 1])
gather_indcies = tf.stop_gradient(tf.stack([gather_row, tf.reshape(gather_col, [-1, 1])], axis=-1))
| tensorflow.losses.mean_squared_error | 14,453 |
import tensorflow as tf
if FLAGS.pretrained_model_path is not None:
variable_restore_op = slim.assign_from_checkpoint_fn(FLAGS.pretrained_model_path, slim.get_trainable_variables(),
ignore_missing_vars=True)
config = tf.ConfigProto()
custom_op = config.graph_options.rewrite_options.custom_optimizers.add()
custom_op.name = "NpuOptimizer"
custom_op.parameter_map["use_off_line"].b = True # 在昇腾AI处理器执行训练
config.graph_options.rewrite_options.remapping = RewriterConfig.OFF # 关闭remap开关
if FLAGS.allow_mix_precision:
custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes("allow_mix_precision")
if FLAGS.auto_tune:
custom_op.parameter_map["auto_tune_mode"].s = tf.compat.as_bytes("RL,GA")
with tf.Session(config=config) as sess:
if FLAGS.restore:
print('continue training from previous checkpoint')
ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
saver.restore(sess, ckpt)
else:
sess.run(init)
| tensorflow.compat.as_bytes | 14,454 |
import tensorflow as tf
# Test when num_decoder_symbols is provided, the size of decoder output
# is num_decoder_symbols.
with tf.variable_scope("decoder_symbols_seq2seq"):
dec, mem = tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp, cell, num_symbols=5, num_decoder_symbols=3,
embedding_size=2)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 3), res[0].shape)
# Test externally provided output projection.
w = tf.get_variable("proj_w", [2, 5])
b = tf.get_variable("proj_b", [5])
with tf.variable_scope("proj_seq2seq"):
dec, _ = tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp, cell, num_symbols=5, embedding_size=2,
output_projection=(w, b))
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 2), res[0].shape)
# Test that previous-feeding model ignores inputs after the first.
dec_inp2 = [tf.constant(0, tf.int32, shape=[2])] * 3
with tf.variable_scope("other"):
d3, _ = tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp2, cell, num_symbols=5, embedding_size=2,
feed_previous=tf.constant(True))
| tensorflow.variable_scope | 14,455 |
import tensorflow as tf
if decoder.use_previous_word:
projection_input.insert(1, input_) # for back-compatibility
output_ = tf.concat(projection_input, axis=1)
if decoder.pred_deep_layer:
| tensorflow.concat | 14,456 |
from tensorflow.contrib.framework import deprecated
result[name] = metric(predictions, labels)
return result
@deprecated(
"2016-11-12", "This file will be removed after the deprecation date."
"Please switch to "
"third_party/tensorflow/contrib/learn/python/learn/estimators/head.py")
def get_default_binary_metrics_for_eval(thresholds):
| tensorflow.contrib.framework.deprecated | 14,457 |
import tensorflow as tf
top_span_ends = tf.gather(candidate_ends, top_span_indices) # [k]
top_span_emb = tf.gather(candidate_span_emb, top_span_indices) # [k, emb]
top_span_cluster_ids = tf.gather(candidate_cluster_ids, top_span_indices) # [k]
top_span_mention_scores = tf.gather(candidate_mention_scores, top_span_indices) # [k]
top_span_sentence_indices = tf.gather(candidate_sentence_indices, top_span_indices) # [k]
top_span_speaker_ids = tf.gather(speaker_ids, top_span_starts) # [k]
c = tf.minimum(self.config["max_top_antecedents"], k)
if self.config["coarse_to_fine"]:
| tensorflow.gather | 14,458 |
import tensorflow as tf
scale: The amount of scaling applied to the input.
Returns:
Scaled dimension.
"""
if isinstance(dim, tf.Tensor):
return tf.cast((tf.to_float(dim) - 1.0) * scale + 1.0, dtype=tf.int32)
else:
return int((float(dim) - 1.0) * scale + 1.0)
def multi_scale_logits(images,
| tensorflow.to_float | 14,459 |
from tensorflow.python.ops import array_ops
`weights` is not `None` and its shape doesn't match `predictions`, or if
either `metrics_collections` or `updates_collections` are not a list or
tuple.
"""
predictions, labels = tensor_util.remove_squeezable_dimensions(
predictions, labels)
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
predictions, normalizer = tensor_util.remove_squeezable_dimensions(
predictions, normalizer)
predictions.get_shape().assert_is_compatible_with(normalizer.get_shape())
relative_errors = math_ops.select(
math_ops.equal(normalizer, 0.0),
array_ops.zeros_like(labels),
math_ops.div(math_ops.abs(labels - predictions), normalizer))
return streaming_mean(relative_errors, weights, metrics_collections,
updates_collections, name or 'mean_relative_error')
def streaming_mean_squared_error(predictions, labels, weights=None,
metrics_collections=None,
updates_collections=None,
name=None):
"""Computes the mean squared error between the labels and predictions.
The `streaming_mean_squared_error` function creates two local variables,
| tensorflow.python.ops.array_ops.zeros_like | 14,460 |
from tensorflow.python.framework import ops
def _hard_label_shape(op):
output_shape = op.inputs[0].get_shape()
return [output_shape]
@ops.RegisterGradient("Hardlabel")
def _hard_label_grad(op, grad):
bottom_prob = op.inputs[0]
bottom_gt = op.inputs[1]
| tensorflow.python.framework.ops.RegisterGradient | 14,461 |
import tensorflow as tf
pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.size(loss, out_type=tf.float32)
p = tf.cond(tf.random_uniform((), dtype=tf.float32) < 1e-4,
lambda: tf.print('csrt acc ', [pct]),
lambda: tf.no_op())
with tf.control_dependencies([p]):
return tf.reduce_mean(loss)
loss = tf.map_fn(fn=lambda inp: sample_compute(inp), elems=tf.range(resample), dtype=tf.float32,
parallel_iterations=32)
final_loss = tf.reduce_mean(loss)
return final_loss
def contra_traj_lossV1(pred, tgt, temp=10.0):
| tensorflow.range | 14,462 |
import tensorflow as tf
def log_sum_exp(x):
"""numerically stable log_sum_exp implementation that prevents overflow."""
axis = len(x.get_shape()) - 1
m = tf.reduce_max(x, axis)
m2 = tf.reduce_max(x, axis, keep_dims=True)
return m + tf.log(tf.reduce_sum(tf.exp(x - m2), axis))
def log_prob_from_logits(x):
"""numerically stable log_softmax implementation that prevents overflow."""
| tensorflow.reduce_max | 14,463 |
from tensorflow.contrib import framework as contrib_framework
return eval_results
def _infer_model(self, x, batch_size=None, axis=None, proba=False):
# Converts inputs into tf.DataFrame / tf.Series.
batch_size = -1 if batch_size is None else batch_size
input_fn, feed_fn = _get_predict_input_fn(x, batch_size)
checkpoint_path = saver.latest_checkpoint(self._model_dir)
with ops.Graph().as_default() as g:
random_seed.set_random_seed(self._config.tf_random_seed)
contrib_framework.create_global_step(g)
features, _ = input_fn()
feed_dict = feed_fn() if feed_fn is not None else None
predictions = self._get_predict_ops(features)
if not isinstance(predictions, dict):
predictions = {'predictions': predictions}
# TODO(ipolosukhin): Support batching
return infer(checkpoint_path, predictions, feed_dict=feed_dict)
| tensorflow.contrib.framework.create_global_step | 14,464 |
import tensorflow as tf
objectives.append((Objective(name, contra_loss, min, include, exclude)))
elif name == 'reward' and config.r_loss == 'l2':
pred = heads[name](features)
l2_loss = tf.compat.v1.losses.mean_squared_error(target[name], pred)
# l2_loss = tf.nn.l2_loss(pred - target[name])
objectives.append((Objective(name, l2_loss, min, include, exclude)))
| tensorflow.compat.v1.losses.mean_squared_error | 14,465 |
import tensorflow as tf
else:
assert tf.get_variable_scope().reuse is False
"""U-Net Generator"""
def lrelu(x, alpha,name='lrelu'):
with tf.variable_scope(name):
return tf.nn.relu(x) - alpha * tf.nn.relu(-x)
def instance_norm(x,name='instance_norm'):
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
epsilon = 1e-5
mean, var = tf.nn.moments(x, [1, 2], keep_dims=True)
scale = tf.get_variable('scale',[x.get_shape()[-1]],
initializer=tf.truncated_normal_initializer(mean=1.0, stddev=0.02))
offset = tf.get_variable('offset',[x.get_shape()[-1]],initializer=tf.constant_initializer(0.0))
out = scale*tf.div(x-mean, tf.sqrt(var+epsilon)) + offset
return out
| tensorflow.get_variable_scope | 14,466 |
import tensorflow as tf
self.vf_eval, _ = self.build_cnet(self.state, 'vf', reuse=True)
self.sample_action = tf.squeeze(pi_eval.sample(1), axis=0)
self.eval_action = pi_eval.mode()
self.global_step = tf.train.get_or_create_global_step()
self.saver = tf.train.Saver()
# Loss functions and training
epsilon_decay = tf.train.polynomial_decay(self.EPSILON, self.global_step, self.EPS_LEN, 0.1, power=0)
ratio = tf.maximum(pi.prob(batch['actions']), 1e-6) / tf.maximum(pi_old.prob(batch['actions']), 1e-6)
ratio = tf.clip_by_value(ratio, 0, 10)
surr1 = batch['advantage'] * ratio
surr2 = batch['advantage'] * tf.clip_by_value(ratio, 1 - epsilon_decay, 1 + epsilon_decay)
loss_pg = - 2.0 * tf.reduce_mean(tf.minimum(surr1, surr2))
loss_vf = 0.5 * tf.reduce_mean(tf.square(batch['rewards'] - self.vf))
loss_entropy = - 0.01 * tf.reduce_mean(pi.entropy())
loss = loss_pg + loss_vf + loss_entropy
opt = tf.train.AdamOptimizer(self.LR)
self.train_op = opt.minimize(loss, global_step=self.global_step, var_list=pi_params + vf_params)
self.pi_new_params = [oldp.assign(p) for p, oldp in zip(pi_params, pi_old_params)]
self.vf_new_params = [oldp.assign(p) for p, oldp in zip(vf_params, vf_old_params)]
self.sess.run(tf.global_variables_initializer())
# Tensorboard
if summary_dir is not None:
self.writer = tf.summary.FileWriter(summary_dir)
| tensorflow.square | 14,467 |
import tensorflow as tf
def body(self, features):
observations = features["inputs"]
flat_x = tf.layers.flatten(observations)
with tf.variable_scope("dense_bitwise"):
flat_x = discretization.int_to_bit_embed(flat_x, 8, 32)
| tensorflow.variable_scope | 14,468 |
import tensorflow as tf
if not forward_only:
lstm_cell = tf.nn.rnn_cell.DropoutWrapper(cell=lstm_cell, output_keep_prob=self.dropout_output)
# lstm_cell = tf.nn.rnn_cell.MultiRNNCell(cells=[lstm_cell] * 4, state_is_tuple=True)
if not forward_only:
embed_inputs = tf.nn.dropout(embed_inputs, keep_prob=self.dropout_input)
rnn_outputs, output_states = tf.nn.dynamic_rnn(
cell=lstm_cell,
inputs=embed_inputs,
dtype=tf.float32,
sequence_length=self.seq_len,
) ## (batch_size, seq_len, num_hidden)
| tensorflow.nn.dynamic_rnn | 14,469 |
import tensorflow as tf
def get_stn(image):
stn = (LinearWrap(image)
.AvgPooling('downsample', 2)
.Conv2D('conv0', 20, 5, padding='VALID')
.MaxPooling('pool0', 2)
.Conv2D('conv1', 20, 5, padding='VALID')
.FullyConnected('fc1', out_dim=32)
.FullyConnected('fct', out_dim=6, nl=tf.identity,
W_init=tf.constant_initializer(),
b_init=tf.constant_initializer([1, 0, HALF_DIFF, 0, 1, HALF_DIFF]))())
# output 6 parameters for affine transformation
stn = tf.reshape(stn, [-1, 2, 3], name='affine') # bx2x3
stn = tf.reshape(tf.transpose(stn, [2, 0, 1]), [3, -1]) # 3 x (bx2)
coor = tf.reshape(tf.matmul(xys, stn),
[WARP_TARGET_SIZE, WARP_TARGET_SIZE, -1, 2])
coor = tf.transpose(coor, [2, 0, 1, 3], 'sampled_coords') # b h w 2
sampled = ImageSample('warp', [image, coor], borderMode='constant')
return sampled
with argscope([Conv2D, FullyConnected], nl=tf.nn.relu):
with tf.variable_scope('STN1'):
sampled1 = get_stn(image)
with tf.variable_scope('STN2'):
sampled2 = get_stn(image)
# For visualization in tensorboard
| tensorflow.matmul | 14,470 |
import tensorflow as tf
decayed_learning_rate = (max_lr - learning_rate) *
(floor(global_step / step_size) - global_step / step_size) +
learning_rate
"""
with tf.name_scope(name):
learning_rate = tf.cast(learning_rate, dtype=tf.float32)
global_step = tf.cast(global_step, dtype=tf.float32)
step_size = tf.cast(step_size, dtype=tf.float32)
max_lr = tf.cast(max_lr, dtype=tf.float32)
if mode == 'tri':
periodic_comp = tf.mod((global_step + step_size / 4) / step_size, 1)
first_factor = tf.abs(periodic_comp - 0.5)
| tensorflow.cast | 14,471 |
import tensorflow as tf
'bboxes_predict': tf.reshape(bboxes_pred, [-1, 4]) }
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate loss, which includes softmax cross entropy and L2 regularization.
cross_entropy = tf.cond(n_positives > 0., lambda: tf.losses.sparse_softmax_cross_entropy(labels=glabels, logits=cls_pred), lambda: 0.)
#cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=glabels, logits=cls_pred)
# Create a tensor named cross_entropy for logging purposes.
tf.identity(cross_entropy, name='cross_entropy_loss')
tf.summary.scalar('cross_entropy_loss', cross_entropy)
loc_loss = tf.cond(n_positives > 0., lambda: modified_smooth_l1(location_pred, tf.stop_gradient(gtargets), sigma=1.), lambda: tf.zeros_like(location_pred))
#loc_loss = modified_smooth_l1(location_pred, tf.stop_gradient(gtargets))
loc_loss = tf.reduce_mean(tf.reduce_sum(loc_loss, axis=-1))
loc_loss = tf.identity(loc_loss, name='location_loss')
tf.summary.scalar('location_loss', loc_loss)
tf.losses.add_loss(loc_loss)
| tensorflow.identity | 14,472 |
from tensorflow.python.ops import control_flow_ops
t_vars['g_vars'], self.g_losses[-1], g_optimizer, gradient_noise_scale=0.0)
else:
self.capped_d_grads = self._clip_grad_norms(
d_optimizer.compute_gradients(self.d_losses[-1], t_vars['d_vars']))
self.capped_g_grads = self._clip_grad_norms(
g_optimizer.compute_gradients(self.g_losses[-1], t_vars['g_vars']))
global_step = tf.get_variable(
'global_step', [], initializer=tf.constant_initializer(0), trainable=False)
if self.gradient_multipliers is not None:
with tf.name_scope('multiply_grads'):
self.capped_d_grads = self._multiply_gradients(self.capped_d_grads,
self.gradient_multipliers)
apply_d_gradient_op = d_optimizer.apply_gradients(self.capped_d_grads, global_step=global_step)
apply_g_gradient_op = g_optimizer.apply_gradients(self.capped_g_grads, global_step=global_step)
self.train_op_d = control_flow_ops.with_dependencies([apply_d_gradient_op], self.d_losses[-1])
self.train_op_g = control_flow_ops.with_dependencies([apply_g_gradient_op], self.g_losses[-1])
| tensorflow.python.ops.control_flow_ops.with_dependencies | 14,473 |
import tensorflow as tf
learning_rate=learning_rate,
clip_gradients=params.clip_grad_norm or None,
optimizer=opt,
colocate_gradients_with_ops=True
)
zero_op = tf.no_op("zero_op")
collect_op = tf.no_op("collect_op")
else:
grads_and_vars = opt.compute_gradients(
loss, colocate_gradients_with_ops=True)
gradients = [item[0] for item in grads_and_vars]
variables = [item[1] for item in grads_and_vars]
| tensorflow.no_op | 14,474 |
import tensorflow as tf
output_weight = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02)
)
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer()
)
with tf.variable_scope("loss"):
if is_training:
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
output_layer = tf.reshape(output_layer, [-1, hidden_size])
logits = tf.matmul(output_layer, output_weight, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
logits = tf.reshape(logits, [-1, FLAGS.max_seq_length, 11])
log_probs = tf.nn.log_softmax(logits, axis=-1)
# labels = tf.cast(labels,dtype=tf.float32)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
| tensorflow.nn.dropout | 14,475 |
from tensorflow.python.ops import math_ops
false_positives = _create_local('false_positives', shape=[num_thresholds])
is_true_positive = math_ops.to_float(
math_ops.logical_and(label_is_pos, pred_is_pos))
is_false_negative = math_ops.to_float(
math_ops.logical_and(label_is_pos, pred_is_neg))
is_false_positive = math_ops.to_float(
math_ops.logical_and(label_is_neg, pred_is_pos))
is_true_negative = math_ops.to_float(
math_ops.logical_and(label_is_neg, pred_is_neg))
if weights is not None:
weights = math_ops.to_float(weights)
weights_tiled = array_ops.tile(array_ops.reshape(
_broadcast_weights(weights, predictions), [1, -1]), [num_thresholds, 1])
thresh_tiled.get_shape().assert_is_compatible_with(
weights_tiled.get_shape())
is_true_positive *= weights_tiled
is_false_negative *= weights_tiled
is_false_positive *= weights_tiled
is_true_negative *= weights_tiled
true_positives_update_op = state_ops.assign_add(
true_positives, math_ops.reduce_sum(is_true_positive, 1))
| tensorflow.python.ops.math_ops.to_float | 14,476 |
import tensorflow as tf
pad a vector with a zero row and gather with input inds
"""
if pad is None:
pad = tf.expand_dims(tf.zeros_like(vecs[0]), 0)
else:
pad = tf.expand_dims(pad, 0)
vecs_padded = tf.concat(0, [vecs, pad])
# flatten mask and edges
vecs_gathered = tf.gather(vecs_padded, mask_inds)
return vecs_gathered
def padded_segment_reduce(vecs, segment_inds, num_segments, reduction_mode):
| tensorflow.concat | 14,477 |
import tensorflow as tf
x = tfd.Normal(loc=0., scale=1., name="x")
x_duplicate = tfd.Normal(loc=0., scale=1., name="x")
with tf.name_scope("y") as name:
y = tfd.Bernoulli(logits=0., name=name)
| tensorflow.name_scope | 14,478 |
import tensorflow as tf
initial = tf.constant(0.1, shape=shape, name='Bias')
return tf.Variable(initial)
| tensorflow.Variable | 14,479 |
from tensorflow.python.ops import math_ops
predictions, labels, weights=weights, name='covariance')
var_predictions, update_var_predictions = streaming_covariance(
predictions, predictions, weights=weights, name='variance_predictions')
var_labels, update_var_labels = streaming_covariance(
labels, labels, weights=weights, name='variance_labels')
pearson_r = _safe_div(
cov,
math_ops.mul(math_ops.sqrt(var_predictions), math_ops.sqrt(var_labels)),
'pearson_r')
with ops.control_dependencies(
[update_cov, update_var_predictions, update_var_labels]):
update_op = _safe_div(update_cov, math_ops.mul(
math_ops.sqrt(update_var_predictions),
math_ops.sqrt(update_var_labels)), 'update_op')
if metrics_collections:
ops.add_to_collections(metrics_collections, pearson_r)
if updates_collections:
ops.add_to_collections(updates_collections, update_op)
return pearson_r, update_op
# TODO(nsilberman): add a 'normalized' flag so that the user can request
# normalization if the inputs are not normalized.
def streaming_mean_cosine_distance(predictions, labels, dim, weights=None,
| tensorflow.python.ops.math_ops.sqrt | 14,480 |
import tensorflow as tf
self.example_weights = tf.placeholder(tf.float32, [batch_size],
name='example_weights')
# get one 'word' embedding for the full tweet
tweet_embedding = c2v.GetEmbeddings(self.x)[:,1,:]
logits = tf.nn.xw_plus_b(tweet_embedding, hidden, bias)
self.probs = tf.nn.softmax(logits)
self._xent = tf.nn.softmax_cross_entropy_with_logits(logits, self.y)
self.cost = tf.reduce_mean(self.example_weights * self._xent)
class WordLevelModel(object):
| tensorflow.nn.softmax | 14,481 |
import tensorflow as tf
with tf.control_dependencies([p]):
return tf.reduce_mean(loss)
| tensorflow.reduce_mean | 14,482 |
import tensorflow as tf
gtboxes_and_label_r[:int(num_objects), :].astype(np.float32)
def main(self):
with tf.Graph().as_default() as graph, tf.device('/cpu:0'):
num_gpu = len(cfgs.GPU_GROUP.strip().split(','))
| tensorflow.Graph | 14,483 |
import tensorflow as tf
z, = tf.py_func(my_func, [x, y], [tf.complex64])
self.assertAllClose(z.eval(), my_func(1+2j, 3+4j))
# a bit excotic function (rfft)
with self.test_session():
x = tf.constant([1., 2., 3., 4.], tf.float32)
def rfft(x):
return np.fft.rfft(x).astype(np.complex64)
y, = tf.py_func(rfft, [x], [tf.complex64])
self.assertAllClose(y.eval(), np.fft.rfft([1., 2., 3., 4.]))
| tensorflow.constant | 14,484 |
import tensorflow as tf
label_list = processor.get_labels()
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
tpu_cluster_resolver = None
if FLAGS.use_tpu and FLAGS.tpu_name:
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver('grpc://' + os.environ['COLAB_TPU_ADDR'])
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=is_per_host))
train_examples = None
num_train_steps = None
num_warmup_steps = None
if FLAGS.do_train:
train_examples = processor.get_train_examples(FLAGS.data_dir)
num_train_steps = int(
len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)
| tensorflow.contrib.tpu.TPUConfig | 14,485 |
import tensorflow as tf
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
loss = tf.maximum(0., (tgt_larg - tgt_small) - (pred_larg - pred_small))
if hard_ratio < 1.0:
hard_num = tf.cast(tools.shape(pred1)[0] * hard_ratio, tf.int32)
loss = tf.reshape(loss, [-1])
hard_loss, _ = tf.math.top_k(loss, k=hard_num)
return hard_loss
return loss
def compute_error_loss(pred1, pred2, tgt1, tgt2, hard_ratio=1.0):
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
loss = tf.maximum(0., (tgt_larg - tgt_small) - (pred_larg - pred_small))
if hard_ratio < 1.0:
hard_num = tf.cast(tools.shape(pred1)[0] * hard_ratio, tf.int32)
loss = tf.reshape(loss, [-1])
hard_loss, _ = tf.math.top_k(loss, k=hard_num)
return hard_loss
return loss
| tensorflow.where | 14,486 |
import tensorflow as tf
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state('./model_pretrain')
if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):
print("loading checkpoint...")
saver.restore(sess, ckpt.model_checkpoint_path)
else:
sess.run(tf.global_variables_initializer())
summary_writer = tf.summary.FileWriter('./logs_pretrain', sess.graph)
_x = x[:, :, :, ::-1]
tf.summary.image('x', _x, 4)
summary_op = tf.summary.merge_all()
epoch_learning_rate = init_learning_rate
| tensorflow.summary.FileWriter | 14,487 |
import tensorflow as tf
norm_grads = None
if self.max_grad_norm is not None:
grads, norm_grads = tf.clip_by_global_norm(grads, self.max_grad_norm)
grads = list(zip(grads, self.params))
with tf.variable_scope("input_info", reuse=False):
tf.summary.scalar('rewards', tf.reduce_mean(self.reward_ph))
tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate))
tf.summary.scalar('advantage', tf.reduce_mean(adv))
tf.summary.scalar('action_probability', tf.reduce_mean(self.mu_ph))
if self.full_tensorboard_log:
| tensorflow.reduce_mean | 14,488 |
import tensorflow as tf
import tensorflow as tf
from .tensorflowcv.model_provider import get_model
def save_model_params(sess,
file_path):
# assert file_path.endswith('.npz')
param_dict = {v.name: v.eval(sess) for v in tf.global_variables()}
np.savez_compressed(file_path, **param_dict)
def load_model_params(net,
param_dict,
sess,
ignore_missing=False):
| tensorflow.global_variables | 14,489 |
import tensorflow as tf
"""
micros = int(time.time()*10**6)
scope_name = str(micros)
op_list = []
with tf.name_scope(scope_name):
yield op_list
g = tf.get_default_graph()
op_list.extend(ge.select_ops(scope_name+"/.*", graph=g))
| tensorflow.name_scope | 14,490 |
import tensorflow as tf
def _conv(name, x, num_filters=16, kernel_size=(3, 3), padding='SAME', stride=(1, 1),
initializer=tf.contrib.layers.xavier_initializer(), l2_strength=0.0, dilation=1.0, bias=-1):
with tf.variable_scope(name):
stride = [1, stride[0], stride[1], 1]
kernel_shape = [kernel_size[0], kernel_size[1], x.shape[-1], num_filters]
w = variable_with_weight_decay(kernel_shape, initializer, l2_strength)
variable_summaries(w)
if dilation > 1:
conv = tf.nn.atrous_conv2d(x, w, dilation, padding)
else:
if type(padding)==type(''):
conv = tf.nn.conv2d(x, w, stride, padding)
else:
conv = tf.pad(x, padding, "CONSTANT")
conv = tf.nn.conv2d(conv, w, stride, padding='VALID')
if bias != -1:
bias = tf.get_variable('biases', [num_filters], initializer=tf.constant_initializer(bias))
variable_summaries(bias)
conv = tf.nn.bias_add(conv, bias)
tf.add_to_collection('debug_layers', conv)
return conv
| tensorflow.nn.conv2d | 14,491 |
from tensorflow.python.ops import math_ops
factor = array_ops.where(norm < max_norm, array_ops.ones_like(norm),
math_ops.exp(log_mean) / norm)
| tensorflow.python.ops.math_ops.exp | 14,492 |
from tensorflow.python.ops import math_ops
trainable=False)
return moving_averages.assign_moving_average(
moving_average_variable, value, decay, zero_debias=False)
# quicker adaptation at the beginning
if global_step is not None:
n = math_ops.cast(global_step, dtypes.float32)
decay = math_ops.minimum(decay, n / (n + 1.))
# update averages
mean = moving_average("mean", log_norm, decay)
sq_mean = moving_average("sq_mean", math_ops.square(log_norm), decay)
| tensorflow.python.ops.math_ops.cast | 14,493 |
import tensorflow as tf
zeros = array_ops.zeros_like(logits, dtype=logits.dtype)
pos_p_sub = array_ops.where(labels > zeros, labels - logits, zeros)
neg_p_sub = array_ops.where(labels > zeros, zeros, logits)
cross_ent = - alpha * (pos_p_sub ** gamma) * tf.log(tf.clip_by_value(logits, 1e-8, 1.0)) \
- (1 - alpha) * (neg_p_sub ** gamma) * tf.log(tf.clip_by_value(1.0 - logits, 1e-8, 1.0))
return tf.reduce_sum(cross_ent, 1)
start_label = tf.one_hot(self.start_label, tf.shape(self.logits1)[1], axis=1)
end_label = tf.one_hot(self.end_label, tf.shape(self.logits2)[1], axis=1)
if self.config.loss_type == 'cross_entropy':
start_loss = tf.nn.softmax_cross_entropy_with_logits(
logits=self.logits1, labels=start_label)
end_loss = tf.nn.softmax_cross_entropy_with_logits(
logits=self.logits2, labels=end_label)
self.loss = tf.reduce_mean(start_loss + end_loss)
else:
start_loss = focal_loss(tf.nn.softmax(self.logits1, -1), start_label)
end_loss = focal_loss(tf.nn.softmax(self.logits2, -1), end_label)
self.loss = tf.reduce_mean(start_loss + end_loss)
self.logger.info("loss type %s" % self.config.loss_type)
self.all_params = tf.trainable_variables()
if self.config.l2_norm is not None:
self.logger.info("applying l2 loss")
variables = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
l2_loss = tf.contrib.layers.apply_regularization(regularizer, variables)
self.loss += l2_loss
| tensorflow.reduce_mean | 14,494 |
import tensorflow as tf
# Make a matrix where each row contains [0, 1, ..., max_sequence_len]
r = tf.range(0, max_sequence_len, 1)
range_row = tf.expand_dims(r, 0)
range_tiled = tf.tile(range_row, [batch_size, 1])
self.lengths_transposed = lengths_transposed
self.lengths_tiled = lengths_tiled
self.range_row = range_row
self.range_tiled = range_tiled
# Use the logical operations to create a mask
indicator = tf.less(range_tiled, lengths_tiled+1) #i.e. where seq len is less than index
trim = np.ones(indicator.get_shape())
trim[:,0] = 0 #ignore start symbol
indicator = tf.logical_and(indicator, trim.astype(bool))
self.indicator = indicator
sz = [batch_size, max_sequence_len]
self._mask = tf.select(indicator, tf.ones(sz), tf.zeros(sz))
#-------------------------------#
self.weights = tf.constant(weights, dtype=tf.float32, name='class_weights')
| tensorflow.less | 14,495 |
import tensorflow as tf
if FLAGS.forward_only and FLAGS.eval:
raise ValueError('Only one of forward_only and eval flags is true')
if FLAGS.eval:
return 'evaluation'
if FLAGS.forward_only:
return 'forward-only'
return 'training'
def benchmark_one_step(sess, fetches, step, batch_size,
step_train_times, trace_filename, summary_op=None):
"""Advance one step of benchmarking."""
if trace_filename is not None and step == -1:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
else:
run_options = None
run_metadata = None
summary_str = None
start_time = time.time()
if summary_op is None:
results = sess.run(fetches, options=run_options, run_metadata=run_metadata)
else:
(results, summary_str) = sess.run(
[fetches, summary_op], options=run_options, run_metadata=run_metadata)
if not FLAGS.forward_only:
lossval = results[1]
else:
| tensorflow.RunMetadata | 14,496 |
from tensorflow.python.ops import variable_scope as vs
bias_initializer=bias_ones,
kernel_initializer=self._kernel_initializer)
value = math_ops.sigmoid(self._gate_linear([inputs, state]))
r, u = array_ops.split(value=value, num_or_size_splits=2, axis=1)
r_state = r * state
if self._candidate_linear is None:
with vs.variable_scope("candidate"):
self._candidate_linear = _Linear(
[inputs, r_state],
self._num_units,
True,
bias_initializer=self._bias_initializer,
kernel_initializer=self._kernel_initializer)
c = self._activation(self._candidate_linear([inputs, r_state]))
| tensorflow.python.ops.variable_scope.variable_scope | 14,497 |
import tensorflow as tf
tf.GraphKeys.VARIABLES],
initializer=tf.ones_initializer(),
| tensorflow.ones_initializer | 14,498 |
import tensorflow as tf
output_vars1 = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="task_dependent")
output_vars2 = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="task_independent/Variable_1")
var_list = [output_vars1, output_vars2]
train_op = tf.train.AdamOptimizer(
# learning_rate=self.params["learning_rate"]
# **self.params.get("optimizer_params", {})
# learning_rate=learning_rate
**optimizer_params
).minimize(loss, global_step=global_step, var_list=var_list)
return tf.estimator.EstimatorSpec(
self.mode, loss=loss, train_op=train_op
)
| tensorflow.estimator.EstimatorSpec | 14,499 |
Subsets and Splits