seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(label_ids, predictions)
loss = tf.metrics.mean(per_example_loss)
return {
"eval_accuracy": accuracy,
"eval_loss": loss,
}
eval_metrics = (metric_fn, [per_example_loss, label_ids, logits])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode, predictions=probabilities, scaffold_fn=scaffold_fn)
return output_spec
return model_fn
# This function is not used by this file but is still used by the Colab and
# people who depend on it.
def input_fn_builder(features, seq_length, is_training, drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
all_input_ids = []
all_input_mask = []
all_segment_ids = []
| tensorflow.contrib.tpu.TPUEstimatorSpec | 14,500 |
import tensorflow as tf
return_dict = {}
# invalid position mask such as query and special symbols (PAD, SEP, CLS)
p_mask = features["p_mask"]
# logit of the start position
with tf.variable_scope("start_logits"):
start_logits = tf.layers.dense(
output,
1,
kernel_initializer=initializer)
start_logits = tf.transpose(tf.squeeze(start_logits, -1), [1, 0])
start_logits_masked = start_logits * (1 - p_mask) - 1e30 * p_mask
start_log_probs = tf.nn.log_softmax(start_logits_masked, -1)
# logit of the end position
with tf.variable_scope("end_logits"):
if is_training:
# during training, compute the end logits based on the
# ground truth of the start position
start_positions = tf.reshape(features["start_positions"], [-1])
start_index = tf.one_hot(start_positions, depth=seq_len, axis=-1,
| tensorflow.squeeze | 14,501 |
import tensorflow as tf
if decoder.context_mapping:
with tf.variable_scope(scope_name):
activation = tf.nn.tanh if decoder.context_mapping_activation == 'tanh' else None
use_bias = not decoder.context_mapping_no_bias
context = dense(context, decoder.context_mapping, use_bias=use_bias, activation=activation,
name='context_mapping')
return context, new_weights[align_encoder_id]
def update(state, input_, context=None, symbol=None):
if context is not None and decoder.rnn_feed_attn:
input_ = tf.concat([input_, context], axis=1)
input_size = input_.get_shape()[1].value
initializer = CellInitializer(decoder.cell_size) if decoder.orthogonal_init else None
with tf.variable_scope(tf.get_variable_scope(), initializer=initializer):
try:
output, new_state = get_cell(input_size)(input_, state)
except ValueError: # auto_reuse doesn't work with LSTM cells
output, new_state = get_cell(input_size, reuse=True)(input_, state)
if decoder.skip_update and decoder.pred_edits and symbol is not None:
is_del = tf.equal(symbol, utils.DEL_ID)
| tensorflow.concat | 14,502 |
import tensorflow as tf
Returns:
float logits Tensor.
"""
input_shape = get_shape_list(input_tensor)
num_attention_heads= input_shape[2]
with tf.variable_scope(name):
w = tf.get_variable(
name="kernel",
shape=[num_attention_heads * head_size, hidden_size],
initializer=initializer)
w = tf.reshape(w, [num_attention_heads, head_size, hidden_size])
b = tf.get_variable(
name="bias", shape=[hidden_size], initializer=tf.zeros_initializer)
ret = tf.einsum("BFND,NDH->BFH", input_tensor, w)
ret += b
if activation is not None:
return activation(ret)
else:
return ret
def dense_layer_2d(input_tensor,
output_size,
initializer,
activation,
num_attention_heads=1,
name=None):
| tensorflow.einsum | 14,503 |
import tensorflow as tf
rel_init = tf.truncated_normal(rel_var_shape, stddev=init_sd)
# Ensure maxnorm constraints are initially satisfied
entity_init = dense_maxnorm(entity_init, self.maxnorm)
self.entity_embedding_vars = tf.Variable(entity_init)
self.rel_embedding_vars = tf.Variable(rel_init)
# Embedding layer for each (head, rel, tail) triple being fed in as input
head_embed = tf.nn.embedding_lookup(self.entity_embedding_vars, self.head_input)
tail_embed = tf.nn.embedding_lookup(self.entity_embedding_vars, self.tail_input)
| tensorflow.Variable | 14,504 |
import tensorflow as tf
with tf.variable_scope('wordrnn'):
with tf.variable_scope('fw'):
| tensorflow.variable_scope | 14,505 |
import tensorflow as tf
net : :class:`Layer`
Previous layer with output shape of (batch, width, r).
"""
# with tf.name_scope(name):
# self.outputs = self._apply_activation(self._PS(self.inputs, r=scale))
outputs = self.act(self._PS(inputs, r=self.scale))
return outputs
@private_method
def _PS(self, I, r):
X = tf.transpose(I, [2, 1, 0]) # (r, w, b)
X = tf.batch_to_space_nd(X, [r], [[0, 0]]) # (1, r*w, b)
X = tf.transpose(X, [2, 1, 0])
return X
| tensorflow.batch_to_space_nd | 14,506 |
import tensorflow as tf
w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1))
b = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
v = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
| tensorflow.random_normal | 14,507 |
import tensorflow as tf
in_dim = int(tensor.get_shape()[-1])
rank = _rank(tensor)
if rank > 2:
# -- time distributed dense
tensor = tf.reshape(tensor, shape=(-1, in_dim))
name = opts.get("name", "")
if weight is None:
initializer = tf.contrib.layers.xavier_initializer(uniform=True)
weight = tf.get_variable("{}_dense_W".format(name), initializer=initializer(shape=(in_dim, hidden_dims)))
if bias is None:
bias = tf.get_variable("{}_dense_b".format(name), initializer=tf.zeros(shape=hidden_dims))
out = tf.add(tf.matmul(tensor, weight), bias)
if rank > 2:
# reshape back to time dimension
out = tf.reshape(out, shape=original_tensor_shape)
return out
@layer
def dropout_layer(tensor, keep_prob=1.0, **opts):
keep_prob = _global_keep_prob(keep_prob)
out = tf.nn.dropout(tensor, keep_prob=keep_prob)
return out
| tensorflow.matmul | 14,508 |
import tensorflow as tf
with tf.name_scope(name):
tt_cores = num_dims * [None]
for i in range(num_dims):
curr_core_shape = (1, shape[i], 1)
tt_cores[i] = tf.ones(curr_core_shape, dtype=dtype)
return TensorTrain(tt_cores, shape, tt_rank)
| tensorflow.ones | 14,509 |
import tensorflow as tf
"""Concatenate all `datasets` and save to `filename`."""
filename = os.path.join(tmp_dir, filename)
# lang1_fname = filename + ".lang1"
# lang2_fname = filename + ".lang2"
lang1_fname = filename + ".source"
lang2_fname = filename + ".target"
if tf.gfile.Exists(lang1_fname) and tf.gfile.Exists(lang2_fname):
tf.logging.info("Skipping compile data, found files:\n%s\n%s", lang1_fname,
lang2_fname)
return filename
with tf.gfile.GFile(lang1_fname, mode="w") as lang1_resfile:
with tf.gfile.GFile(lang2_fname, mode="w") as lang2_resfile:
| tensorflow.gfile.Exists | 14,510 |
import tensorflow as tf
scale=True,
is_training=tftrain,
scope=self.name)
def linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False):
shape = input_.get_shape().as_list()
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32,
tf.random_normal_initializer(stddev=stddev))
bias = tf.get_variable("bias", [output_size],
initializer=tf.constant_initializer(bias_start))
if with_w:
return tf.matmul(input_, matrix) + bias, matrix, bias
else:
return tf.matmul(input_, matrix) + bias
| tensorflow.random_normal_initializer | 14,511 |
import tensorflow as tf
mask_pos_b = tf.broadcast_to(mask_pos, tf.shape(loc_true))
loss_loc = _smooth_l1_loss(tf.boolean_mask(loc_true, mask_pos_b),
| tensorflow.boolean_mask | 14,512 |
import tensorflow as tf
return tf_agent, global_step
def cleanup_checkpoints(checkpoint_dir):
checkpoint_state = tf.train.get_checkpoint_state(checkpoint_dir)
if checkpoint_state is None:
return
for checkpoint_path in checkpoint_state.all_model_checkpoint_paths:
| tensorflow.train.get_checkpoint_state | 14,513 |
from tensorflow.contrib import slim
init = tf.global_variables_initializer()
if FLAGS.pretrained_model_path is not None:
variable_restore_op = slim.assign_from_checkpoint_fn(FLAGS.pretrained_model_path, slim.get_trainable_variables(),
ignore_missing_vars=True)
| tensorflow.contrib.slim.get_trainable_variables | 14,514 |
from tensorflow.python.framework import ops
Dimensions typically: batch, out_units.
"""
with ops.op_scope([x, weights, biases], name, "xw_plus_b_v1") as name:
x = ops.convert_to_tensor(x, name="x")
weights = ops.convert_to_tensor(weights, name="weights")
biases = ops.convert_to_tensor(biases, name="biases")
| tensorflow.python.framework.ops.convert_to_tensor | 14,515 |
import tensorflow as tf
with tf.variable_scope(tf.get_variable_scope()):
encoder_output_label_, _ = encoder(x_input_l, reuse=True, supervised=True)
# Generate output images
with tf.variable_scope(tf.get_variable_scope()):
decoder_image = decoder(manual_decoder_input, reuse=True)
# Classification accuracy of encoder
| tensorflow.get_variable_scope | 14,516 |
import tensorflow as tf
def _serialize_dataset(self, tasks, is_training, split):
"""Write out the dataset as tfrecords."""
dataset_name = "_".join(sorted([task.name for task in tasks]))
dataset_name += "_" + split
dataset_prefix = os.path.join(self._config.preprocessed_data_dir, dataset_name)
tfrecords_path = dataset_prefix + ".tfrecord"
metadata_path = dataset_prefix + ".metadata"
batch_size = self._config.train_batch_size if is_training else self._config.eval_batch_size
utils.log("Loading dataset", dataset_name)
n_examples = None
if self._config.use_tfrecords_if_existing and tf.gfile.Exists(metadata_path):
n_examples = utils.load_json(metadata_path)["n_examples"]
if n_examples is None:
utils.log("Existing tfrecords not found so creating")
examples = []
for task in tasks:
task_examples = task.get_examples(split)
examples += task_examples
| tensorflow.gfile.Exists | 14,517 |
import tensorflow as tf
update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold")
update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale")
reset_ph = tf.placeholder(tf.bool, (), name="reset")
eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0))
param_noise_scale = tf.get_variable("param_noise_scale", (), initializer=tf.constant_initializer(0.01), trainable=False)
param_noise_threshold = tf.get_variable("param_noise_threshold", (), initializer=tf.constant_initializer(0.05), trainable=False)
| tensorflow.constant_initializer | 14,518 |
from tensorflow.contrib.learn.python.learn.summary_writer_cache import SummaryWriterCache
Raises:
ValueError: If both `save_steps` and `save_secs` are not `None`.
ValueError: If both `save_steps` and `save_secs` are `None`.
"""
logging.info("Create CheckpointSaver.")
super(CheckpointSaver, self).__init__()
self._saver = saver
self._summary_writer = SummaryWriterCache.get(checkpoint_dir)
self._save_path = os.path.join(checkpoint_dir, checkpoint_basename)
self._scaffold = scaffold
self._save_secs = save_secs
self._save_steps = save_steps
self._last_saved_time = None
self._last_begin_step = None
| tensorflow.contrib.learn.python.learn.summary_writer_cache.SummaryWriterCache.get | 14,519 |
from tensorflow.python.ops import array_ops
num_thresholds = len(thresholds)
# Reshape predictions and labels.
predictions_2d = array_ops.reshape(predictions, [-1, 1])
labels_2d = array_ops.reshape(
math_ops.cast(labels, dtype=dtypes.bool), [1, -1])
# Use static shape if known.
num_predictions = predictions_2d.get_shape().as_list()[0]
# Otherwise use dynamic shape.
if num_predictions is None:
num_predictions = array_ops.shape(predictions_2d)[0]
thresh_tiled = array_ops.tile(
array_ops.expand_dims(array_ops.constant(thresholds), [1]),
array_ops.pack([1, num_predictions]))
# Tile the predictions after thresholding them across different thresholds.
pred_is_pos = math_ops.greater(
array_ops.tile(array_ops.transpose(predictions_2d), [num_thresholds, 1]),
thresh_tiled)
pred_is_neg = math_ops.logical_not(pred_is_pos)
# Tile labels by number of thresholds
| tensorflow.python.ops.array_ops.shape | 14,520 |
import tensorflow as tf
[1, stride_h, stride_w, 1],
padding=padding)
biases = _variable_on_cpu('biases', [num_output_channels],
tf.constant_initializer(0.0))
outputs = tf.nn.bias_add(outputs, biases)
if bn:
outputs = tf.layers.batch_normalization(outputs, momentum=0.99, epsilon=1e-6, training=is_training)
| tensorflow.nn.bias_add | 14,521 |
import tensorflow as tf
with tf.Session() as sess:
"""Model function for CNN."""
features = tf.placeholder(
tf.float32, shape=[None, IMAGE_SIZE * IMAGE_SIZE], name='features')
| tensorflow.placeholder | 14,522 |
import tensorflow as tf
conv2 = tf.layers.conv2d(pool1, filters=64*amp_factor, kernel_size=[5, 1],
data_format='channels_last', padding= "same",
strides=(2, 1),
activation=tf.nn.relu)
pool2 = conv2
conv3 = tf.layers.conv2d(pool2, filters=128*amp_factor, kernel_size=[5, 1],
data_format='channels_last', padding= "same",
strides=(2, 1),
activation=tf.nn.relu)
pool3 = conv3
conv4 = tf.layers.conv2d(pool3, filters=256*amp_factor, kernel_size=[5, 1],
data_format='channels_last', padding= "same",
strides=(2, 1),
activation=tf.nn.relu)
pool4 = conv4
conv5 = tf.layers.conv2d(pool4, filters=256*amp_factor, kernel_size=[5, 1],
data_format='channels_last', padding= "same",
strides=(2, 1),
activation=tf.nn.relu)
pool5 = conv5
pool5 = tf.transpose(pool5, [0, 3, 1, 2])
size = pool5.shape[-1] * pool5.shape[-2] * pool5.shape[-3]
| tensorflow.layers.conv2d | 14,523 |
import tensorflow as tf
pi = act_limit * mlp_dropout(x, list(hidden_sizes)+[act_dim], activation, output_activation)
with tf.variable_scope('q'):
q = tf.squeeze(mlp_dropout(tf.concat([x,a], axis=-1), list(hidden_sizes)+[1], activation, None, dropout_rate), axis=1)
with tf.variable_scope('q', reuse=True):
q_pi = tf.squeeze(mlp_dropout(tf.concat([x,pi], axis=-1), list(hidden_sizes)+[1], activation, None, dropout_rate), axis=1)
elif nn_type == 'mlp_variational':
with tf.variable_scope('pi'):
pi_in_dim = x.shape.as_list()[1]
pi_dropout_mask_generator = DropoutMaskGenerator(pi_in_dim, hidden_sizes, model_prob=1.0 - dropout_rate)
pi_dropout_mask_phs = pi_dropout_mask_generator.generate_dropout_mask_placeholders()
pi, pi_reg = mlp_variational(x, pi_dropout_mask_phs, list(hidden_sizes) + [act_dim], activation, output_activation, dropout_rate)
| tensorflow.variable_scope | 14,524 |
import tensorflow as tf
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
epsilon = 1e-5
| tensorflow.get_variable_scope | 14,525 |
import tensorflow as tf
| tensorflow.split | 14,526 |
from tensorflow.contrib.layers.python.layers import feature_column_ops
features = self._get_feature_dict(features)
logits = self._logits(features)
return self._target_column.logits_to_predictions(logits, proba=True)
def _get_feature_ops_from_example(self, examples_batch):
column_types = layers.create_feature_spec_for_parsing((
self._get_linear_feature_columns() or []) + (
self._get_dnn_feature_columns() or []))
features = parsing_ops.parse_example(examples_batch, column_types)
return features
def _get_linear_feature_columns(self):
if not self._linear_feature_columns:
return None
feature_column_ops.check_feature_columns(self._linear_feature_columns)
return sorted(set(self._linear_feature_columns), key=lambda x: x.key)
def _get_dnn_feature_columns(self):
if not self._dnn_feature_columns:
return None
feature_column_ops.check_feature_columns(self._dnn_feature_columns)
return sorted(set(self._dnn_feature_columns), key=lambda x: x.key)
def _dnn_logits(self, features, is_training):
return self._dnn_model.build_model(
features, self._dnn_feature_columns, is_training)
def _linear_logits(self, features, is_training):
| tensorflow.contrib.layers.python.layers.feature_column_ops.check_feature_columns | 14,527 |
from tensorflow.python.framework import ops
non_zero_count = math_ops.maximum(count,
array_ops.ones_like(count),
name=name)
return math_ops.truediv(total, non_zero_count, name=name)
mean = compute_mean(total, count, 'value')
with ops.control_dependencies([total_compute_op, count_compute_op]):
update_op = compute_mean(total, count, 'update_op')
if metrics_collections:
ops.add_to_collections(metrics_collections, mean)
if updates_collections:
ops.add_to_collections(updates_collections, update_op)
return mean, update_op
def streaming_accuracy(predictions, labels, weights=None,
metrics_collections=None, updates_collections=None,
name=None):
"""Calculates how often `predictions` matches `labels`.
The `streaming_accuracy` function creates two local variables, `total` and
`count` that are used to compute the frequency with which `predictions`
matches `labels`. This frequency is ultimately returned as `accuracy`: an
| tensorflow.python.framework.ops.add_to_collections | 14,528 |
import tensorflow as tf
"""
raise NotImplementedError
def __init__(self, data={}, n_gpus=1, data_shape=None, **config):
self.datasets = data
self.data_shape = data_shape
self.n_gpus = n_gpus
self.graph = tf.get_default_graph()
self.name = self.__class__.__name__.lower() # get child name
# Update config
self.config = self._default_config
self.config.update(getattr(self, 'default_config', {}))
self.config.update(config)
| tensorflow.get_default_graph | 14,529 |
from tensorflow.python.ops import state_ops
def _prepare(self):
self._lr_t = ops.convert_to_tensor(self._lr, name="learning_rate")
self._lambda_t = ops.convert_to_tensor(self._lambda, name="lambda")
def _apply_dense(self, grad, var):
lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
lambda_t = math_ops.cast(self._lambda_t, var.dtype.base_dtype)
g_t = grad
var_update = state_ops.assign_sub(var,
lr_t * (g_t - lambda_t * var) )
return control_flow_ops.group(*[var_update])
def _apply_sparse(self, grad, var):
raise NotImplementedError("Sparse gradient updates are not supported.")
| tensorflow.python.ops.state_ops.assign_sub | 14,530 |
import tensorflow as tf
return {
0: self._add_separable_conv_3x3_op,
1: self._add_separable_conv_5x5_op,
2: self._add_avg_pool_3x3_op,
3: self._add_max_pool_3x3_op,
4: self._add_identity_op,
5: self._add_separable_conv_7x7_op
}
def _add_avg_pool_3x3_op(self, X, input_idx, ni, w, h, ch, is_reduction, is_dynamic, is_train):
filter_size = 3
stride = 2 if is_reduction else 1
with tf.variable_scope('avg_pool_3x3_op'):
X = tf.nn.avg_pool(X, ksize=(1, filter_size, filter_size, 1), strides=[1, stride, stride, 1], padding='SAME')
X = tf.reshape(X, (-1, w // stride, h // stride, ch)) # Sanity shape check
return X
def _add_identity_op(self, X, input_idx, ni, w, h, ch, is_reduction, is_dynamic, is_train):
stride = 2 if is_reduction else 1
with tf.variable_scope('identity_op'):
# If stride > 1, calibrate, else, just return itself
if stride > 1:
X = self._calibrate(X, w, h, ch, w // stride, h // stride, ch, is_train=is_train)
X = tf.reshape(X, (-1, w // stride, h // stride, ch)) # Sanity shape check
return X
def _add_max_pool_3x3_op(self, X, input_idx, ni, w, h, ch, is_reduction, is_dynamic, is_train):
filter_size = 3
| tensorflow.reshape | 14,531 |
import tensorflow.contrib.layers as layers
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
out = layers.flatten(out)
with tf.variable_scope("action_value"):
out = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)
return out
def simple_model(img_in, num_actions, scope, reuse=False, num_filters=64):
with tf.variable_scope(scope, reuse=reuse):
out = img_in
| tensorflow.contrib.layers.fully_connected | 14,532 |
import tensorflow as tf
with tf.name_scope("Valid"):
valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
tf.summary.scalar("Validation Loss", mvalid.cost)
with tf.name_scope("Test"):
test_input = PTBInput(
config=eval_config, data=test_data, name="TestInput")
| tensorflow.summary.scalar | 14,533 |
import tensorflow as tf
def testScaleGradientsInf(self):
FLAGS.enable_check_numerics = False
p = self.TestParams()
p.input = base_input_generator.BaseSequenceInputGenerator.Params()
task = p.cls(p)
task.CreateVariable(
'a',
py_utils.WeightParams(shape=[], init=py_utils.WeightInit.Constant(0)))
var_a = task.theta.a
# Infinite gradient.
var_grads = py_utils.NestedMap(a=(var_a, tf.log(0.)))
has_nan_or_inf, grad_scale, final_var_grads = task.ScaleGradients(var_grads)
with self.session():
tf.global_variables_initializer().run()
self.assertTrue(has_nan_or_inf.eval())
self.assertEqual(0., grad_scale.eval())
# The final gradient must be finite.
self.assertFalse(tf.is_nan(final_var_grads.a[1]).eval())
self.assertTrue(tf.is_finite(final_var_grads.a[1]).eval())
def testScaleGradientsNaN(self):
FLAGS.enable_check_numerics = False
p = self.TestParams()
p.input = base_input_generator.BaseSequenceInputGenerator.Params()
task = p.cls(p)
task.CreateVariable(
'a',
py_utils.WeightParams(shape=[], init=py_utils.WeightInit.Constant(0)))
| tensorflow.global_variables_initializer | 14,534 |
import tensorflow as tf
# update variables
if train:
with tf.name_scope(name, "AssignMovingAvg", [mean, cur_mean, decay]):
with ops.colocate_with(mean):
new_mean = tf.assign_sub(
mean,
tf.check_numerics(decay * (mean - cur_mean), "NaN in moving mean."))
with tf.name_scope(name, "AssignMovingAvg", [var, cur_var, decay]):
with ops.colocate_with(var):
new_var = tf.assign_sub(
var,
tf.check_numerics(decay * (var - cur_var),
"NaN in moving variance."))
with tf.name_scope(name, "IncrementTime", [step]):
with ops.colocate_with(step):
new_step = tf.assign_add(step, 1.)
res += 0. * new_mean * new_var * new_step
return res
# batch normalization taking into account the volume transformation
def batch_norm_log_diff(input_,
| tensorflow.check_numerics | 14,535 |
import tensorflow as tf
def setUp(self):
super(LinearRegressionTest, self).setUp()
self._tmp_logdir = tempfile.mkdtemp()
def tearDown(self):
shutil.rmtree(self._tmp_logdir)
super(LinearRegressionTest, self).tearDown()
def testSyntheticDataset(self):
true_w = tf.random_uniform([3, 1])
true_b = [1.0]
batch_size = 10
num_batches = 2
noise_level = 0.
dataset = linear_regression.synthetic_dataset(true_w, true_b, noise_level,
batch_size, num_batches)
it = tfe.Iterator(dataset)
| tensorflow.random_uniform | 14,536 |
import tensorflow as tf
tf.flags.DEFINE_float('rmsprop_decay', 0.9, """Decay term for RMSProp.""")
tf.flags.DEFINE_float('rmsprop_momentum', 0.9, """Momentum in RMSProp.""")
tf.flags.DEFINE_float('rmsprop_epsilon', 1.0, """Epsilon term for RMSProp.""")
tf.flags.DEFINE_float('gradient_clip', None, """Gradient clipping magnitude.
Disabled by default.""")
tf.flags.DEFINE_float('weight_decay', 0.00004,
"""Weight decay factor for training.""")
# Performance tuning flags.
tf.flags.DEFINE_boolean('winograd_nonfused', True,
"""Enable/disable using the Winograd non-fused
algorithms.""")
tf.flags.DEFINE_boolean('sync_on_finish', False,
"""Enable/disable whether the devices are synced after
each step.""")
tf.flags.DEFINE_boolean('staged_vars', False,
"""whether the variables are staged from the main
computation""")
tf.flags.DEFINE_boolean('force_gpu_compatible', True,
"""whether to enable force_gpu_compatible in
GPU_Options""")
# The method for managing variables:
# parameter_server: variables are stored on a parameter server that holds
# the master copy of the variable. In local execution, a local device
# acts as the parameter server for each variable; in distributed
# execution, the parameter servers are separate processes in the cluster.
# For each step, each tower gets a copy of the variables from the
# parameter server, and sends its gradients to the param server.
# replicated: each GPU has its own copy of the variables. To apply gradients,
# nccl all-reduce or regular cross-device aggregation is used to replicate
| tensorflow.flags.DEFINE_boolean | 14,537 |
import tensorflow as tf
if t.dtype == tf.int64:
t = tf.to_int32(t)
| tensorflow.to_int32 | 14,538 |
import tensorflow as tf
# state and target
self.state = tf.placeholder(tf.float32, [None,num_state], "state")
self.target = tf.placeholder(tf.float32, [None,1], name="target")
| tensorflow.placeholder | 14,539 |
import tensorflow as tf
# Use the logical operations to create a mask
indicator = tf.less(range_tiled, lengths_tiled)
sz = [batch_size, max_sequence_len]
| tensorflow.less | 14,540 |
import tensorflow as tf
ip = p.input
ip.frame_size = 80
ip.append_eos_frame = True
ip.pad_to_max_seq_length = False
p.is_eval = True
return p
with self.session(use_gpu=False, graph=tf.Graph()) as sess:
p = _CreateModelParamsForTest()
mdl = p.Instantiate()
subgraphs = mdl.Inference()
self.assertTrue('default' in subgraphs)
fetches, feeds = subgraphs['default']
self.assertTrue('wav' in feeds)
| tensorflow.Graph | 14,541 |
import tensorflow as tf
# Build a graph with 2 parameter nodes on different devices.
with tf.Session(
target="",
config=tf.ConfigProto(device_count={"CPU": 2})) as sess:
with sess.graph.device("/cpu:0"):
v0 = tf.Variable(10, name="v0")
with sess.graph.device("/cpu:1"):
v1 = tf.Variable(20, name="v1")
save = tf.train.Saver({"v0": v0, "v1": v1}, sharded=True)
tf.initialize_all_variables().run()
val = save.save(sess, save_path)
self.assertEqual(save_path + "-?????-of-00002", val)
meta_graph_filename = save._MetaGraphFilename(val)
self.assertEqual(save_path + ".meta", meta_graph_filename)
| tensorflow.Variable | 14,542 |
import tensorflow as tf
pi = tf.constant(np.pi, dtype=tf.float64, name="pi")
sqrt2pi = tf.constant(np.sqrt(2 * np.pi), dtype=tf.float64, name="sqrt2pi")
two = tf.constant(2, dtype=tf.float64, name="two")
one = tf.constant(1, dtype=tf.float64, name="one")
zero = tf.constant(0, dtype=tf.float64, name="zero")
def gradsafe_sqrt(x, clip_low=1e-18, name=None):
with tf.name_scope(name, "gradsafe_sqrt"):
| tensorflow.constant | 14,543 |
import tensorflow as tf
@under_name_scope()
def pairwise_intersection(boxlist1, boxlist2):
"""Compute pairwise intersection areas between boxes.
Args:
boxlist1: Nx4 floatbox
boxlist2: Mx4
Returns:
a tensor with shape [N, M] representing pairwise intersections
"""
x_min1, y_min1, x_max1, y_max1 = tf.split(boxlist1, 4, axis=1)
x_min2, y_min2, x_max2, y_max2 = tf.split(boxlist2, 4, axis=1)
all_pairs_min_ymax = tf.minimum(y_max1, tf.transpose(y_max2))
all_pairs_max_ymin = tf.maximum(y_min1, tf.transpose(y_min2))
intersect_heights = tf.maximum(0.0, all_pairs_min_ymax - all_pairs_max_ymin)
all_pairs_min_xmax = tf.minimum(x_max1, tf.transpose(x_max2))
all_pairs_max_xmin = tf.maximum(x_min1, tf.transpose(x_min2))
intersect_widths = tf.maximum(0.0, all_pairs_min_xmax - all_pairs_max_xmin)
return intersect_heights * intersect_widths
@under_name_scope()
def pairwise_iou(boxlist1, boxlist2):
"""Computes pairwise intersection-over-union between box collections.
Args:
boxlist1: Nx4 floatbox
| tensorflow.transpose | 14,544 |
import tensorflow as tf
(loss, num_active_triplets, negative_distances, mining_loss,
num_active_mining_triplets, negative_mining_distances) = (
compute_hard_negative_triplet_loss(
anchor_positive_distances,
anchor_match_distance_matrix,
anchor_match_negative_indicator_matrix,
margin=margin,
use_semi_hard=use_semi_hard,
anchor_positive_mining_distances=anchor_positive_mining_distances,
anchor_match_mining_distance_matrix=(
anchor_match_mining_distance_matrix)))
negative_distances = tf.boolean_mask(
negative_distances,
mask=negative_distances < negative_distances.dtype.max)
negative_mining_distances = tf.boolean_mask(
negative_mining_distances,
mask=negative_distances < negative_distances.dtype.max)
active_triplet_ratio = (
tf.cast(num_active_triplets, dtype=tf.float32) / num_total_triplets)
active_mining_triplet_ratio = (
tf.cast(num_active_mining_triplets, dtype=tf.float32) /
| tensorflow.boolean_mask | 14,545 |
import tensorflow as tf
def _testParams(self):
input_shape = [2, 16, 8, 3]
p = model.AsrModel.Params()
p.decoder.target_seq_len = 5
p.encoder.input_shape = input_shape
p.input = tig.TestInputGenerator.Params()
p.input.target_max_length = 5
p.input.source_shape = input_shape
p.input.target_shape = [2, 5]
p.name = 'test_mdl'
return p
def testMakeDecoderTheta(self):
# Test that decoder theta returns a copy of theta.decoder without changes.
with self.session(use_gpu=False, graph=tf.Graph()):
tf.set_random_seed(93820985)
p = self._testParams()
mdl = p.Instantiate()
mdl.FPropDefaultTheta()
decoder_theta = mdl._MakeDecoderTheta(theta=mdl.theta, input_batch=None)
mdl.BProp()
self.assertEqual(decoder_theta, mdl.theta.decoder)
def testFProp(self):
with self.session(use_gpu=False):
tf.set_random_seed(93820985)
p = self._testParams()
mdl = p.Instantiate()
| tensorflow.Graph | 14,546 |
import tensorflow as tf
if init_stddev <= 0.0:
init = tf.contrib.layers.variance_scaling_initializer(dtype=tf.float32)
else:
init = tf.truncated_normal_initializer(stddev=init_stddev)
return tf.layers.conv2d_transpose(input, channels, kernel_size=size, strides=[stride, stride],
padding=padding, kernel_initializer=init, name='tr_conv' + id, use_bias=use_bias)
| tensorflow.truncated_normal_initializer | 14,547 |
import tensorflow as tf
# ac_validation_regularizers = tf.get_collection(get_ac_collection_name("validation"))
# ac_test_regularizers = tf.get_collection(get_ac_collection_name("test"))
# self.regularizer["train"] = tf.add_n(wb_regularizers + ac_train_regularizers, name="regularization_train")
# self.regularizer["validation"] = tf.add_n(wb_regularizers + ac_validation_regularizers, name="regularization_validation")
# self.regularizer["test"] = tf.add_n(wb_regularizers + ac_test_regularizers, name="regularization_test")
def create_global_steps(self, n_points_train_set):
self.n_batches_per_epoch = np.ceil(n_points_train_set/self.batch_size["train"])
self.global_step = tf.train.get_or_create_global_step()
self.global_epoch = tf.cast(tf.floor(tf.cast(self.global_step, tf.float32) /
self.n_batches_per_epoch),
tf.int64, "global_epoch")
tf.add_to_collection("global_epoch", self.global_epoch)
# this creates an operation to add to all trainable variables a white noise of param
# std = tf.sqrt(variance)/10
def create_random_update_op(self):
| tensorflow.train.get_or_create_global_step | 14,548 |
import tensorflow as tf
# horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon)
pred_flat1, pred_flat2 = tf.reshape(horizon_pred, [-1, 1]), tf.reshape(horizon_pred, [1, -1])
tgt_flat1, tgt_flat2 = tf.reshape(horizon_tgt, [-1, 1]), tf.reshape(horizon_tgt, [1, -1])
tgt_dif = tgt_flat1 - tgt_flat2
pred_dif = pred_flat1 - pred_flat2
geq = tf.cast(tgt_dif > 0, tf.bool)
tgt_posi_dif = tf.where(geq, tgt_dif, -tgt_dif)
pred_posi_dif = tf.where(geq, pred_dif, -pred_dif)
loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif)
cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32)
final_loss = tf.reduce_mean(loss)
return final_loss, cstr_pct
def contra_traj_lossV7(pred, tgt, horizon=12, temp=100):
horizon_pred, horizon_tgt = horizon_sumV1(pred, horizon), horizon_sumV1(tgt, horizon)
# horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon)
| tensorflow.maximum | 14,549 |
import tensorflow as tf
def squared_loss(y_pred,labels):
return tf.reduce_mean((y_pred - labels)**2)
| tensorflow.reduce_mean | 14,550 |
import tensorflow as tf
W1 = self.xavier_init(size=[layers[l], layers[l+1]])
W2 = self.xavier_init(size=[layers[l], layers[l+1]])
b = tf.Variable(tf.zeros([1,layers[l+1]], dtype=tf.float32), dtype=tf.float32)
weights.append((W1, W2))
biases.append(b)
return weights, biases
def xavier_init(self, size):
in_dim = size[0]
out_dim = size[1]
xavier_stddev = np.sqrt(2/(in_dim + out_dim))
return tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=xavier_stddev), dtype=tf.float32)
def neural_net(self, X, weights, biases):
num_layers = len(weights) + 1
H = 2.0*(X - self.lb)/(self.ub - self.lb) - 1.0
for l in range(0,num_layers-2):
W1, W2 = weights[l]
b = biases[l]
H1 = tf.add(tf.matmul(H, W1), b)
H2 = tf.matmul(H, W2)
| tensorflow.truncated_normal | 14,551 |
import tensorflow as tf
def conv3d(layer_name, x, out_channels, kernel_size=[1,3,3], strides=[1,1,1,1,1], data_format='NDHWC', is_pretrain=True):
'''
Convolution 3D op wrapper, use RELU activation after convolution
'''
in_channels = x.get_shape()[-1].value
with tf.variable_scope(layer_name):
w = tf.get_variable(name='weight',
trainable=is_pretrain,
shape=[kernel_size[0],kernel_size[1],kernel_size[2],in_channels,out_channels],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.get_variable(name='bias',
trainable=is_pretrain,
shape=[out_channels],
initializer=tf.contrib.layers.xavier_initializer())
x = tf.nn.conv3d(x, w, strides=strides, padding='SAME', data_format=data_format, name='conv3d')
x = tf.nn.bias_add(x, b, name='bias_add')
x = tf.nn.relu(x, name='relu')
return x
def conv(layer_name, x, out_channels, kernel_size=[3,3], strides=[1,1,1,1], is_pretrain=True):
'''
Convolution op wrapper, use RELU activation after convolution
Args:
layer_name:
x: input tensor
Returns:
4D tensor
'''
| tensorflow.nn.conv3d | 14,552 |
import tensorflow as tf
scope='initial_state_layer_norm')
else:
initial_state = dense(initial_state, cell_state_size, use_bias=True, name='initial_state_projection',
activation=activation_fn)
if decoder.cell_type.lower() == 'lstm' and decoder.use_lstm_full_state:
initial_output = initial_state
else:
# Last layer's state is the right-most part. Output is the left-most part of an LSTM's state.
initial_output = initial_state[:, -cell_output_size:]
time = tf.constant(0, dtype=tf.int32, name='time')
outputs = tf.TensorArray(dtype=tf.float32, size=time_steps)
samples = tf.TensorArray(dtype=tf.int64, size=time_steps)
inputs = tf.TensorArray(dtype=tf.int64, size=time_steps).unstack(tf.to_int64(tf.transpose(decoder_inputs)))
states = tf.TensorArray(dtype=tf.float32, size=time_steps)
weights = tf.TensorArray(dtype=tf.float32, size=time_steps)
attns = tf.TensorArray(dtype=tf.float32, size=time_steps)
initial_symbol = inputs.read(0) # first symbol is BOS
initial_input = embed(initial_symbol)
initial_pos = tf.zeros([batch_size], tf.float32)
initial_weights = tf.zeros(tf.shape(attention_states[align_encoder_id])[:2])
zero_context = tf.zeros(shape=tf.shape(attention_states[align_encoder_id][:,0])) # FIXME
with tf.variable_scope('decoder_{}'.format(decoder.name)):
initial_context, _ = look(0, initial_output, initial_input, pos=initial_pos, prev_weights=initial_weights,
| tensorflow.TensorArray | 14,553 |
import tensorflow as tf
def euclidean_loss_layer(a, b, multiplier=100.0, use_l1=False, eps=0.01):
""" Math: out = (action - mlp_out)'*precision*(action-mlp_out)
= (u-uhat)'*A*(u-uhat)"""
multiplier = tf.constant(multiplier, dtype='float') #for bc #10000
uP =a*multiplier-b*multiplier
if use_l1:
return tf.reduce_mean(eps*tf.square(uP) + tf.abs(uP))
return tf.reduce_mean(tf.square(uP))
def conv2d(img, w, b, strides=[1, 1, 1, 1], is_dilated=False):
if is_dilated:
layer = tf.nn.atrous_conv2d(img, w, rate=2, padding='SAME') + b
else:
layer = tf.nn.conv2d(img, w, strides=strides, padding='SAME') + b
return layer
def dropout(layer, keep_prob=0.9, is_training=True, name=None, selu=False):
if selu:
return dropout_selu(layer, 1.0 - keep_prob, name=name, training=is_training)
if is_training:
return tf.nn.dropout(layer, keep_prob=keep_prob, name=name)
else:
| tensorflow.nn.atrous_conv2d | 14,554 |
import tensorflow as tf
nbatch, nin = [v.value for v in xs[0].get_shape()]
with tf.variable_scope(scope):
wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale))
gx = tf.get_variable("gx", [nh*4], initializer=tf.constant_initializer(1.0))
bx = tf.get_variable("bx", [nh*4], initializer=tf.constant_initializer(0.0))
wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale))
gh = tf.get_variable("gh", [nh*4], initializer=tf.constant_initializer(1.0))
bh = tf.get_variable("bh", [nh*4], initializer=tf.constant_initializer(0.0))
b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0))
gc = tf.get_variable("gc", [nh], initializer=tf.constant_initializer(1.0))
bc = tf.get_variable("bc", [nh], initializer=tf.constant_initializer(0.0))
c, h = tf.split(axis=1, num_or_size_splits=2, value=s)
| tensorflow.constant_initializer | 14,555 |
import tensorflow as tf
os.path.join(path, 'lib', 'hdrnet_ops.so'))
_hdrnet = tf.load_op_library(path)
| tensorflow.load_op_library | 14,556 |
import tensorflow as tf
m2 = tf.reshape(means[:, :, :, 1, :] + coeffs[:, :, :, 0, :] * inputs[:, :, :, 0, :],
[inputs_shape[0], inputs_shape[1], inputs_shape[2], 1, nr_mix])
m3 = tf.reshape(
means[:, :, :, 2, :] + coeffs[:, :, :, 1, :] * inputs[:, :, :, 0, :] +
coeffs[:, :, :, 2, :] * inputs[:, :, :, 1, :],
[inputs_shape[0], inputs_shape[1], inputs_shape[2], 1, nr_mix])
means = tf.concat([
tf.reshape(means[:, :, :, 0, :],
[inputs_shape[0], inputs_shape[1], inputs_shape[2], 1, nr_mix]), m2, m3
],
axis=3)
centered_inputs = inputs - means
inv_stdv = tf.exp(-log_scales)
plus_in = inv_stdv * (centered_inputs + 1. / 255.)
cdf_plus = tf.nn.sigmoid(plus_in)
min_in = inv_stdv * (centered_inputs - 1. / 255.)
cdf_min = tf.nn.sigmoid(min_in)
log_cdf_plus = plus_in - tf.nn.softplus(plus_in)
log_one_minus_cdf_min = -tf.nn.softplus(min_in)
cdf_delta = cdf_plus - cdf_min
mid_in = inv_stdv * centered_inputs
log_pdf_mid = mid_in - log_scales - 2. * tf.nn.softplus(mid_in)
log_probs = tf.select(
inputs < -0.999, log_cdf_plus,
tf.select(
inputs > 0.999, log_one_minus_cdf_min,
tf.select(cdf_delta > 1e-5, tf.log(tf.maximum(cdf_delta, 1e-12)),
log_pdf_mid - np.log(127.5))))
| tensorflow.nn.sigmoid | 14,557 |
import tensorflow as tf
embeddings=model.embeddings,
latent_inters=model.latent_inters,
latent_varies=model.latent_varies,
degrees=degrees,
edge_types=edge_types,
edge_type2dim=edge_type2dim,
placeholders=placeholders,
batch_size=FLAGS.batch_size,
margin=FLAGS.max_margin
)
print("Initialize session")
sess = tf.Session()
sess.run(tf.global_variables_initializer())
feed_dict = {}
###########################################################
#
# Train model
#
###########################################################
print("Train model")
for epoch in range(FLAGS.epochs):
| tensorflow.Session | 14,558 |
import tensorflow as tf
with tf.variable_scope(tf.get_variable_scope()):
decoder_image = decoder(manual_decoder_input, reuse=True)
# Classification accuracy of encoder
correct_pred = tf.equal(tf.argmax(encoder_output_label_, 1), tf.argmax(y_input, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Autoencoder loss
autoencoder_loss = tf.reduce_mean(tf.square(x_target - decoder_output))
| tensorflow.cast | 14,559 |
import tensorflow as tf
batch_iter_idx = 1
n_iters_per_epoch = len(dataset.training_X) // self.training_iterator.batch_size
self.lr_policy.n_iters_per_epoch = n_iters_per_epoch
for epoch in range(start_epoch, self.cnf.get('mum_epochs', 550) + 1):
np.random.seed(epoch + seed_delta)
tf.set_random_seed(epoch + seed_delta)
tic = time.time()
d_train_losses = []
g_train_losses = []
batch_train_sizes = []
| tensorflow.set_random_seed | 14,560 |
import tensorflow as tf
pred_indices_ = tf.squeeze(pred_indices)
image_ = tf.squeeze(image) * 255.
pred_heatmap = tf.one_hot(pred_indices_, heatmap_size*heatmap_size, on_value=1., off_value=0., axis=-1, dtype=tf.float32)
| tensorflow.one_hot | 14,561 |
import tensorflow as tf
q_loss = tf.reduce_mean(
tf.squared_difference(tf.stop_gradient(x), x_means))
| tensorflow.stop_gradient | 14,562 |
import tensorflow as tf
with self.test_session() as sess:
zeros_t = tf.fill([1024, 1024], 0.0)
ones_t = tf.fill([1024, 1024], 1.0)
p = tf.Variable(zeros_t)
| tensorflow.fill | 14,563 |
import tensorflow as tf
Variable tensor
Note: conv2d(conv2d_transpose(a, num_out, ksize, stride), a.shape[-1], ksize, stride) == a
"""
with tf.variable_scope(scope) as sc:
kernel_h, kernel_w = kernel_size
num_in_channels = inputs.get_shape()[-1].value
kernel_shape = [kernel_h, kernel_w,
| tensorflow.variable_scope | 14,564 |
import tensorflow as tf
targets_encoded = base.encode_all(targets, self.data_encoder)
self.targets_encoded_ta = base.ta_for_tensor(targets_encoded,
clear_after_read=False)
if self.rev_rnn_cell:
reverse_targets_encoded = tf.reverse_sequence(
targets_encoded, seq_lengths, seq_axis=0, batch_axis=1)
# Compute the reverse rnn over the targets.
reverse_rnn_out, _ = tf.nn.dynamic_rnn(self.rev_rnn_cell,
| tensorflow.reverse_sequence | 14,565 |
from tensorflow.python.ops import variable_scope
if options.use_coverage:
with variable_scope.variable_scope("coverage"):
w_c = variable_scope.get_variable("w_c", [options.attention_vec_size])
w_c = tf.expand_dims(tf.expand_dims(w_c, axis=0), axis=0)
# For each step, dec_input => lstm_output => vocab_score
wordidx_t = decoder_inputs[0] # [batch_size] int32
for i in range(options.max_answer_len):
if mode_gen in ('ce_train', 'loss',): wordidx_t = decoder_inputs[i] # the wordidx_t must from decoder_inputs for phrase model
word_t = self.embedding_lookup(wordidx_t)
if i > 0:
variable_scope.get_variable_scope().reuse_variables()
(state_t, context_t, coverage_t, attn_dist_t, p_gen_t, output_t) = self.one_step_decoder(
state_t_1, context_t_1, coverage_t_1, word_t, encoder_states, self.encoder_features,
passage_word_idx, passage_mask, v, w_c, vocab)
coverages.append(coverage_t)
attn_dists.append(attn_dist_t)
p_gens.append(p_gen_t)
vocab_scores.append(output_t) # The vocabulary distributions.
state_t_1 = state_t
| tensorflow.python.ops.variable_scope.get_variable_scope | 14,566 |
import tensorflow as tf
def _DoPredictions(self, in_size, mats, class_weights=None):
"""Takes in an array of states and calculates predictions.
Get the cross-entropy for each example in the vector self._xent.
Args:
in_size: size of the hidden state vectors
mats: list of hidden state vectors
"""
pred_mat = tf.get_variable('pred_mat',
[in_size, self._out_vocab_size])
pred_bias = tf.get_variable('pred_bias', [self._out_vocab_size])
# Make a prediction on every word.
def GetWordPred(o_):
logits = tf.nn.xw_plus_b(o_, pred_mat, pred_bias)
return tf.nn.softmax(logits)
#self.preds_by_word1 = tf.pack([GetWordPred(o_) for o_ in mats])
| tensorflow.get_variable | 14,567 |
import tensorflow as tf
| tensorflow.variable_scope | 14,568 |
import tensorflow as tf
conv = tf.nn.leaky_relu(conv, alpha=relu_factor)
if activation_function == "elu":
conv = tf.nn.elu(conv, name = 'elu')
return conv
def general_deconv2d(self, input_data, filters = 64, kernel_size = 7, stride = 1, stddev = 0.02, activation_function = "relu", padding = "VALID", do_norm = True, relu_factor = 0, name="deconv2d"):
with tf.variable_scope(name):
deconv = tf.layers.conv2d_transpose(input_data, filters, kernel_size, (stride, stride), padding, activation = None)
if do_norm:
deconv = tf.layers.batch_normalization(deconv, momentum = 0.9)
if activation_function == "relu":
deconv = tf.nn.relu(deconv, name = 'relu')
if activation_function == "leakyrelu":
deconv = tf.nn.leaky_relu(deconv, alpha=relu_factor)
if activation_function == "elu":
deconv = tf.nn.elu(deconv, name = 'elu')
return deconv
| tensorflow.layers.batch_normalization | 14,569 |
import tensorflow as tf
weights_list += [weights]
weights_tensors = tf.stack([tf.convert_to_tensor(weights, dtype=tf.float32) for weights in weights_list])
rand_horizon = tf.random_uniform((), 0, horizon, dtype=tf.int32)
new_w = epi_len - rand_horizon
cur_weights = tf.slice(weights_tensors[tf.cast(rand_horizon, tf.int32)], [0, 0], [epi_len, new_w])
# cur_weights = tf.slice(weights_tensors, [tf.cast(rand_horizon, tf.int32), 0, 0], [1, epi_len, new_w])
horizon_pred = tf.matmul(pred, cur_weights)
horizon_tgt = tf.matmul(tgt, cur_weights)
return horizon_pred, horizon_tgt
def contra_traj_lossV2(pred, tgt, horizon=9):
# Step-wise contrastive loss
| tensorflow.matmul | 14,570 |
import tensorflow as tf
save._add_collection_def(meta_graph_def, "int_collection")
self.assertEqual(len(meta_graph_def.collection_def), 0)
def _testMultiSaverCollectionSave(self):
test_dir = self._TestDir("saver_collection")
filename = os.path.join(test_dir, "metafile")
saver0_ckpt = os.path.join(test_dir, "saver0.ckpt")
saver1_ckpt = os.path.join(test_dir, "saver1.ckpt")
with self.test_session(graph=tf.Graph()) as sess:
# Creates a graph.
v0 = tf.Variable(10.0, name="v0")
v1 = tf.Variable(11.0, name="v1")
# Creates 2 savers.
saver0 = tf.train.Saver({"v0": v0}, name="saver0")
saver1 = tf.train.Saver({"v1": v1}, name="saver1")
tf.add_to_collection("savers", saver0)
tf.add_to_collection("savers", saver1)
tf.initialize_all_variables().run()
# Saves to different checkpoints.
saver0.save(sess, saver0_ckpt)
saver1.save(sess, saver1_ckpt)
# Generates MetaGraphDef.
meta_graph_def = tf.train.export_meta_graph(filename)
meta_graph_def0 = saver0.export_meta_graph()
meta_graph_def1 = saver1.export_meta_graph()
| tensorflow.train.Saver | 14,571 |
import tensorflow as tf
num = (1 - self.alpha) * dxt + tf.tensordot(self.alpha * dxt ,
tf.transpose(
tf.matmul(tf.abs(self.W_rec) * self.rec_Connectivity,self.Dale_rec)),
axes=1) * \
tf.where(tf.greater(xt, 0), tf.ones_like(xt), tf.zeros_like(xt))
denom = dxt
# sum over hidden units
num = tf.reduce_sum(tf.square(num), axis=2)
denom = tf.reduce_sum(tf.square(denom), axis=2)
bounded = tf.where(tf.greater(denom, 1e-20), tf.div(num, 1.0 * denom), tf.ones_like(num))
nelems = tf.reduce_mean(tf.where(tf.greater(denom, 1e-20), 1.0 * tf.ones_like(num), 1.0 * tf.zeros_like(num)), axis=1)
# sum mean over each batch by time steps
Omega = tf.square(bounded - 1.0)
Omega = tf.reduce_sum(tf.reduce_mean(Omega, axis=1)) / (1.0 * tf.reduce_sum(nelems))
out = tf.gradients(Omega, self.W_rec)
out[0] = tf.Print(out[0], [out[0], self.W_rec, Omega], "omega grads")
out[0] = tf.verify_tensor_all_finite(out[0], "dead omega grad")
return out, test
def sussillo_reg(self):
states = self.states
reg = 0
| tensorflow.square | 14,572 |
import tensorflow as tf
if FLAGS.do_train:
train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
file_based_convert_examples_to_features(
train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file)
tf.logging.info("***** Running training *****")
tf.logging.info(" Num examples = %d", len(train_examples))
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
tf.logging.info(" Num steps = %d", num_train_steps)
train_input_fn = file_based_input_fn_builder(
input_file=train_file,
seq_length=FLAGS.max_seq_length,
is_training=True,
| tensorflow.logging.info | 14,573 |
import tensorflow as tf
vocab_size: a `int`, vocabular size of the problem
num_power_iteration: a `int`, the number of power iteration
small_constant_for_finite_diff: a `float`, Small constant for finite difference method
perturb_norm_length: a `float`, Norm length of adversarial perturbation
to be optimized with validatio
Returns:
a `float` `scalar`, KL divergence.
"""
logits = tf.stop_gradient(logits)
weights = _end_of_seq_mask(labels, vocab_size)
perturbs = [_mask_by_length(tf.random_normal(shape=tf.shape(emb)), length) for emb in embedded]
for _ in range(num_power_iteration):
perturbs = [_scale_l2(d, small_constant_for_finite_diff) for d in perturbs]
d_logits = logits_from_embedding_fn([emb + d for (emb, d) in zip(embedded, perturbs)])
kl = _kl_divergence_with_logits(logits, d_logits, weights, num_classes)
perturbs = tf.gradients(
kl, perturbs, aggregation_method=tf.AggregationMethod.EXPERIMENTAL_ACCUMULATE_N)
perturbs = [tf.stop_gradient(d) for d in perturbs]
perturbs = [_scale_l2(_mask_by_length(d, length), perturb_norm_length) for d in perturbs]
vadv_logits = logits_from_embedding_fn([emb + d for (emb, d) in zip(embedded, perturbs)])
return _kl_divergence_with_logits(logits, vadv_logits, weights, num_classes)
| tensorflow.shape | 14,574 |
import tensorflow as tf
print("eval/loss: %.6f\n" % avg_loss.result())
with tf.contrib.summary.always_record_summaries():
tf.contrib.summary.scalar("loss", avg_loss.result())
def train_one_epoch(model, optimizer, train_data, log_interval=10):
"""Trains model on train_data using optimizer."""
tf.train.get_or_create_global_step()
def model_loss(labels, chars, sequence_length):
predictions = model((chars, sequence_length), training=True)
loss_value = loss(labels, predictions)
tf.contrib.summary.scalar("loss", loss_value)
return loss_value
| tensorflow.train.get_or_create_global_step | 14,575 |
import tensorflow as tf
# pred1, pred2 = tf.split(horizon_pred, 2, axis=0)
# tgt1, tgt2 = tf.split(horizon_tgt, 2, axis=0)
even = [2 * i for i in range(25)]
odd = [2 * i + 1 for i in range(25)]
pred1 = tf.gather(horizon_pred, even)
pred2 = tf.gather(horizon_pred, odd)
tgt1 = tf.gather(horizon_tgt, even)
tgt2 = tf.gather(horizon_tgt, odd)
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
| tensorflow.gather | 14,576 |
import tensorflow as tf
import datetime
import BatchDatsetReader as dataset
from six.moves import xrange
import os.path as osp
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_integer("batch_size", "2", "batch size for training")
tf.flags.DEFINE_string("logs_dir", r"E:\work\01-Myproject\imag_division\FCN.tensorflow-master\logs", "path to logs directory")
tf.flags.DEFINE_string("data_dir", r"E:\work\01-Myproject\imag_division\FCN.tensorflow-master\Data_zoo\STEM", "path to dataset")
tf.flags.DEFINE_float("learning_rate", "1e-4", "Learning rate for Adam Optimizer")
tf.flags.DEFINE_string("model_dir", r"E:\work\01-Myproject\imag_division\FCN.tensorflow-master\Model_zoo", "Path to vgg model mat")
tf.flags.DEFINE_bool('debug', "False", "Debug mode: True/ False")
tf.flags.DEFINE_string('mode', "train", "Mode train/ test/ visualize")
MODEL_URL = 'http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat'
MAX_ITERATION = 100 #最大步数
NUM_OF_CLASSESS = 3 #分类数目
IMAGE_SIZE = 2048 #图像大小
def vgg_net(weights, image):
layers = (
| tensorflow.flags.DEFINE_bool | 14,577 |
from tensorflow.python.ops import gradients
"""See base class."""
global_step = variables.get_global_step()
assert global_step
loss = self._loss(
self._logits(features), targets, self._get_weight_tensor(features))
logging_ops.scalar_summary("loss", loss)
linear_vars = self._get_linear_vars()
dnn_vars = self._get_dnn_vars()
grads = gradients.gradients(loss, dnn_vars + linear_vars)
dnn_grads = grads[0:len(dnn_vars)]
linear_grads = grads[len(dnn_vars):]
train_ops = self._get_linear_training_ops(
linear_grads, linear_vars) + self._get_dnn_training_ops(dnn_grads,
dnn_vars)
train_step = control_flow_ops.group(*train_ops, name="combined_training_op")
| tensorflow.python.ops.gradients.gradients | 14,578 |
from tensorflow.contrib.learn.python.learn.io import data_feeder
def input_fn():
return x.create_graph()
return input_fn, None
df = data_feeder.setup_train_data_feeder(x, None,
n_classes=None,
batch_size=batch_size)
return df.input_builder, df.get_feed_dict_fn()
| tensorflow.contrib.learn.python.learn.io.data_feeder.setup_train_data_feeder | 14,579 |
import tensorflow as tf
cell_inputs = [layers[-2][0] if len(layers) > 1 else layers[-1][0], layers[-1][0]]
blocks = []
for bi in range(b):
with tf.variable_scope('block_{}'.format(bi)):
idx1 = cell_arch[bi][0]
op1 = cell_arch[bi][1]
idx2 = cell_arch[bi][2]
op2 = cell_arch[bi][3]
with tf.variable_scope('X1'):
X1 = self._add_op_dynamic(cell_inputs, blocks, idx1, op1, w, h, block_ch, is_train=is_train)
X1 = self._add_drop_path(X1, drop_path_keep_prob)
with tf.variable_scope('X2'):
X2 = self._add_op_dynamic(cell_inputs, blocks, idx2, op2, w, h, block_ch, is_train=is_train)
X2 = self._add_drop_path(X2, drop_path_keep_prob)
X = tf.add_n([X1, X2])
blocks.append(X)
(X, comb_ch) = self._combine_cell_blocks_dynamic(cell_inputs, blocks, cell_arch, w, h, block_ch, is_train)
X = tf.reshape(X, (-1, w, h, comb_ch)) # Sanity shape check
layers.append((X, w, h, comb_ch))
| tensorflow.variable_scope | 14,580 |
import tensorflow as tf
action_templates_embedding_size = 8
num_actions_arguments = data.batch_actions_arguments.shape[2]
actions_arguments_vocabulary_length = len(data.idx2word_action_arguments)
with tf.name_scope('data'):
batch_histories = tf.Variable(data.batch_histories, name='histories',
trainable=False)
batch_actions_template = tf.Variable(data.batch_actions_template, name='actions',
trainable=False)
batch_action_arguments = tf.Variable(data.batch_actions_arguments, name='actions_arguments',
trainable=False)
histories = tf.gather(batch_histories, self.batch_idx)
actions_template = tf.gather(batch_actions_template, self.batch_idx)
actions_arguments = tf.gather(batch_action_arguments, self.batch_idx)
with tf.name_scope('model'):
encoder_embedding = embedding(
input=histories,
length=histories_vocabulary_length,
size=histories_embedding_size,
name='encoder_embedding'
)
with tf.name_scope("UtterancesEncoder"):
| tensorflow.gather | 14,581 |
from tensorflow.python.framework import ops
transpose_a=transpose_a,
transpose_b=transpose_b,
a_is_sparse=a_is_sparse,
b_is_sparse=b_is_sparse,
name=name)
else:
return gen_math_ops._mat_mul(a, b,
transpose_a=transpose_a,
transpose_b=transpose_b,
name=name)
sparse_matmul = gen_math_ops._sparse_mat_mul
batch_matmul = gen_math_ops._batch_mat_mul
ops.RegisterShape("MatMul")(common_shapes.matmul_shape)
ops.RegisterShape("SparseMatMul")(common_shapes.matmul_shape)
def _as_indexed_slices(x):
"""Convert 'x' to IndexedSlices.
Convert a dense Tensor to a block-sparse IndexedSlices.
Args:
x: Either a Tensor object, or an IndexedSlices object.
Returns:
An IndexedSlices object.
| tensorflow.python.framework.ops.RegisterShape | 14,582 |
import tensorflow as tf
g_loss = tf.reduce_mean(tf.squared_difference(fake, 1), name='g_loss')
| tensorflow.squared_difference | 14,583 |
import tensorflow as tf
)
outputs = tf.layers.dense(outputs, units=num_units[1], activation=tf.nn.relu, name="dense2")
outputs = tf.layers.dropout(
outputs, rate=dropout_rate, training=is_training, name="dropout2"
| tensorflow.layers.dropout | 14,584 |
import tensorflow as tf
with tf.device('/gpu:%d' % i):
with tf.name_scope('tower_%d' % i):
| tensorflow.name_scope | 14,585 |
from tensorflow.python.ops import gen_state_ops
container: An optional string. Defaults to "".
If non-empty, this variable is placed in the given container.
Otherwise, a default container is used.
shared_name: An optional string. Defaults to "".
If non-empty, this variable is named in the given bucket
with this shared_name. Otherwise, the node name is used instead.
Returns:
A variable tensor.
"""
ret = gen_state_ops._variable(shape=shape, dtype=dtype, name=name,
container=container, shared_name=shared_name)
# TODO(mrry): Move this to where it is used, so we can get rid of this op
# wrapper?
if set_shape:
ret.set_shape(shape)
return ret
# NOTE(mrry): Shapes are conditionally set in the Python wrapper.
| tensorflow.python.ops.gen_state_ops._variable | 14,586 |
import tensorflow as tf
lambda: ema.apply([batch_mean, batch_var]),
lambda: tf.no_op())
# Update moving average and return current batch's avg and var.
def mean_var_with_update():
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
# ema.average returns the Variable holding the average of var.
mean, var = tf.cond(is_training,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
| tensorflow.identity | 14,587 |
import tensorflow as tf
"lookup_table",
dtype=tf.float32,
shape=[len(vocab), size_layers],
initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.01),
)
lookup_table = tf.concat((tf.zeros(shape=[1, size_layers]), lookup_table[1:, :]), 0)
forward = tf.nn.embedding_lookup(lookup_table, self.X)
self.Y = tf.placeholder(tf.float32, (None, None, n_mels * resampled))
self.decoder_inputs = tf.concat((tf.zeros_like(self.Y[:, :1, :]), self.Y[:, :-1, :]), 1)
self.decoder_inputs = self.decoder_inputs[:, :, -n_mels:]
self.Z = tf.placeholder(tf.float32, (None, None, fourier_window_size // 2 + 1))
| tensorflow.nn.embedding_lookup | 14,588 |
from tensorflow.contrib.eager.python.examples.spinn import data
vocab = data.load_vocabulary(self._temp_data_dir)
word2index, embed = data.load_word_vectors(self._temp_data_dir, vocab)
train_data = data.SnliData(fake_train_file, word2index)
dev_data = data.SnliData(fake_train_file, word2index)
test_data = data.SnliData(fake_train_file, word2index)
| tensorflow.contrib.eager.python.examples.spinn.data.SnliData | 14,589 |
import tensorflow as tf
self.writer = tf.summary.FileWriter(summary_dir)
tf.summary.scalar('Loss/Policy', loss_pg)
tf.summary.scalar('Loss/Value', loss_vf)
tf.summary.scalar('Loss/Entropy', - 0.01 * tf.reduce_mean(pi.entropy()))
tf.summary.scalar('Var/Policy Mode', tf.reduce_mean(pi.mode()))
tf.summary.scalar('Var/Policy Sigma', tf.reduce_mean(pi.stddev()))
tf.summary.scalar('Var/Value', tf.reduce_mean(self.vf))
self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES))
# AC net
def build_anet(self, state_in, name, reuse=False):
reg = tf.contrib.layers.l2_regularizer(1e-3)
with tf.variable_scope(name, reuse=reuse):
layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg)
mu = tf.layers.dense(layer_a2, self.a_dim, tf.nn.tanh, kernel_regularizer=reg)
# sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg)
sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5))
sigma = tf.clip_by_value(sigma, 0.0, 1.0)
norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
return norm_dist, params
def build_cnet(self, state_in, name, reuse=False):
reg = tf.contrib.layers.l2_regularizer(1e-3)
with tf.variable_scope(name, reuse=reuse):
layer_c1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_c2 = tf.layers.dense(layer_c1, 256, tf.nn.relu, kernel_regularizer=reg)
| tensorflow.layers.dense | 14,590 |
import tensorflow as tf
res1 = sess.run(outputs_dict1["0"])
res2 = sess.run(outputs_dict2["0"])
res3 = sess.run(outputs_dict3["0"])
self.assertAllClose(res1, res2)
self.assertAllClose(res1, res3)
def testSequenceLoss(self):
with self.test_session() as sess:
logits = [tf.constant(i + 0.5, shape=[2, 5]) for i in range(3)]
targets = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)]
weights = [tf.constant(1.0, shape=[2]) for i in range(3)]
average_loss_per_example = tf.nn.seq2seq.sequence_loss(
logits, targets, weights,
average_across_timesteps=True,
average_across_batch=True)
res = sess.run(average_loss_per_example)
self.assertAllClose(1.60944, res)
| tensorflow.constant | 14,591 |
from tensorflow.python.platform import gfile
class KeepCheckpointEveryNHoursTest(tf.test.TestCase):
def testNonSharded(self):
save_dir = os.path.join(self.get_temp_dir(),
"keep_checkpoint_every_n_hours")
try:
gfile.DeleteRecursively(save_dir)
except OSError:
pass # Ignore
gfile.MakeDirs(save_dir)
with self.test_session() as sess:
v = tf.Variable([10.0], name="v")
# Run the initializer NOW to avoid the 0.5s overhead of the first Run()
# call, which throws the test timing off in fastbuild mode.
tf.initialize_all_variables().run()
# Create a saver that will keep the last 2 checkpoints plus one every 0.7
# seconds.
start_time = time.time()
| tensorflow.python.platform.gfile.MakeDirs | 14,592 |
import tensorflow as tf
layers_to_output = {'rois': rois}
layers_to_output.update(self._predictions)
for var in tf.trainable_variables():
self._train_summaries.append(var)
| tensorflow.trainable_variables | 14,593 |
import tensorflow as tf
return output_tensor
def input_fn_builder(
input_files, max_seq_length, max_predictions_per_seq, is_training, num_cpu_threads=4
):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
name_to_features = {
"input_ids": tf.FixedLenFeature([max_seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([max_seq_length], tf.int64),
"masked_lm_positions": tf.FixedLenFeature(
[max_predictions_per_seq], tf.int64
),
"masked_lm_ids": tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_weights": tf.FixedLenFeature(
[max_predictions_per_seq], tf.float32
),
"next_sentence_labels": tf.FixedLenFeature([1], tf.int64),
}
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
if is_training:
d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
| tensorflow.FixedLenFeature | 14,594 |
import tensorflow as tf
bert_config, model.get_sequence_output(), model.get_embedding_table(),
masked_lm_positions, masked_lm_ids, masked_lm_weights, clip)
(next_sentence_loss, next_sentence_example_loss,
next_sentence_log_probs) = get_next_sentence_output(
bert_config, model.get_pooled_output(), next_sentence_labels, clip)
total_loss = masked_lm_loss + next_sentence_loss
tvars = tf.trainable_variables()
initialized_variable_names = {}
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
| tensorflow.trainable_variables | 14,595 |
import tensorflow as tf
entity_init = tf.truncated_normal(entity_embedding_shape, stddev=init_sd)
rel_init = tf.truncated_normal(rel_embedding_shape, stddev=init_sd)
if self.maxnorm is not None:
# Ensure maxnorm constraints are initially satisfied
entity_init = dense_maxnorm(entity_init, self.maxnorm)
rel_init = dense_maxnorm(rel_init, self.maxnorm)
self.entity_embedding_vars = tf.Variable(entity_init)
self.rel_embedding_vars = tf.Variable(rel_init)
# Embedding layer for each (head, rel, tail) triple being fed in as input
head_embed = tf.nn.embedding_lookup(self.entity_embedding_vars, self.head_input)
tail_embed = tf.nn.embedding_lookup(self.entity_embedding_vars, self.tail_input)
rel_embed = tf.nn.embedding_lookup(self.rel_embedding_vars, self.rel_input)
# Reshape rel_embed into square D x D matrices
rel_embed_square = tf.reshape(rel_embed, (-1, self.embedding_size, self.embedding_size))
# Reshape head_embed and tail_embed to be suitable for the matrix multiplication
head_embed_row = tf.expand_dims(head_embed, 1) # embeddings as row vectors
tail_embed_col = tf.expand_dims(tail_embed, 2) # embeddings as column vectors
head_rel_mult = tf.batch_matmul(head_embed_row, rel_embed_square)
# Output needs a squeeze into a 1d vector
raw_output = tf.squeeze(tf.batch_matmul(head_rel_mult, tail_embed_col))
self.output, self.loss = self._create_output_and_loss(raw_output)
# Optimization
self.train_step = self.opt.minimize(self.loss)
if self.maxnorm is not None:
# Post-processing to limit embedding vars to L2 ball
rel_maxnorm = self.maxnorm * self.rel_maxnorm_mult
unique_ent_indices = tf.unique(tf.concat(0, [self.head_input, self.tail_input]))[0]
unique_rel_indices = tf.unique(self.rel_input)[0]
entity_constraint = self._norm_constraint_op(self.entity_embedding_vars,
unique_ent_indices,
| tensorflow.expand_dims | 14,596 |
import tensorflow as tf
# queue.
image, label = read_and_decode(filename_queue)
# Shuffle the examples and collect them into batch_size batches.
# (Internally uses a RandomShuffleQueue.)
# We run this in two threads to avoid being a bottleneck.
images, sparse_labels = tf.train.shuffle_batch(
[image, label], batch_size=batch_size, num_threads=8,
capacity=1000 + 3 * batch_size,
# Ensures a minimum amount of shuffling of examples.
min_after_dequeue=1000)
| tensorflow.train.shuffle_batch | 14,597 |
from tensorflow.python.ops import array_ops
weights = math_ops.to_double(weights)
average_precision = math_ops.mul(average_precision, weights)
# Create accumulation variables and update ops for max average precision and
# total average precision.
with ops.name_scope(None, 'max', (average_precision,)) as max_scope:
# `max` is the max possible precision. Since max for any row is 1.0:
# - For the unweighted case, this is just the number of rows.
# - For the weighted case, it's the sum of the weights broadcast across
# `average_precision` rows.
max_var = contrib_variables.local_variable(
array_ops.zeros([], dtype=dtypes.float64), name=max_scope)
if weights is None:
batch_max = math_ops.to_double(
array_ops.size(average_precision, name='batch_max'))
else:
# TODO(ptucker): More efficient way to broadcast?
broadcast_weights = math_ops.mul(
weights, array_ops.ones_like(average_precision),
name='broadcast_weights')
batch_max = math_ops.reduce_sum(broadcast_weights, name='batch_max')
max_update = state_ops.assign_add(max_var, batch_max, name='update')
with ops.name_scope(None, 'total', (average_precision,)) as total_scope:
total_var = contrib_variables.local_variable(
array_ops.zeros([], dtype=dtypes.float64), name=total_scope)
batch_total = math_ops.reduce_sum(average_precision, name='batch_total')
total_update = state_ops.assign_add(total_var, batch_total, name='update')
| tensorflow.python.ops.array_ops.size | 14,598 |
import tensorflow as tf
lr_values = [params['learning_rate'] * decay for decay in params['lr_decay_factors']]
learning_rate = tf.train.piecewise_constant(tf.cast(global_step, tf.int32),
[int(_) for _ in params['decay_boundaries']],
lr_values)
truncated_learning_rate = tf.maximum(learning_rate, tf.constant(params['end_learning_rate'], dtype=learning_rate.dtype))
# Create a tensor named learning_rate for logging purposes.
tf.identity(truncated_learning_rate, name='learning_rate')
tf.summary.scalar('learning_rate', truncated_learning_rate)
optimizer = tf.train.MomentumOptimizer(learning_rate=truncated_learning_rate,
momentum=params['momentum'])
# Batch norm requires update_ops to be added as a train_op dependency.
| tensorflow.identity | 14,599 |
Subsets and Splits