File size: 4,483 Bytes
d9ccd26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# Adapted from the SQuAD dataset file

import json

import datasets
from datasets.tasks import QuestionAnsweringExtractive


_CITATION = """\
"""

_DESCRIPTION = """\
"""

_URL = "https://repository.clarin.is/repository/xmlui/bitstream/handle/20.500.12537/143/"
_URLS = {
    "train": _URL + "nqii_train_squad_format_tok.json",
    "dev": _URL + "nqii_dev_squad_format_tok.json",
    "test": _URL + "nqii_test_squad_format_tok.json"
}


class NQiIConfig(datasets.BuilderConfig):
    """BuilderConfig."""

    def __init__(self, **kwargs):
        """BuilderConfig.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(NQiIConfig, self).__init__(**kwargs)


class NQiI(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        NQiIConfig(name="icelandic-qa-NQiI", version=datasets.Version("1.0.0"), description=""),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # datasets.features.FeatureConnectors
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "context": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "answers": datasets.features.Sequence(
                        {
                            "text": datasets.Value("string"),
                            "answer_start": datasets.Value("int32"),
                        }
                    ),
                    # These are the features of your dataset like images, labels ...
                }
            ),
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage="https://vesteinn.is/qa/",
            citation=_CITATION,
            task_templates=[
                QuestionAnsweringExtractive(
                    question_column="question", context_column="context", answers_column="answers"
                )
            ],
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO(squad_v2): Downloads the data and defines the splits
        # dl_manager is a datasets.download.DownloadManager that can be used to
        # download and extract URLs
        urls_to_download = _URLS
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),

        ]

    def _generate_examples(self, filepath):
        """Yields examples."""
        # TODO(squad_v2): Yields (key, example) tuples from the dataset
        with open(filepath, encoding="utf-8") as f:
            squad = json.load(f)
            for example in squad["data"]:
                title = example.get("title", "")
                for paragraph in example["paragraphs"]:
                    context = paragraph["context"]  # do not strip leading blank spaces GH-2585
                    for qa in paragraph["qas"]:
                        question = qa["question"]
                        id_ = qa["id"]

                        answer_starts = [answer["answer_start"] for answer in qa["answers"]]
                        answers = [answer["text"] for answer in qa["answers"]]

                        # Features currently used are "context", "question", and "answers".
                        # Others are extracted here for the ease of future expansions.
                        yield id_, {
                            "title": title,
                            "context": context,
                            "question": question,
                            "id": id_,
                            "answers": {
                                "answer_start": answer_starts,
                                "text": answers,
                            },
                        }