--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: sentence dtype: string splits: - name: train num_bytes: 131539467.61728086 num_examples: 5346 - name: test num_bytes: 32351673.510719135 num_examples: 1337 download_size: 163256695 dataset_size: 163891141.128 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- # Urban Bus Wolof Speech Dataset This dataset contains audio recordings and their transcriptions in Wolof, related to urban bus transportation. The goal is to facilitate the development of Automatic Speech Recognition (ASR) models to help illiterate people use existing apps to find which bus they can take to reach their destination without needing to know how to read or write. ## Dataset Description - **Language**: Wolof (`wo`) - **Domain**: Urban transportation - **Data Type**: Audio recordings and transcriptions - **Audio File Format**: MP3 - **Sampling Rate**: 16 kHz - **Total Examples**: 6,683 - **Training Set**: 5,346 examples (80%) - **Test Set**: 1,337 examples (20%) ## Dataset Structure ### Features - `audio`: An audio file containing the speech in Wolof. - **Format**: MP3 - **Sampling Rate**: 16 kHz - `sentence`: The textual transcription of the audio in Wolof. ### Splits The dataset is divided into two splits: | Split | Number of Examples | |--------|---------------------| | Train | 5,346 | | Test | 1,337 | ## Example Usage Here's how to load and use this dataset with the 🤗 Datasets library: ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("vonewman/urban-bus-wolof") # Access an example from the 'train' split print(dataset['train'][0]) # Expected output: # { # 'audio': { # 'path': '.../train/audio/.mp3', # 'array': array([...]), # 'sampling_rate': 16000 # }, # 'sentence': 'Transcription of the audio in Wolof' # }