File size: 2,146 Bytes
ba8ac9d
 
 
 
 
 
487ecc7
ba8ac9d
 
 
69dc8dc
 
ba8ac9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

# FinQA Dataset (Processed)

## Dataset Description

### Dataset Summary
The FinQA dataset is designed for numerical reasoning over financial data, containing questions that require complex reasoning over tables and text from financial reports.

### Dataset Statistics
- Total examples: 8281
- Training set size: 6624 examples
- Test set size: 1657 examples

### Dataset Structure
Each example contains:
- Required columns:
  - query: The question to be answered (derived directly from qa.question)
  - context: Combined context including pre-text, table, and post-text, formatted with random section headers and separators for variety
  - output: The execution answer (derived from qa.exe_ans)
- Original FinQA fields:
  - id: Unique example identifier
  - pre_text: Text appearing before the table
  - post_text: Text appearing after the table
  - table: Tabular data in string format
  - program: The reasoning program to derive the answer
  - exe_ans: The execution result

### Context Formation
The context field is created by concatenating:
1. Pre-text with a randomly selected header (e.g., "Background:", "Context:", "Pre-text:")
2. Table data with a randomly selected header (e.g., "Data Table:", "Tabular Data:", "Table:")
3. Post-text with a randomly selected header (e.g., "Additional Information:", "Follow-up:", "Post-table:")

These sections are joined using random separators (##, 

, or --) to create variety.

## Dataset Creation

### Source Data
This dataset is derived from the FinQA dataset created by Chen et al. The original dataset is available at [FinQA GitHub Repository](https://github.com/czyssrs/FinQA).

### Citation
```
@article{chen2021finqa,
  title={FinQA: A Dataset of Numerical Reasoning over Financial Data},
  author={Chen, Zhiyu and Chen, Wenhu and Smiley, Charese and Shah, Sameena and Borova, Iana and Langdon, Dylan and Moussa, Reema and Beane, Matt and Huang, Ting-Hao and Routledge, Bryan and Wang, William Yang},
  journal={Proceedings of EMNLP 2021},
  year={2021}
}
```
### Licensing Information
This dataset is released under the MIT License, following the original FinQA dataset licensing terms.