Update README.md
Browse files
README.md
CHANGED
@@ -1,62 +1,3 @@
|
|
1 |
-
# UniMER 数据集
|
2 |
-
## 简介
|
3 |
-
UniMER数据集是专门为通用数学表达式识别(MER)发布的数据集。它包含了真实全面的UniMER-1M训练集,拥有超过一百万个代表广泛和复杂数学表达式的实例,以及精心设计的UniMER测试集,用于在真实世界场景中评估MER模型。数据集详情如下:
|
4 |
-
|
5 |
-
- **UniMER-1M 训练集:**
|
6 |
-
- 总样本数:1,061,791
|
7 |
-
- 组成:简洁与复杂、扩展公式表达式的平衡融合
|
8 |
-
- 目标:帮助训练鲁棒性强、高精度的MER模型,增强识别准确性和模型泛化能力
|
9 |
-
|
10 |
-
- **UniMER 测试集:**
|
11 |
-
- 总样本数:23,757,分为四种表达式类型:
|
12 |
-
- 简单印刷表达式(SPE):6,762 个样本
|
13 |
-
- 复杂印刷表达式(CPE):5,921 个样本
|
14 |
-
- 屏幕截图表达式(SCE):4,774 个样本
|
15 |
-
- 手写表达式(HWE):6,332 个样本
|
16 |
-
- 目的:为MER模型提供一个全面的评估平台,以准确评估真实场景下各类公式识别能力
|
17 |
-
|
18 |
-
## 视觉数据样本
|
19 |
-
![UniMER-测试集](https://github.com/opendatalab/UniMERNet/assets/69186975/7301df68-e14c-4607-81bc-b6ee3ba1780b)
|
20 |
-
|
21 |
-
## 数据统计
|
22 |
-
| **数据集** | **子集** | **来源** | **样本数量** |
|
23 |
-
|:-----------:|:-------:|:-------------------------------------------:|:------------:|
|
24 |
-
| UniMER-1M | | Pix2tex 训练集 | 158,303 |
|
25 |
-
| | | Arxiv † | 820,152 |
|
26 |
-
| | | CROHME 训练集 | 8,834 |
|
27 |
-
| | | HME100K 训练集 ‡ | 74,502 |
|
28 |
-
| UniMER-测试集 | SPE | Pix2tex 验证集 | 6,762 |
|
29 |
-
| | CPE | Arxiv † | 5,921 |
|
30 |
-
| | SCE | PDF 截图 † | 4,742 |
|
31 |
-
| | HWE | CROHME & HME100K | 6,332 |
|
32 |
-
|
33 |
-
† 表示由我们团队收集、处理和注释的数据。
|
34 |
-
‡ 由于版权合规,请手动下载此部分数据集:[HME100K 数据集](https://ai.100tal.com/dataset)。
|
35 |
-
|
36 |
-
## 致谢
|
37 |
-
我们对[Pix2tex](https://github.com/lukas-blecher/LaTeX-OCR), [CROHME](https://www.cs.rit.edu/~rlaz/files/CROHME+TFD%E2%80%932019.pdf)和[HME100K](https://github.com/tal-tech/SAN) 数据集的创建者表示感谢。他们的基础工作对 UniMER 数据集的构建及发布做出了重大贡献。
|
38 |
-
|
39 |
-
## 引用
|
40 |
-
```text
|
41 |
-
@misc{wang2024unimernet,
|
42 |
-
title={UniMERNet: A Universal Network for Real-World Mathematical Expression Recognition},
|
43 |
-
author={Bin Wang and Zhuangcheng Gu and Chao Xu and Bo Zhang and Botian Shi and Conghui He},
|
44 |
-
year={2024},
|
45 |
-
eprint={2404.15254},
|
46 |
-
archivePrefix={arXiv},
|
47 |
-
primaryClass={cs.CV}
|
48 |
-
}
|
49 |
-
|
50 |
-
@misc{conghui2022opendatalab,
|
51 |
-
author={He, Conghui and Li, Wei and Jin, Zhenjiang and Wang, Bin and Xu, Chao and Lin, Dahua},
|
52 |
-
title={OpenDataLab: Empowering General Artificial Intelligence with Open Datasets},
|
53 |
-
howpublished = {\url{https://opendatalab.com}},
|
54 |
-
year={2022}
|
55 |
-
}
|
56 |
-
```
|
57 |
-
|
58 |
-
---
|
59 |
-
|
60 |
# UniMER Dataset
|
61 |
## Introduction
|
62 |
The UniMER dataset is a specialized collection curated to advance the field of Mathematical Expression Recognition (MER). It encompasses the comprehensive UniMER-1M training set, featuring over one million instances that represent a diverse and intricate range of mathematical expressions, coupled with the UniMER Test Set, meticulously designed to benchmark MER models against real-world scenarios. The dataset details are as follows:
|
@@ -116,3 +57,62 @@ We would like to express our gratitude to the creators of the [Pix2tex](https://
|
|
116 |
year={2022}
|
117 |
}
|
118 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# UniMER Dataset
|
2 |
## Introduction
|
3 |
The UniMER dataset is a specialized collection curated to advance the field of Mathematical Expression Recognition (MER). It encompasses the comprehensive UniMER-1M training set, featuring over one million instances that represent a diverse and intricate range of mathematical expressions, coupled with the UniMER Test Set, meticulously designed to benchmark MER models against real-world scenarios. The dataset details are as follows:
|
|
|
57 |
year={2022}
|
58 |
}
|
59 |
```
|
60 |
+
|
61 |
+
---
|
62 |
+
|
63 |
+
# UniMER 数据集
|
64 |
+
## 简介
|
65 |
+
UniMER数据集是专门为通用数学表达式识别(MER)发布的数据集。它包含了真实全面的UniMER-1M训练集,拥有超过一百万个代表广泛和复杂数学表达式的实例,以及精心设计的UniMER测试集,用于在真实世界场景中评估MER模型。数据集详情如下:
|
66 |
+
|
67 |
+
- **UniMER-1M 训练集:**
|
68 |
+
- 总样本数:1,061,791
|
69 |
+
- 组成:简洁与复杂、扩展公式表达式的平衡融合
|
70 |
+
- 目标:帮助训练鲁棒性强、高精度的MER模型,增强识别准确性和模型泛化能力
|
71 |
+
|
72 |
+
- **UniMER 测试集:**
|
73 |
+
- 总样本数:23,757,分为四种表达式类型:
|
74 |
+
- 简单印刷表达式(SPE):6,762 个样本
|
75 |
+
- 复杂印刷表达式(CPE):5,921 个样本
|
76 |
+
- 屏幕截图表达式(SCE):4,774 个样本
|
77 |
+
- 手写表达式(HWE):6,332 个样本
|
78 |
+
- 目的:为MER模型提供一个全面的评估平台,以准确评估真实场景下各类公式识别能力
|
79 |
+
|
80 |
+
## 视觉数据样本
|
81 |
+
![UniMER-测试集](https://github.com/opendatalab/UniMERNet/assets/69186975/7301df68-e14c-4607-81bc-b6ee3ba1780b)
|
82 |
+
|
83 |
+
## 数据统计
|
84 |
+
| **数据集** | **子集** | **来源** | **样本数量** |
|
85 |
+
|:-----------:|:-------:|:-------------------------------------------:|:------------:|
|
86 |
+
| UniMER-1M | | Pix2tex 训练集 | 158,303 |
|
87 |
+
| | | Arxiv † | 820,152 |
|
88 |
+
| | | CROHME 训练集 | 8,834 |
|
89 |
+
| | | HME100K 训练集 ‡ | 74,502 |
|
90 |
+
| UniMER-测试集 | SPE | Pix2tex 验证集 | 6,762 |
|
91 |
+
| | CPE | Arxiv † | 5,921 |
|
92 |
+
| | SCE | PDF 截图 † | 4,742 |
|
93 |
+
| | HWE | CROHME & HME100K | 6,332 |
|
94 |
+
|
95 |
+
† 表示由我们团队收集、处理和注释的数据。
|
96 |
+
‡ 由于版权合规,请手动下载此部分数据集:[HME100K 数据集](https://ai.100tal.com/dataset)。
|
97 |
+
|
98 |
+
## 致谢
|
99 |
+
我们对[Pix2tex](https://github.com/lukas-blecher/LaTeX-OCR), [CROHME](https://www.cs.rit.edu/~rlaz/files/CROHME+TFD%E2%80%932019.pdf)和[HME100K](https://github.com/tal-tech/SAN) 数据集的创建者表示感谢。他们的基础工作对 UniMER 数据集的构建及发布做出了重大贡献。
|
100 |
+
|
101 |
+
## 引用
|
102 |
+
```text
|
103 |
+
@misc{wang2024unimernet,
|
104 |
+
title={UniMERNet: A Universal Network for Real-World Mathematical Expression Recognition},
|
105 |
+
author={Bin Wang and Zhuangcheng Gu and Chao Xu and Bo Zhang and Botian Shi and Conghui He},
|
106 |
+
year={2024},
|
107 |
+
eprint={2404.15254},
|
108 |
+
archivePrefix={arXiv},
|
109 |
+
primaryClass={cs.CV}
|
110 |
+
}
|
111 |
+
|
112 |
+
@misc{conghui2022opendatalab,
|
113 |
+
author={He, Conghui and Li, Wei and Jin, Zhenjiang and Wang, Bin and Xu, Chao and Lin, Dahua},
|
114 |
+
title={OpenDataLab: Empowering General Artificial Intelligence with Open Datasets},
|
115 |
+
howpublished = {\url{https://opendatalab.com}},
|
116 |
+
year={2022}
|
117 |
+
}
|
118 |
+
```
|