File size: 7,473 Bytes
ceacd49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import kornia as K
import torch
from torchgeo.datasets.geo import NonGeoDataset
import os
from collections.abc import Callable, Sequence
from torch import Tensor
import numpy as np
import rasterio
import cv2
from pyproj import Transformer
from datetime import date
from typing import TypeAlias, ClassVar
import pathlib

import logging

logging.getLogger("rasterio").setLevel(logging.ERROR)
Path: TypeAlias = str | os.PathLike[str]

class SenBenchDFC2020(NonGeoDataset):
    url = None
    #base_dir = 'all_imgs'
    splits = ('train', 'val', 'test')

    label_filenames = {
        'train': 'dfc-train-new.csv',
        'val': 'dfc-val-new.csv',
        'test': 'dfc-test-new.csv',
    }
    s1_band_names = (
        'VV', 'VH'
    )
    s2_band_names = (
        'B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09', 'B10', 'B11', 'B12'
    )

    rgb_band_names = ('B04', 'B03', 'B02')

    Cls_index = {
        'Background': 0, # to be ignored
        'Forest': 1,
        'Shrubland': 2,
        'Savanna': 3, # none, to be ignored
        'Grassland': 4,
        'Wetland': 5,
        'Cropland': 6,
        'Urban/Built-up': 7,
        'Snow/Ice': 8, # none, to be ignored
        'Barren': 9,
        'Water': 10
    }

    cls_mapping = {0:255, 1:0, 2:1, 3:255, 4:2, 5:3, 6:4, 7:5, 8:255, 9:6, 10:7} # 8 valid classes

    def __init__(
        self,
        root: Path = 'data',
        split: str = 'train',
        bands: Sequence[str] = s2_band_names,
        modality = 's2',
        transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None,
        download: bool = False,
    ) -> None:

        self.root = root
        self.transforms = transforms
        self.download = download
        #self.checksum = checksum

        assert split in ['train', 'val', 'test']

        self.bands = bands
        self.modality = modality
        if self.modality== 's1':
            self.all_band_names = self.s1_band_names
        else:
            self.all_band_names = self.s2_band_names
        self.band_indices = [(self.all_band_names.index(b)+1) for b in bands if b in self.all_band_names]

        self.img_dir = os.path.join(self.root, modality)
        self.label_dir = os.path.join(self.root, 'dfc')
        
        self.label_csv = os.path.join(self.root, self.label_filenames[split])
        self.label_fnames = []
        with open(self.label_csv, 'r') as f:
            lines = f.readlines()
            for line in lines:
                fname = line.strip()
                self.label_fnames.append(fname)

        #self.reference_date = date(1970, 1, 1)
        self.patch_area = (16*10/1000)**2 # patchsize 8 pix, gsd 300m

    def __len__(self):
        return len(self.label_fnames)

    def __getitem__(self, index):

        images, meta_infos = self._load_image(index)
        label = self._load_target(index)
        sample = {'image': images, 'mask': label, 'meta': meta_infos}

        if self.transforms is not None:
            sample = self.transforms(sample)

        return sample


    def _load_image(self, index):

        label_fname = self.label_fnames[index]
        img_fname = label_fname.replace('dfc',self.modality)
        img_path = os.path.join(self.img_dir, img_fname)
        
        with rasterio.open(img_path) as src:
            img = src.read(self.band_indices).astype('float32')
            img = torch.from_numpy(img)

            # # get lon, lat
            # cx,cy = src.xy(src.height // 2, src.width // 2)
            # if src.crs.to_string() != 'EPSG:4326':
            #     # convert to lon, lat
            #     crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326', always_xy=True)
            #     lon, lat = crs_transformer.transform(cx,cy)
            # else:
            #     lon, lat = cx, cy
            # # get time
            # img_fname = os.path.basename(s3_path)
            # date_str = img_fname.split('____')[1][:8]
            # date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8]))
            # delta = (date_obj - self.reference_date).days
            meta_info = np.array([np.nan, np.nan, np.nan, self.patch_area]).astype(np.float32)
            meta_info = torch.from_numpy(meta_info)

        return img, meta_info

    def _load_target(self, index):

        label_fname = self.label_fnames[index]
        label_path = os.path.join(self.label_dir, label_fname)

        with rasterio.open(label_path) as src:
            label = src.read(1)
            # label[label==0] = 256
            # label = label - 1
            label_remap = label.copy()
            for orig_label, new_label in self.cls_mapping.items():
                label_remap[label == orig_label] = new_label

            labels = torch.from_numpy(label_remap).long()

        return labels



class SegDataAugmentation(torch.nn.Module):

    def __init__(self, split, size, band_stats):
        super().__init__()

        if band_stats is not None:
            mean = band_stats['mean']
            std = band_stats['std']
        else:
            mean = [0.0]
            std = [1.0]

        mean = torch.Tensor(mean)
        std = torch.Tensor(std)

        self.norm = K.augmentation.Normalize(mean=mean, std=std)

        if split == "train":
            self.transform = K.augmentation.AugmentationSequential(
                K.augmentation.Resize(size=size, align_corners=True),
                #K.augmentation.RandomResizedCrop(size=size, scale=(0.8,1.0)),
                K.augmentation.RandomRotation(degrees=90, p=0.5, align_corners=True),
                K.augmentation.RandomHorizontalFlip(p=0.5),
                K.augmentation.RandomVerticalFlip(p=0.5),
                data_keys=["input", "mask"],
            )
        else:
            self.transform = K.augmentation.AugmentationSequential(
                K.augmentation.Resize(size=size, align_corners=True),
                data_keys=["input", "mask"],
            )

    @torch.no_grad()
    def forward(self, batch: dict[str,]):
        """Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple"""
        x,mask = batch["image"], batch["mask"]
        x = self.norm(x)
        x_out, mask_out = self.transform(x, mask)
        return x_out.squeeze(0), mask_out.squeeze(0).squeeze(0), batch["meta"]


class SenBenchDFC2020Dataset:
    def __init__(self, config):
        self.dataset_config = config
        self.img_size = (config.image_resolution, config.image_resolution)
        self.root_dir = config.data_path
        self.bands = config.band_names
        self.modality = config.modality
        self.band_stats = config.band_stats

    def create_dataset(self):
        train_transform = SegDataAugmentation(split="train", size=self.img_size, band_stats=self.band_stats)
        eval_transform = SegDataAugmentation(split="test", size=self.img_size, band_stats=self.band_stats)

        dataset_train = SenBenchDFC2020(
            root=self.root_dir, split="train", bands=self.bands, modality=self.modality, transforms=train_transform
        )
        dataset_val = SenBenchDFC2020(
            root=self.root_dir, split="val", bands=self.bands, modality=self.modality, transforms=eval_transform
        )
        dataset_test = SenBenchDFC2020(
            root=self.root_dir, split="test", bands=self.bands, modality=self.modality, transforms=eval_transform
        )

        return dataset_train, dataset_val, dataset_test