File size: 5,285 Bytes
3022fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b858783
3022fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from torch.utils.data import DataLoader, Dataset
import cv2
import os
import rasterio
import torch
import numpy as np
from pyproj import Transformer
from datetime import date

S3_OLCI_SCALE = [0.0139465,0.0133873,0.0121481,0.0115198,0.0100953,0.0123538,0.00879161,0.00876539,
                    0.0095103,0.00773378,0.00675523,0.0071996,0.00749684,0.0086512,0.00526779,0.00530267,
                    0.00493004,0.00549962,0.00502847,0.00326378,0.00324118]

LC100_CLSID = {
    0: 0, # unknown
    20: 1,
    30: 2,
    40: 3,
    50: 4,
    60: 5,
    70: 6,
    80: 7,
    90: 8,
    100: 9,
    111: 10,
    112: 11,
    113: 12,
    114: 13,
    115: 14,
    116: 15,
    121: 16,
    122: 17,
    123: 18,
    124: 19,
    125: 20,
    126: 21,
    200: 22, # ocean
}



class S3OLCI_LC100ClsDataset(Dataset):
    '''
    6908/1727 train/test images 96x96x21
    23 classes multilabel LULC
    nodata: -inf
    time series: 1-4 time stamps / location
    
    '''
    def __init__(self, root_dir, mode='static', split='train', meta=False):
        self.root_dir = root_dir
        self.mode = mode
        self.meta = meta
        self.img_dir = os.path.join(root_dir, split, 's3_olci')
        self.lc100_cls = os.path.join(root_dir, split, 'lc100_multilabel.csv')
        self.fnames = []
        self.labels = []
        with open(self.lc100_cls, 'r') as f:
            lines = f.readlines()
            for line in lines:
                self.fnames.append(line.strip().split(',')[0])
                self.labels.append(list(map(int, line.strip().split(',')[1:])))

        if self.mode == 'static':
            self.static_csv = os.path.join(root_dir, split, 'static_fnames.csv')
            with open(self.static_csv, 'r') as f:
                lines = f.readlines()
                self.static_img = {}
                for line in lines:
                    dirname = line.strip().split(',')[0]
                    img_fname = line.strip().split(',')[1]
                    self.static_img[dirname] = img_fname
                
        if self.meta:
            self.reference_date = date(1970, 1, 1)


    def __len__(self):
        return len(self.fnames)
    
    def __getitem__(self, idx):
        fname = self.fnames[idx]

        s3_path = os.path.join(self.img_dir, fname)
        if self.mode == 'static':
            img_fname = self.static_img[fname]
            s3_paths = [os.path.join(s3_path, img_fname)]
        else:
            img_fnames = os.listdir(s3_path)
            s3_paths = []
            for img_fname in img_fnames:
                s3_paths.append(os.path.join(s3_path, img_fname))
        
        imgs = []
        img_paths = []
        meta_infos = []
        for img_path in s3_paths:
            with rasterio.open(img_path) as src:
                img = src.read()
                chs = []
                for b in range(21):
                    ch = cv2.resize(img[b], (96,96), interpolation=cv2.INTER_CUBIC)
                    chs.append(ch)
                img = np.stack(chs)
                img[np.isnan(img)] = 0
                for b in range(21):
                    img[b] = img[b]*S3_OLCI_SCALE[b]
                img = torch.from_numpy(img).float()


                if self.meta:
                    # get lon, lat
                    cx,cy = src.xy(src.height // 2, src.width // 2)
                    # convert to lon, lat
                    #crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326')
                    #lon, lat = crs_transformer.transform(cx,cy)
                    lon, lat = cx, cy
                    # get time
                    img_fname = os.path.basename(img_path)
                    date_str = img_fname.split('_')[1][:8]
                    date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8]))
                    delta = (date_obj - self.reference_date).days
                    meta_info = np.array([lon, lat, delta, 0]).astype(np.float32)
                else:
                    meta_info = np.array([np.nan,np.nan,np.nan,np.nan]).astype(np.float32)

            imgs.append(img)
            img_paths.append(img_path)
            meta_infos.append(meta_info)

        if self.mode == 'series':
            # pad to 4 images if less than 4
            while len(imgs) < 4:
                imgs.append(img)
                img_paths.append(img_path)
                meta_infos.append(meta_info)

        label = self.labels[idx]
        labels = torch.zeros(23)
        # turn into one-hot
        for l in label:
            cls_id = LC100_CLSID[l]
            labels[cls_id] = 1

        if self.mode == 'static':
            return imgs[0], meta_infos[0], labels
        elif self.mode == 'series':
            return imgs[0], imgs[1], imgs[2], imgs[3], meta_infos[0], meta_infos[1], meta_infos[2], meta_infos[3], labels

if __name__ == '__main__':
    dataset = S3OLCI_LC100ClsDataset(root_dir='../data/downstream/cgls_lc100', mode='static', split=None, meta=True)
    dataloader = DataLoader(dataset, batch_size=64, shuffle=False, num_workers=4)
    for i, data in enumerate(dataloader):
        #print(data[0].shape)
        #print(data[1].shape)
        #print(data[1])
        #print(data[2])
        #print(data[0].max())
        #break
        pass