File size: 7,631 Bytes
0aaf21e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
870751d
0aaf21e
 
 
 
 
 
 
 
870751d
 
 
 
 
 
 
 
 
 
0aaf21e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
870751d
0aaf21e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
870751d
0aaf21e
 
870751d
 
 
 
 
 
 
0aaf21e
 
 
 
 
 
 
870751d
0aaf21e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
870751d
0aaf21e
 
870751d
 
0aaf21e
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import kornia.augmentation as K
import torch
from torchgeo.datasets import So2Sat
import os
from collections.abc import Callable, Sequence
from torch import Tensor
import numpy as np
import rasterio
from pyproj import Transformer
import h5py
from typing import TypeAlias, ClassVar
import pathlib
Path: TypeAlias = str | os.PathLike[str]

class SenBenchSo2Sat(So2Sat):

    versions = ('4_senbench')
    filenames_by_version: ClassVar[dict[str, dict[str, str]]] = {
        # '2': {
        #     'train': 'training.h5',
        #     'validation': 'validation.h5',
        #     'test': 'testing.h5',
        # },
        # '3_random': {'train': 'random/training.h5', 'test': 'random/testing.h5'},
        # '3_block': {'train': 'block/training.h5', 'test': 'block/testing.h5'},
        # '3_culture_10': {
        #     'train': 'culture_10/train-new.h5',
        #     'val': 'culture_10/val-new.h5',
        #     'test': 'culture_10/test-new.h5',
        # },
        '4_senbench': {
            'train': 'train-new.h5',
            'val': 'val-new.h5',
            'test': 'test-new.h5'
        }
    }

    classes = (
        'Compact high rise',
        'Compact mid rise',
        'Compact low rise',
        'Open high rise',
        'Open mid rise',
        'Open low rise',
        'Lightweight low rise',
        'Large low rise',
        'Sparsely built',
        'Heavy industry',
        'Dense trees',
        'Scattered trees',
        'Bush, scrub',
        'Low plants',
        'Bare rock or paved',
        'Bare soil or sand',
        'Water',
    )

    all_s1_band_names = (
        'S1_B1', # VH real
        'S1_B2', # VH imaginary
        'S1_B3', # VV real
        'S1_B4', # VV imaginary
        'S1_B5', # VH intensity
        'S1_B6', # VV intensity
        'S1_B7', # PolSAR covariance matrix off-diagonal real
        'S1_B8', # PolSAR covariance matrix off-diagonal imaginary
    )
    all_s2_band_names = (
        'S2_B02',
        'S2_B03',
        'S2_B04',
        'S2_B05',
        'S2_B06',
        'S2_B07',
        'S2_B08',
        'S2_B8A',
        'S2_B11',
        'S2_B12',
    )
    all_band_names = all_s1_band_names + all_s2_band_names

    rgb_bands = ('S2_B04', 'S2_B03', 'S2_B02')

    BAND_SETS: ClassVar[dict[str, tuple[str, ...]]] = {
        'all': all_band_names,
        's1': all_s1_band_names,
        's2': all_s2_band_names,
        'rgb': rgb_bands,
    }

    def __init__(
        self,
        root: Path = 'data',
        version: str = '4_senbench', # only supported version now
        split: str = 'train',
        bands: Sequence[str] = BAND_SETS['s2'], # only supported bands now
        transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None,
        download: bool = False,
    ) -> None:

        #h5py = lazy_import('h5py')

        assert version in self.versions
        assert split in self.filenames_by_version[version]

        self._validate_bands(bands)
        self.s1_band_indices: np.typing.NDArray[np.int_] = np.array(
            [
                self.all_s1_band_names.index(b)
                for b in bands
                if b in self.all_s1_band_names
            ]
        ).astype(int)

        self.s1_band_names = [self.all_s1_band_names[i] for i in self.s1_band_indices]

        self.s2_band_indices: np.typing.NDArray[np.int_] = np.array(
            [
                self.all_s2_band_names.index(b)
                for b in bands
                if b in self.all_s2_band_names
            ]
        ).astype(int)

        self.s2_band_names = [self.all_s2_band_names[i] for i in self.s2_band_indices]

        self.bands = bands

        self.root = root
        self.version = version
        self.split = split
        self.transforms = transforms
        # self.checksum = checksum

        self.fn = os.path.join(self.root, self.filenames_by_version[version][split])

        # if not self._check_integrity():
        #     raise DatasetNotFoundError(self)

        with h5py.File(self.fn, 'r') as f:
            self.size: int = f['label'].shape[0]

        self.patch_area = (16*10/1000)**2 # patchsize 16 pix, gsd 10m


    def __getitem__(self, index: int) -> dict[str, Tensor]:
        """Return an index within the dataset.

        Args:
            index: index to return

        Returns:
            data and label at that index
        """
        #h5py = lazy_import('h5py')
        with h5py.File(self.fn, 'r') as f:
            #s1 = f['sen1'][index].astype(np.float32)
            #s1 = np.take(s1, indices=self.s1_band_indices, axis=2)
            s2 = f['sen2'][index].astype(np.float32)
            s2 = np.take(s2, indices=self.s2_band_indices, axis=2)

            # convert one-hot encoding to int64 then torch int
            label = torch.tensor(f['label'][index].argmax())

            #s1 = np.rollaxis(s1, 2, 0)  # convert to CxHxW format
            s2 = np.rollaxis(s2, 2, 0)  # convert to CxHxW format

            #s1 = torch.from_numpy(s1)
            s2 = torch.from_numpy(s2)

        meta_info = np.array([np.nan, np.nan, np.nan, self.patch_area]).astype(np.float32)

        sample = {'image': s2, 'label': label, 'meta': torch.from_numpy(meta_info)}

        if self.transforms is not None:
            sample = self.transforms(sample)

        return sample


class ClsDataAugmentation(torch.nn.Module):

    def __init__(self, split, size, band_stats):
        super().__init__()

        if band_stats is not None:
            mean = band_stats['mean']
            std = band_stats['std']
        else:
            mean = [0.0]
            std = [1.0]

        mean = torch.Tensor(mean)
        std = torch.Tensor(std)

        if split == "train":
            self.transform = torch.nn.Sequential(
                K.Normalize(mean=mean, std=std),
                K.Resize(size=size, align_corners=True),
                #K.RandomResizedCrop(size=size, scale=(0.8,1.0)),
                K.RandomHorizontalFlip(p=0.5),
                K.RandomVerticalFlip(p=0.5),
            )
        else:
            self.transform = torch.nn.Sequential(
                K.Normalize(mean=mean, std=std),
                K.Resize(size=size, align_corners=True),
            )

    @torch.no_grad()
    def forward(self, batch: dict[str,]):
        """Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple"""
        x_out = self.transform(batch["image"]).squeeze(0)
        return x_out, batch["label"], batch["meta"]


class SenBenchSo2SatDataset:
    def __init__(self, config):
        self.dataset_config = config
        self.img_size = (config.image_resolution, config.image_resolution)
        self.root_dir = config.data_path
        self.bands = config.band_names
        self.version = config.version
        self.band_stats = config.band_stats

    def create_dataset(self):
        train_transform = ClsDataAugmentation(split="train", size=self.img_size, band_stats=self.band_stats)
        eval_transform = ClsDataAugmentation(split="test", size=self.img_size, band_stats=self.band_stats)

        dataset_train = SenBenchSo2Sat(
            root=self.root_dir, version=self.version, split="train", bands=self.bands, transforms=train_transform
        )
        dataset_val = SenBenchSo2Sat(
            root=self.root_dir, version=self.version, split="val", bands=self.bands, transforms=eval_transform
        )
        dataset_test = SenBenchSo2Sat(
            root=self.root_dir, version=self.version, split="test", bands=self.bands, transforms=eval_transform
        )

        return dataset_train, dataset_val, dataset_test