import numpy as np import torch from torch.utils.data import Dataset, DataLoader, Subset from pathlib import Path import os import rasterio import cv2 import pdb from pyproj import Transformer EXTENSIONS = (".jpg", ".jpeg", ".png", ".ppm", ".bmp", ".pgm", ".tif", ".tiff", ".webp") ALL_BANDS = ['B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B09', 'B10', 'B11', 'B12', 'B8A'] S2A_BANDS = ['B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B09', 'B11', 'B12', 'B8A'] RGB_BANDS = ['B04', 'B03', 'B02'] S1_BANDS = ['VV', 'VH'] ### SSL4EO stats BAND_STATS = { 'mean': { 'B01': 1353.72696296, 'B02': 1117.20222222, 'B03': 1041.8842963, 'B04': 946.554, 'B05': 1199.18896296, 'B06': 2003.00696296, 'B07': 2374.00874074, 'B08': 2301.22014815, 'B8A': 2599.78311111, 'B09': 732.18207407, 'B10': 12.09952894, 'B11': 1820.69659259, 'B12': 1118.20259259, 'VV': -12.54847273, 'VH': -20.19237134 }, 'std': { 'B01': 897.27143653, 'B02': 736.01759721, 'B03': 684.77615743, 'B04': 620.02902871, 'B05': 791.86263829, 'B06': 1341.28018273, 'B07': 1595.39989386, 'B08': 1545.52915718, 'B8A': 1750.12066835, 'B09': 475.11595216, 'B10': 98.26600935, 'B11': 1216.48651476, 'B12': 736.6981037, 'VV': 5.25697717, 'VH': 5.91150917 } } # BAND_STATS_S1 = { # 'mean': { # 'VV': -12.54847273, # 'VH': -20.19237134 # }, # 'std': { # 'VV': 5.25697717, # 'VH': 5.91150917 # } # } def is_valid_file(filename): return filename.lower().endswith(EXTENSIONS) def normalize(img, mean, std): min_value = mean - 2 * std max_value = mean + 2 * std img = (img - min_value) / (max_value - min_value) * 255.0 img = np.clip(img, 0, 255).astype(np.uint8) #img = (img - min_value) / (max_value - min_value) #img = np.clip(img, 0, 1).astype(np.float32) return img class EurosatDataset(Dataset): def __init__(self, root, bands='B2', split='train', transform=None, normalize=False, meta=False): self.root = Path(root,split) self.transform = transform if bands=='B13': self.bands = ALL_BANDS elif bands=='B12': self.bands = S2A_BANDS elif bands=='RGB': self.bands = RGB_BANDS elif bands=='B2': self.bands = S1_BANDS self.normalize = normalize self.classes = sorted([d.name for d in self.root.iterdir() if d.is_dir()]) self.class_to_idx = {cls_name: i for i, cls_name in enumerate(self.classes)} self.samples = [] self.targets = [] #pdb.set_trace() for froot, _, fnames in sorted(os.walk(self.root, followlinks=True)): for fname in sorted(fnames): if is_valid_file(fname): path = os.path.join(froot, fname) self.samples.append(path) target = self.class_to_idx[Path(path).parts[-2]] self.targets.append(target) #print(self.root) #print(f"Found {len(self.samples)} images belonging to {len(self.classes)} classes") self.meta = meta def __getitem__(self, index): path = self.samples[index] target = self.targets[index] with rasterio.open(path) as f: if self.bands == ALL_BANDS: array = f.read().astype(np.int16) elif self.bands == S2A_BANDS: array = f.read((1,2,3,4,5,6,7,8,9,11,12,13)).astype(np.int16) elif self.bands == RGB_BANDS: array = f.read((4,3,2)).astype(np.int16) elif self.bands == S1_BANDS: array = f.read().astype(np.float32) img = array.transpose(1, 2, 0) if self.meta: # get lon, lat, time cx,cy = f.xy(f.height // 2, f.width // 2) # convert to lon, lat crs_transformer = Transformer.from_crs(f.crs, 'epsg:4326') lon, lat = crs_transformer.transform(cx,cy) # no time meta_info = np.array([lon, lat, 0, 0]).astype(np.float32) #meta_info = np.array([0, 0, 0, 0]).astype(np.float32) #meta_info = np.array([np.nan, np.nan, np.nan, np.nan]).astype(np.float32) channels = [] for i,b in enumerate(self.bands): ch = img[:,:,i] if self.normalize: ch = normalize(ch, mean=BAND_STATS['mean'][b], std=BAND_STATS['std'][b]) elif self.bands == S2A_BANDS: ch = (ch / 10000.0 * 255.0).astype('uint8') if b=='B8A': # EuSAT band order is different than SSL4EO channels.insert(8,ch) else: channels.append(ch) #img = np.dstack(channels) img = np.stack(channels, axis=0).astype('float32') / 255.0 if self.transform is not None: img = self.transform(img) if self.meta: return img, target, meta_info else: return img, target def __len__(self): return len(self.samples) class Subset(Dataset): r""" Subset of a dataset at specified indices. Arguments: dataset (Dataset): The whole Dataset indices (sequence): Indices in the whole set selected for subset """ def __init__(self, dataset, indices, transform=None): self.dataset = dataset self.indices = indices self.transform = transform def __getitem__(self, idx): im, target = self.dataset[self.indices[idx]] if self.transform: im = self.transform(im) return im, target def __len__(self): return len(self.indices)